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A formulation for the computation of the single-site dynamics of a dilute Heisenberg anti-
ferromagnet with isotropic nearest-neighbor exchange and arbitrary nearest-neighbor sub-
stitutional short-range order {SRO) is given. In the random limit, i.e. , when the SRO is
zero, the resultant density of states is shown to exactly conserve the first four frequency
moments (of the spin-wave density of states) for all lattice structures which admit two nearest-
neighbor interpenetrating sublattices and correctly give the leading two terms in the z
expansion for all frequency moments. In the presence of the SRO, .the theory is shown to
lead to correct results in the limit of perfect spatial correlation and to give cumulant]. ike
decoupling results for the three —and higher-site substitutional correlations when these cor-
relations are short ranged. The minimum relative concentrationof the magnetic atoms for
which the antiferromagnetic long-range order does not obtain is found to be 2Q/z, where the
renormalization factor Q depends both on the actual magnetic concentration m and the SRO
parameter. For perfect clustering among the magnetic atoms, Q = m and hence. for all non-
zero magnetic concentration the system orders, whereas for complete substitutional ran-
domness, Q = 1. Hence antiferromagnetic long-range order obtains only when the relative mag-
netic concentration is higher than 2/z.

I. INTRODUCTION

The study of dilute antiferromagnets has re-
ceived a great impetus by the recent experiments
by Breed et al. ' on the mixed system
KMn& &Mg&, &F3. Analyzing it as a randomly di-
lute isotropic-exchange Heisenberg antiferrornag-
net with simple-cubic (magnetic) lattice structure,
Jones and Edwards' and Osborne' have, respec-
tively, predicted magnetic critical concentrations
of 0. 34 and 0. 296. These predictions are fairly
close to the experimental result of 0. 31 measured
by Breed et al. '

The philosophy behind the theories of Jones and
Edwards~ and of Osborne is in some sense simi-
lar to that of perturbation theory. For instance,
Jones and Edwards sum a certain subset of the
terms contributing in the linear power of the quan-
tity (1-m) to the spin-wave mass operator. Simi-
larly, Osborne, after generalizing the Green's-
function perturbation-theoretic formalism of
Kaneyoshi used in the study of dilute ferromagnet
to the antiferromagnetic case, computes his re-
sults consistently only to the simplest first-order
perturbation theory.

In contrast to these theories, the rationale be-
hind the present work is not perturbation theoretic.
Rather, interpreting the philosophy of the Butler-
Kohn' and Freed-Cohen works somewhat loosely,
we have recently argued' that the dynamical prop-
erties of a sufficiently random many-body system
will be well approximated by the situation obtaining
in typical small neighborhoods. In particular, it
was argued that for any given frequency ~, if the

size of the typical neighborhood is characterized
by a length I., then the errors involved in equating
the dynamical properties of the thermodynamic
system with those of the neighborhood of dimension
I, would become exponentially small with the ratio
I/Xo(~). Here Xo(~) is some typical mean free
path of the physical system for the frequency &.

In three dimensions, the smallest proper neigh-
borhood which includes the effects caused by ran-
dom interparticle scattering potentials was shown'
to consist of 25 atoms (for a simple-cubic lattice,
that is). For a binary system (such as a dilute
antiferromagnet), this entails a maximum of (2)3'
configurations, which record the different occupa-
tions of such a neighborhood. In spite of the fact
that the symmetry of the problem cuts down this
number by several orders of magnitude, the resul-
tant calculation is far from simple. To keep the
calculation tractable, we work with an exceedingly
simple, drastically truncated, two-site neighbor-
hood. ' In spite of its extreme simplicity, we are
able to extract fairly accurate results from such
a procedure. The reason behind such an optimum
use of this small-neighborhood approximation lies
in our study of the conditional thermodynamic av-
erages rather than the full thermodynamic aver-
ages.

Our results for the magnetic single-site density
of states for the substitutionally random case
exactly preserve the first four frequency moments
of the density of states and are asymptotically
exact in the mean-field limit, i.e. , z -~. Indeed,
as for the dilute ferromagnet, these results are
dynamically correct to the two leading orders in
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the z ' expansion, as is shown by their preserva-
tion of all frequency moments of the magnetic sin-
gle-site density of states to this order.

In the above, the exact results imply the results
obtained in the spin-wave approximation, which
assumes the quasiclassical structure for the con-
centrated antiferromagnetic ground state. As is
well known, the spin-wave representation of the
ground state is not exact and it underestimates the
zero-point quantum fluctuations. Nevertheless,
for the purposes of the present study, we assume
the correctness of the spin-wave theory in the con-
centrated limit.

In Sec. II, a formulation of the completely ran-
dom dilute antiferromagnet is given. Here the
quasiclassical nature of the spin-wave representa-
tion of the ground state is made precise by a com-
parative discussion of the partial conditional aver-
ages and the full thermodynamic averages. The
mathematical preliminaries are introduced and the
T-matrix equations, in the presence of a nonunitary
metric A, are derived in Sec. III. The properties
of the coherent Green's function are analyzed in
Sec. IV, while the truncated two-site-neighborhood
T-matrix ansatz is introduced in Sec. V.

Section VI deals with a study of the frequency
moments of the density of states for the spatially
random case. Here the exactness of the first four
frequency moments and the asymptotic exactness
(to the two leading orders in z ') of all the frequen-
cy moments of the magnetic single-site density of
states are demonstrated.

In the concluding sections (Secs. VII and VIII)
the results of this paper are generalized to the
case with nearest-neighbor short-range order
(SRO) and a discussion of the noninfinite z case is
given. It is shown how the presence of the SRO
modifies the system Noel temperature for any
given magnetic concentration. Moreover, the ex-
pression for the minimum concentration ma for
which the system does not develop antiferromag-
netic long-range order (LRO) is obtained as a func-
tion of the SRO, and it is shown how the dependence
of nba on the SRO is entirely in accord with a
heuristic qualitative picture. Next, by an examina-
tion of the many-atom spatial correlation function
(that occurs in the expression for an arbitrary-
order moment), it is shown that, if a cumulant-
likc decoupling of the many-atom clustering effects
into those of neighboring pairs occurs, then these
results are exact in the leading order in z '. Also,
the first three moments are conserved exactly.
Consequently, for nonzero SRO, the present
approximation can be considered to be a reason-
able interpolation scheme, because it gives exact
results in the limit of perfect SRO, very reason-
able results for zero SRO, and adequate results in
between. Finally, in Sec. VIII, the case of non-

infinite z is discussed and it is emphasized that for
this case the present results can be expected to
give a certain lower bound for the critical concen-
tration.

II. FORMULATION

We consider a randomly dilute Heisenberg anti-
ferromagnet with isotropic nearest-neighbor ex-
change interaction and vanishingly small staggered
external fields. The directions of the staggered
fields are taken to be along the positive z direction
for the A sublattice, and along the negative z di-
rection for the B sublattice.

As mentioned earlier, even in the concentrated
limit, where all the N magnetic lattice sites are
occupied, the ground state of the antiferromagnet
is not exactly known. Because our primary inter-
est here is in the dynamics of randomness, we
make the usual quasiclassical assumption that for
the concentrated case the ground state is described
by a pair of up-down interpenetrating sublattices,
with zero-point sublattice magnetization fluctua-
tions which are adequately given by noninteracting
spin-wave approximation. At T=0, a single spin-
Qip excitation is an exact eigenmode in this ap-
proximation, and it has a Bloch-like propagating
solution which in the limit of long wavelength, i.e. ,
K«1, has the energy

The parameter D depends upon the exchange inter-
action J, the magnitude of the spin S (we use Dirac
units whereby h = I), and the coordination number
z of the lattice,

D=2 @ST'/v 3

(We use the nearest-neighbor separation as the
unit of length and consider only those lattices
which are three dimensional and which do not have
nearest-neighbor triangles. Moreover, through-
out this paper we shall keep the magnitude of z as
arbitrary, subject to the restriction z ~ 6. ) As the
temperature rises, the sublattice magnetization
and the elementary excitation energy decrease and
the modes develop finite lifetimes. When the sys-
tem temperature reaches a critical temperature
T„where k~T, - ,D(S+ I), the syst—em undergoes
a transition to a phase with no magnetic long-range
order.

As the magnetic occupation is reduced from this
concentrated (i.e. , fully occupied) limit by the
substitution of nonmagnetic impurities in place of
some of the magnetic atoms, the description of the
magnetic state becomes even more complicated.
Now, even within the aforementioned quasiclassi-
cal approximation, the ground state cannot be de-
termined exactly for it depends upon the precise
configuration in which the Nm magnetic and
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N(l —m) nonmagnetic atoms are distributed over
the N available sites. A consequence of this ran-
domness is that spins belonging to the A sublattice
are no longer guaranteed to always have only B
sublattice spins as their nearest neighbors and
vice versa. In spite of the randomness, however,
the dictate of the quasiclassical assumption
regarding the antiferromagnetic ground state is
the complete symmetry of the up-down sublattices.
This means that, given an even number of mag-
netic atoms, the up-down sublattices will be equal-
ly populated.

The object of the present study is to investigate
the structure of the zero-temperature long-wave-
length spin-wave excitation EK as a function of the
magnetic concentration m. Assuming that the re-
normalization of EK, with the concentration m, has
the same form as the renormalization of the crit-
ical temperature T„we will compute T,(rn)/T, (1).
Moreover, the lowest concentration m, for which
the long-wavelength spin wave Ex has positive or
zero energy will be computed. This concentra-
tion, for which the antiferromagnetic LRO does
not obtain if the corresponding D=0, will be called
the critical concentration mo.

Making the usual assumption that the exchange
interaction between any pair of magnetic atoms
is independent of the presence of other atoms and
as such the effective exchange integral, being in-
dependent of the magnetic concentration, is strict-
ly a two-body object, we can write the system
Hamiltonian as

X'(t)= —Q p S'(X, t) o +2K J ' (f„f)
fy& f~~f2

x o,' v, 'S, (&, t) '&g (- ~~ f)
1 2

(2. 2)

Here the index & denotes the "up" and the "down"
magnetic sub1attices according to whether X=A or
X=8. For notational convenience we define

(2. Sa)

As stated earlier we shall consider the limiting
case for which the staggered Zeeman fields are
vanishing, i.e. ,

(o', +o ) =m;
therefore

(2. 8a)

restricted sum such that it includes only distinct
pairs (f, ,f2) of sites and thus excludes any dou-
ble counting of the same pairs. The exchange
integral J ' (f„f2) is a c-number function with the
property

J"' ('f» f3) = J' if f, and f2 are nearest neighbors
=0 otherwise. (2. 5a)

It should be recognized that, insofar as the Hamil-
tonian X' depends explicitly upon the manner in
which the mN magnetic atoms have been distributed
over the N sites of the lattice, it is configuration
dependent. Finally, the time dependence is in the
Heisenberg notation with respect to the Hamilto-
nian 3C', i.e. ,

S~(X, t) =e' 'S~(&, 0) e ' ', o.'=x, y, z. (2. 5b)

We shall assume that the manner of occupation
of the N sites is completely random. So, in ther-
mal equilibrium, any given site has a probability
nz of being occupied by a magnetic atom and aprob-
ability I —m of being occupied by a nonmagnetic
atom.

To make this idea more precise, it is necessary
to first define the concept of a configuration-depen-
dent thermal-averaging process, i.e. ,

(0),=- Tr, (e ' 0)/Tr(e ~ ) . (2. 6)

The trace in Eq. (2. 6) is taken only over those
states which are consistent with the given config-
uration in which the Nm magnetic and N(1 —m)
nonmagnetic atoms have been placed over the N
sites. Next, we define the full thermal average

(&) -=Z P(c}(fl). (2. V)
{c}

Here P(c) is the appropriate probability of the con-
figuration over which the average (0), has been
determined and the sum {c)is over all those con-
figurations which are consistent with the total
number of magnetic and nonmagnetic atoms being
equal to Nm and N(1 —m), respectively. A simple
consequence of this is that the thermodynamic
averages of operators 0, and 0; a,re equal to 2m
each, i.e. , because

= —p, =+0 . (2. 2b) (o', ) = (o &
= —.'m . (2. Sb)

The magnetic occupation operators 0& are defined
as

o& =1 if the site f is occupied by a spin belong-
ing to the X sublattice

=0 otherwise. (2. 4)

The first sum on the right-hand side of Eq. (2. 2)
is over all N sites, f, and over &=A and B. The
second sum, denoted with a prime, is, however, a

(The equality of these averages is an essential part
of our quasiclassical assumption about the anti-
ferromagnetic ground state. )

Although the configurational and the unrestricted
thermodynamic averages mentioned in the forego-
ing are of interest, of even greater importance to
us is the process of conditional averaging. The
simplest examples of this type of averaging are
the following one- and two-body occupation corre-
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(oo)&0,» = 1 . (2. 9a)

Moreover, as a consequence of the quasiclassical
assumption about the antiferromagnetic ground
state, we have

J ' (0, 1)((Tool)&o» = J ' (0, 1)(o))&p,»

= J ' (0, 1)m. (2. 9b)

Note that the occurrence of the factor m on the
right-hand side of Eq. (2. 9b) is central to the
quasiclassical assumption regarding the ground
state. It says that since the site 1 is the nearest
neighbor of site 0 [if it were not, J ' (0, 1) would

be vanishing], and since the site 0 is known to be
occupied by a spin belonging to sublattice X, the
site 1 will have the probability m of being occupied
by a spin of variety —X, while it will have zero
probability of being occupied by a spin belonging to
sublattice+ X, and, of course, it will have prob-
ability (1 —m) of being occupied by a nonmagnetic
atom. In the limit that all sites are magnetic,

lation functions, e. g. , (o'o)&0, » and J' (0, 1)
x(oo~o,")&0». The presence of the subscript (0, &)

in an average specifies that the position 0 is known
to be occupied by a magnetic spin which at T = 0 can
(in the quasiclassical sense made explicit earlier)
be identified as belonging to the X magnetic sublat-
tice. Such averages are obtained by making use of
the relation (2. 7) after choosing, and summing
over, only those configurations (c] which are con-
sistent with the condition that the site 0 is always
occupied by a spin X. Clearly then

i.e. , m= &, this assumption clearly reduces to
the usual spin-wave-theory assumption for the
concentrated ground state. [The contrast between
the results of the full thermodynamic averages
given in Eqs. (2. Sa) and (2. 8b) and the conditional
averages given above in Eqs. (2. 9a) and (2. 9b)
should be noted. j

III. MATHEMATICAL PRELIMINARIES

Let us introduce a temperature- and configura-
tion-dependent double-time retarded Green's func-
tion with explicit reference to two spatial locations
g and g' in the lattice:

G' „",(t, t') = —2«i e(t t') ([s—,'(~, t); s;, ()&', t)] ),

-=((s,'(), t); s;, ()&', t'))), . (3.1)

The function e(t —t') is the usual Heaviside step
function. [See Eq. I(3. 2) . Here and henceforth
we shall refer to the equations of Ref. 7 by putting
the prefix I in front of the equation number. j The
thermal average on the right-hand side of Eq. (3. 1)
is the configuration-dependent average defined in
Eq. (2. 6) and the notation [Ã, Y'] stands for the
commutor XF-FX. The spin-flipping operators
S', (&, t), etc. , are defined in the usual fashion.

The equation of motion of such a Green's function
is easily determined by using the usual spin com-
mutation relations (note that spin operators belong-
ing to different sublattices commute) and the
Hamiltonian defined in Eqs. (2. 2)-(2. 5a). Thus

i —G c ci'(t, t') = 2S), 5c c 6), ),.2)&6(t —t')

+ 2Z J'-'(g, f) v,'v-,'((s,'(~, t) s,'(-), t); s;, () ', t'))),

-2ZJ' '(g, q) o,'o-,.'((S',. (- ~, t) S,'(X, t); S;,(~', t'))), (3.2)

In addition to the quasiclassical approximation
relating to the antiferromagnetic ground state,
henceforth we shall assume also that the dynamical
operators S,'()&, t) and S,'(- X, t) can be replaced by
their full thermal averages S), and S )„, i.e. ,

s;()&, t) - (s;()&, t))= s, = —s „=—(sf (- ), t) ) = —s; (- ~, t).
(3.3)

This assumption is equivalent to the usual random-
phase-approximation (RPA) decoupling assumption.
As in the ferromagnet, if a suitable transforma-
tion is introduced, then the present decoupling
procedure can readily be made to yield a set of
relations identical to those following from the use
of noninteracting T=0 spin-wave theory. For con-
venience, we shall defer a discussion of this point

l

till later (see Sec. VI). Thus, Eq. (3.2) reduces
to

i—- 2S, [QJ' "(g,q) v,'o-,"] G',",' (t, t')

=2S~6,c. 5),„2)&5(t—t )

GXy), '&c (E) &E& t t')d@--~

~AS (3. 5)

Exploiting this temporal translational symmetry,

+ 2S QP~-) ( f) x -). G-x, ).', c(t tl) (3 4)
f

Because the system is not subject to external time-
varying fields [i.e. , 3C'(t) and 3C'(t') commute]

gX, V) c (t t&) G),, )&~) c (t t~)
ZtS
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we can rewrite Eq. (3.4) in the following form:

Ecx,x';c(z) 2g Jg J(B)) G x, L';c(z)
f

+ [QJ(E)( j)]G), x'lc (E)]

=».&„;&~,'+~v",~"'( ) i '(»
f1 V

where

U '""(E)=2S [J ' (g, f) o v~y —J (A1&„,-

—2s„[~, .J~)(gj) + ~„~, „QJ")(gq)], (s. 7)

we can rewrite Eq. (3.6a) as

g [I 1(z)]x, v Gu, x'; c (E)

=2~~&g„&~,~ +~ V",",j'(E) G"y', g" (E) .
f1V

(s. s)

Let us now introduce a matrix notation such that

Gc(z) [GIJ v;o(z)]

V'(E) =- [U"f,j '( E)],

r '(E) -=([r'(E)1";,"'),
A —= (2S„5„,„5(„).

(s. 9a)

(3.Qb)

(S.Qc)

(S.9d)

These matrices are (N&&2)~ matrices such that their
(initial and final) state indices refer to lattice posi-
tions along with sublattice indices v and v, i.e. ,
A or B. Using this formal notation, Eq. (S.8) is
written in the following succinct form:

r-'(z) G'(z) = A+ v'(z) G'(z) . (S. io)

Premultiplying both sides of this by I'(E), where
we define I'(E) by the relation

r(z) r '(E) = 1 =r '(E) r(z),
we get

G'(E) = I'(E) A+ I'(E) V'(E) G'(E) .

(s. is)

(3. 12)

This is the central equation of this section. How-
ever, it is convenient to transform it further as
follows: Let us define a T matrix such that

+ &„,&,,„»,fZ[J' '(a; j)~,'o)"-J"'(aj)]"f .

(s. 6b)
[These equations are obtained by first Fourier
transforming Eq. (3.4) according to (S. 5), and
then by subtracting the second term on the left-
hand side of Eq. (3.6a) from both sides of the re-
sulting equation. Note that the function J's'(f, f1)
is as yet arbitrary. Its choice, as in Ref. 7, will
be motivated by a physical criterion which will be
described in a later section. ] Introducing the
notation

[r '(E)],",g =»...~..~

V '(E) G'(E) = T '(E) I'(E) A .
Then Eq. (3. 12) would become

(s. is)

T'(E) = v'(z) + v'(z) r(z) T'(E) . (s, iv)

[Matrix elements of T'(E) will be denoted as
This ic(z) ]

The central equation, (3. 12), has thus been re-
duced to the two relations (3. 14) and (3. IV).

IV. MATRIX F(E)

In Sec. III we introduced a matrix I' '(E) by de-
fining its matrix elements in the product space of
lattice positions and the sublattice indices accord-
ing to Eq. (3.7). Because this matrix depends
upon the as yet arbitrary parameter J''~'(ij), its
properties are similarly arbitrary.

In this section it is convenient to discuss the
properties of the matrix I'(E) subject to the con-
dition that the parameter J+'(ij ) satisfies the follow-
ing requirement:

J' '(ij ) = J' ' if i and j are nearest neighbors
= 0 otherwise. (4. i)

The physical relevance of the choice of (4. 1) will
be made clear in Sec. V. For the present it only
need be said that within a certain physically mean-
ingful ansatz, an appropriate choice for JN' can
be made for which the conditionally averaged
thermodynamic Green's-function matrix element
Go', 0(E) is equal to 1 0', t(E) to a good approximation.
Here

G,",(E) = Q P,'(c) G,' ', (E),
{c,v~)

(4. 2)

Po(c) is the probability of the occurrence of a con-
figuration c which is consistent with the occupation
of the site 0 by a magnetic atom belonging to the
magnetic sublattice X, and (c, oo] is the total set of
such configurations that are possible given the
existence of Nm magnetic atoms and N(1 —m) non-
magnetic ones.

Expanding the matrix element of 1' (E)I'(E) as

[r-'(z)r(z)]", ,'= Z[r-'(E)]',"[r(z)]," ' (4. 3a)

c'(z) = r(z) A+ r(z) r'(E) I (z) . (s. i4)
Moreover, this relation, when both of its sides are
premultiplied by U(E), i.e. ,

v'(z) c'(z) = v'(E) r(z) A+ v'(z) r (z) z"(z)r(z) A,
(3. iS)

implies the following [if we use (S. 13) for its left-
hand side]:

[- T'(E) + V'(E) + V'(E) I'(E) T'(E) ]r (E) A = O.

(s. 16)
As I"(E)A is arbitrary (depending, as it does, on an
arbitrary function), we get
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noting the identity

(4. 3b)(I)'g, p=5), ) ~ 5„) ~

using the expression for [I' (E}]~'&given in Eq.
(3.7), and equating (4. 3a) with (4. 3b) for )). =)).'

according to Eq. (3.11), we find

matrix elements are identically vanishing:

r„;„(E)=N Zrxr"„.'(E) =0,
K

1 ).g ),(E) r xg).(E) 0
K

(4. 10a)

(4. 10b)

Er„(z)=5.,..2S,[Z~ (gj)]r,',,'(E)

+2S,Z~(2~)r ,', (E-) . (4.4a)
f

Similarly, we also find

x&)(z) 2S QZ(z) (Iy) rife(z)
f

—2S, [QZ( )(Ij)]I,' (Z) . (4. 4b)

Because I', ',".(E) depends upon the vector separation

(i —I ), we can use the Fourier transformation

r4v(z) Q (K'((-))rk, v(z) (4. 5a)
cV "

K

along with

g (2) (2j) Q e /K'( I"I)
yK 0

K

Q e(K'(I-I)
~tl

K

(4. 5b)

(4. 5c)

where z is the lattice coordination number and the
inverse lattice sums are over the first Brillouin
zone containing N points.

In this manner, Eqs. (4. 4b) and (4.4a) readily
lead to the following result:

r'~'(E) = —(E+ 2s, zJ' ')(2S&s~'"rx)-'r-', '(E)
= (E+2S)g J'+') [E —(2S),2Z's') (1 —) x)]

(4. 6)
Of special interest to us will be the following sums
of these Fourier matrix elements:

r', ', (z) =—~r'„-'(z), (4. 7)
K

1I;,",(z) = r,.-', ",.(z) = r;,';,',(z) =—Zy„- r-'„-'(E) .
K

(4. 6a)
Note that because of Eq. (3. 3) we will have

r;,', ', (z) =- r,";,(z) =-r,';;.', (E) . (4. 6b)

(Here, and henceforth, the lattice position i+ 5

denotes one of the s nearest-neighbor positions of
site i. )

From Eq. (4.6} it also readily follows that the
lattices which can support interpenetrating near-
est-neighbor two-sublattice antiferromagnetism
cannot contain odd-order polygons whose sides are
made up of nearest-neighbor vectors 6; i.e. , for
these lattices we have the ident:,

)2n+)1 (4. 9)
K

Hence from Eq. (4. 6) it follows that the following

In conclusion, it should be emphasized that
although the matrix I'(E) has been defined in the
(2 &&X) space, where i refers to the location of a
certain lattice site and X is the magnetic sublattice
label, it is only a formal device. Physically, all
we will be able to show is that, within the level
of approximation inherent in the choice of a two-
site Kohn neighborhood, ro"', ~o(E) will be propor-
tional to Go,'o(E). On the other hand, within the
framework of the two-site T-matrix ansatz to be
employed below, it will not be possible to make a
physical identification of r ~~ (E) for i'

V. TWO-SITE T-MATRIX ANSATZ

where

(5. 2)T' '"(E) = Z P"(c)( T'""(E))
&c, ~O»

As the truncated Kohn neighborhood of interest
contains only two sites, i. e. , 0 and 1, Eq. (5. 1) is

(2s ) G"' (E) = r,",(z) + [r ,'', (z) ]'

x Txgx(z) [r 4)(z)]2 T 4

—ro,'om}ri, o (E)[Ti,o N} —To', i (E)]
(5. 3)

Here we have made use of the fact that for the giv-
en lattice, which admits of two interpenetrating
sublattices whereby in the concentrated limit all
the nearest neighbors of any given site belong to
the other sublattice, Eq. (4. 9) holds and as such
Eq s. (4. 10a) and (4. 10b), i.e. ,

r,', (z) = r ', ;,'(z) = r, ', ; '(E) = r,'; '(z) = 0 (5.4)

r,' -,'(z) = r,','(z) = r,','(z) = r, ', '(z) = 0
(5. 5)

In complete analogy with the approximation pro-
cedure used in Paper I of the present series, we
now introduce a truncated nearest-neighbor Kohn
neighborhood consisting of only two sites. For
simplicity we label the two sites as 0 and 1. The
philosophy and the methodology of this procedure
have been fully discussed in Paper I; therefore, in
the following we shall only describe some of the
salient details of the present calculation.

Following the prescription given in Eq. (4. 2), we
write the conditional thermodynamic average
Go'o(E) by using Eq. (3. 14) as follows:

G ' (E) —2s 1 ' (E)+2s Z 2 I' ' (E) T '"(z)r"~(E)
~ ~ ~ )tV

(5. 1)
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are true. Similarly, we have also made use of the
identity (4. 8b).

Having derived the relationship (5. 3), it now

remains to compute the conditional thermody-
namic averages of To'0'(E), T, ,' '(E), T,'0""(E),
and To „"'(E). In the following we shall first
derive expressions for these matrix elements in
terms of the appropriate matrix elements of t/'

and I" and next we shall carry out the conditional
aver aging.

Because our interest here is in considering only
those configurations for which the site 0 is known

to be occupied by a magnetic atom belonging to the
sublattice A. , we put oo = 1. However, for site 1
we still have to explicitly use the magnetic occupa-
tion operator 0 &, which will be unity when the site
1 happens to have a magnetic atom belonging to
sublattice X' on it. Otherwise, 0& will be zero.
Within this framework, and using the notation of
Eq. (2. 5) and the relationship (3.3), we can write
down the relevant matrix elements of V'(E) from
their defining equation (3. 6b), i.e. ,

G '(E) = 2S, I'0 (E) . (5.9)

The central result of the present section, there-
fore, is the expression for J ' ' which is obtained
from the ansatz:

Tk, x(z) 0 (5. 10)

xe'"" "d(t t') . (6. 1-)

From the definition of the Green's function
Go 0(&u) [see Eqs. (3. 1) and (4. 2)] it follows that

where To'0(E) is as given by Eq. (5.8) with the
conditional averaging prescribed in Eq. (5. 2).

VI. FREQUENCY MOMENTS OF DENSITY OF STATES

Having derived the ansatz (5. 10) for the compu-
tation of J ' ', we are now in a position to examine
the frequency moments of the density of states,
p, ((u), where

1
2s, p, ( )=

2 ~

([s,'(~, t), s, (~, f')] )„„

vo'0' (E) = 2sy(Jog J ) = vj I
' (E)

v,',"(z)= —v," '(z) = v',
, ,"(z) .

(5 6)

(5.7)

+00

Go'0 (E):2S~ d(d Imz & 0
p~(&)

(6. 2)

Taking matrix elements of both sides of the ma-
trix equation (3. 17) and using the foregoing we

get

To,'0' (E) = —Ti, o
' (E)= To', j ' (E) = —Tj, l

' (E)

vX, X;c(z)(I vX, X; c(z)

X [I'0't(z) —I'0', '(E)+ 2 I'j', 0'(E)]] '
~ (5 8)

This result is interesting in that it belatedly
justifies our choice of a single arbitrary param-
eter J' ' for arranging the equality of the Green's
functions (2S,) ' Go'0(E) and I'0'0(E). Clearly,
when the conditional average of any one of the four
matrix elements, e. g. , To'0(E), given in Eq.
(5. 8), is made vanishing, according to Eq. (5. 3)
it follows that

EGO'0(E)= 2$~ Z M„/E"= 2S~EI'0'0 (E), (6.3)
tt~o

where M„' is the nth-frequency moment of p~(&u),
l. e. ,

M'„= f p, ((u) &u" d(o . (6.4)

Let us next write out Eq. (5. 10) in detail so as
to calculate J ' ', which in turn will determine
I'0'0(E). Using Eqs. (5. 6) and (5. 8), Eq. (5.10)
gives

Because the frequency moments of the density of
states p, (~) are proportional to equal time thermo-
dynamic averages, which are finite, for ReE
» ~ we can expand the right-hand side of Eq.
(6. 2) in inverse powers of E to get

gn2S, (J -J' ')$1 —2S,(J -J' ') [I""(E)—I' "' '(E)+21', ;(E)]]

+(I-m)2S, (-J"')(1-2S,(-J"')[I'o,'o(E) -I'o', h'(E)+»', b'(E)lj' =0. (6 5)

The first term on the left-hand side of Eq. (6. 5)
is contributed by the magnetic occupancy of the
site 1. Note that because site 1 is a nearest
neighbor of site 0, which is known to have a mag-
netic atom belonging to sublattice X, the
probability of finding a magnetic atom belonging
to sublattice —A. at site 1 is equal to m [see Eq
(2. 9b)]. The occupancy of site 1 by an atom which

is either nonmagnetic or is of variety+A. leads to
the second term on the left-hand side of Eq. (6.5).

It is convenient to recast Eq. (6. 5) into the fol-
lowing compact form:

q(E) J /J [mz 2F(E)] [z 2E(E)]- (6. 6)
2

Z(z) =1 ——~ (E'- [2S,«n(z)]'(I -~& )] '.(6.7)
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Expanding q(E), i.e. ,

q(E) = 5 (2S,Zz)" q'"'/Z",
fi=0

(6.s)

and self-consistently determining g'"' from Eqs.
(6.6) —(6.6) by comparing coefficients of various
powers of Z ', and then using the result (6. 3), we

find the following results for the first five mo-
ments:

6(0) =1,
~(i) =m,
n, (2) =m'-m/z,

(6.Sa)

(6.9c)

~(3) =m'+(-3m'+2m')/z+(2m' —2 a)/, 2,

(6.9d)
&(4) = m + (- 6m + 4m )/z

+[m'y(4)+ Sm'- Sm']/z'

( 4 ' 4m')/ ', (6. 9e)

where

S; (~, t) (2-S,)"'a, (t),

S, (-~, t)- (2S )"'b,(t), S; (-~, t)- (2S )"'b,'(t);
(6. 11)

S, (&, t) - S& —a, (t) a, (t), S,' (- X, t) ——S, + b,' (t) b, (t) .

Here the operators a and b obey the Bose com-
mutation relations

[Cg~ Cy]- [Cg ~ Cy ]- Ol [Cg~ Cy]- bg, y

for c =a, b (6. i2)

namely, the many-body nature of the interactions
and the complications caused by randomness.
Because our interest in the present work is in the
study of the latter aspect of the problem only,
we first give an explicit representation of a
model system for which our decoupled Green's
functions [i.e. , as given in Eq. (3.4)] can be con-
sidered to be exact.

The simplest such model is the zero-tempera-
ture noninteracting spin-wave -theory model whereby

~'„= (2S,ze)" t (n), (6. 10a)
and

[ „b,l =[,', b,') =[ „b,') =0. (6. iS)

y (4) = g' —Q yg = 2. 5,
Ã g

scq In this representation the Hamiltonian X' is to be
taken

= 3.375, bcc;

=3.V5, fcc . (6. 10b)

It is interesting to compare these results with

those obtained for the randomly dilute ferromag-
net. While the first two moments of the density
of states, i.e. , M', and M,', coincide for these two

systems, higher-order moments are different in the

next to the leading order in z '. The identity of
the leading-order terms in z ' can, of course, be
anticipated from the knowledge that this term is
given exactly by a correct mean-field-theory ap-
proximation, and within such an approximation
both the dynamics and the statics of the two sys-
tems are identical (e.g. , for zero external field,
the magnitudes of the sublattice magnetization and

the Neel temperature are the same as ferromag-
netic magnetization and the Curie temperature,
respectively).

To compare the results (6.9a)-(6. Se) obtained

from the use of the present approximate theory
with the corresponding "exact" results, it is
necessary first to make precise the meaning of
the term exact. Because the use of the RPA-like
decoupling, implicit in going from Eq. (3.2) to
Eq. (3.4), is equivalent to introducing a certain
approximation for the dynamics and thermostatics
of the system even in the concentrated limit I = 1,
Eqs. (6.9a)-(6.9e) portray the complicated inter-
play of the approximations introduced in the study
of two distinct complexities of the problem,

x(a&,a& +b&, b& +a&, bt +a&, b& ) . (6. 14)

In terms of the analysis presented in the pre-
ceding sections, the Green's function ((ao(t);
ao (t')) ) is readily seen to be the relevant approx-
imation to the conditionally averaged thermody-
namic Green's function Go'0 (t —t'). Because for
this model the counterpart of the density of states,
p, (~), is

+00

pg(~)= 2, l

([ao(t), ao(t')] &(o,~)
1 /

x e'"" ' 'd(t —t'), (6. iS)

the exact moments of the density of states may be
evaluated by using the well-known formal pre-
scription

M„'= ([ [ [a„X'], , X'],

[ ~ ~ [a,X, ], ,X' ] ] )„„,, (6. 16)

where the commutators of a0 and a0 with X' are
repeated i times and n -i times, respectively.
Here 0& i & g. The computations are straight-
forward though tedious and we readily ascertain
that the results (given by our approximate theory)
for the first four moments are exact. The exact
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fifth moment, however, is different from the ap-
proximate one given in Eq. (6.9e), i.e. ,

[~(4)],„,=m'+ (-6m'+4m')/z

+ [1lm —12 m +m '
(t& (4) + m ]/z

dD=-i— (6. 18a)

that is,

o,'Da, = o,'[a„z']
o&(2S ) Q gx, -x( f )

-&
(

1

o, D a, =o,'(2S,)z Q Q g&' -&'(gf, )
f1 f~

x[8' '(gfz) o~', 'o( , ah~+, )

-~' '(fzf1) o&' of'g (afz+bf, )]

(6. 18b)

etc. Next we need the commutator o,"[D"a„a,],
which contains 2" ' terms. (Note that because a
and 5 operators commute, the total number of
terms for this problem is only half what it was
for the ferromagnetic case. ) Gut of these 2" '
terms there is a unique term B(n), which involves
spatial correlations of n spatial locations, i.e. ,

B(n)=(2S,)" 2 + J' '(gf )' ~' "(gf.)
~n

x(oy o» )( ~& . (619)

Because of the presence of J ' (gf;) factors,
none of the n spatial locations f„.. . ,f„can coin-
cide with g. Therefore, with the assumption of
complete spatial randomness we readily find that

+(-Gm +7m -m )/z . (6. 17)

A term-by-term comparison of the right-hand side
of this equation with that of Eq. (6.9e) reveals
that the approximate and the exact results agree
in the two leading terms in the g

' expansion. This
situation is analogous to that encountered for the
dilute ferromagnet. Stretching this analogy fur-
ther we might expect that perhaps the present
ansatz would reproduce all the moments, i.e. ,
I'„for arbitrary z, exactly to the leading two or-
ders in z . It is to the investigation of this ques-
tion that we now address ourselves.

Let us first inquire as to the formal structure
of the exact expression for the nth frequency mo-
ment. To determine this we first need to find

0 D"a, where

(6. 20)

M„' = B(n) + C(n)+ remainder,

which gives

M»= (2SJ'z) "m " (m[1 —v(2v —1)/z]

(6. 22)

+ 2 v(v —1)/z+ O(1/z') $, (6. 23a)

M', „„=(2SJz)'"' m'"(m[1 —v(2 v+ 1)/z]

+2v'/z+O(1/z')f. (6. 28b)

The computation of the corresponding results
from the approximate ansatz (6.5) is also straight-
forward. Using Eqs. (6.6)-(6.8) we note that in
an order-by-order series expansion in powers of
z ' we can write

Note that this result is exactly analogous to the
corresponding result obtained for the dilute fer-
romagnet [see Eq. 1(A6)].

Unlike the term B(n), the structure of the re-
maining (2" ' —1) terms for the present case dif-
fers from that obtained for the ferromagnet. The
major difference lies in the fact that here the re-
maining terms can give contributions with positive
as well as negative signs, which are of the order
(2S&,Jz)"/z. [Recall that in the ferromagnetic
case, to this order, the remaining terms in M„'

contributed only with a positive sign. Because
the total number of such terms was equal to the
number of times we can arrange two distinct
sites, out of a total of n, to be identical, i.e. ,
2n(n -1), the relevant summation was trivial. ]
Here, for the case of even n, i.e. , n = 2 p, of the
v(2 v —1) terms only vz are negative. The re-
maining v —v are positive. Consequently, the
total contribution of the remaining terms in the
leading order in z is negative, i.e. ,

v-1 1 '
C (n = 2v) = (2SZz)" - (- v)+0

8
(6. 21a)

If, on the other hand, yg is odd, i.e. , ps= 2p+1,
then of the v(2 v+ 1) terms vz are positive and
p2+ p are negative. The net result of this is that
the leading contribution to the moment M„' for the
case z = 2 v+ 1 is again negative and it formally
resembles the right-hand side of Eq. (6. 2la),
1.e. ,

v 1 1
C(n = 2 v+ 1) = (2SJz)" (- v)+ 0

(6. 2lb)
Combining the results (6. 20), (6. 2la), and

(6. 21b) we have

B(n) = (2S&,Jz)"m" m 1—n(n -1)
28

~(n& g (n&

P=o
(6. 24)
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and in this way self -consistently calculate g~"'.
The relevant results are

(0) (2 v+1) 0 (6. 25a)

(6. 25b)

VII. SUBSTITUTIONAL SHORT-RANGE ORDER

The foregoing analysis assumed complete sub-
stitutional randomness of the magnetic and the
nonmagnetic atoms. In practice, however, the
alloy will contain some residual SRO with the re-
sult that if we are given a magnetic atom on the
site 0, the likelihood of finding another (magnetic
atom) on the neighboring site 1 will not be strict-
ly equal to the relative magnetic concentration
m. Rather, if the magnetic-nonmagnetic SRO is
o.o then this probability mq will be

r»' "' —0»1' "'= 2m "(1—m) .

Note that Eq. (6. 25a) gives q'o' and»7' ""' to all
orders in a '. On the other hand, Eq. (6. 25b)
records the result for g' "' only to the two lead-
ing orders in z . This is, however, quite suffi-
cient for the present purposes because higher-
order results contribute to the O(1/z)a terms on
the right-hand side of Eqs. (6. 22a) and (6. 22b).
With this knowledge we readily derive the given
results in Eqs. (6. 23a) and (6. 23b) by using the
power expansion (6. 3), with the additional em-
bellishment that each term has its own g expan-
sion series also.

a magnetic occupation operator m; by the relation

m&=o~ +o (7.3)

Clearly, the eigenvalue of the magnetic occupa-
tion operator is +1 if the relevant site i is oc-
cupied by a magnetic atom (note that whether such
an atom is a member of the up or the down anti-
ferromagnetic sublattice is not material to this
discussion). However, if the site i has a non-
magnetic atom, then m& = 0 but the nonmagnetic
occupation operator n; must be unity for this
case. Therefore, we always have

m;+n;=1 . (v. 4)

The SRO ~0 is now readily defined from the rela-
tion

(m» n», »») =m(1-m)(1 —oo) . (V. 5a)

The substitutional correlation on the left-hand
side is a nonrestricted thermodynamic correla-
tion between the nonmagnetic and the magnetic
occupation of an arbitrary pair of neighboring
sites Th.e partial conditional correlation (which
assumes a priori that the site i is occupied by a
magnetic atom), on the other hand, is related to
the SRO as follows:

(m; n;, 6)&» ~&
=q'= (1-m)(1 —c»0)

(site i magnetic) . (7.6a.)

mq '=m+ (1-m) o.o . (7.1)
The remaining two correlation functions are now

readily given, i.e. ,

Of course, given that the site 0 has a magnetic
atom, the probability that the neighboring site 1
has a nonmagnetic atom is q' such that

(m»m;. ,) =m'+m(1-m) no,

...)= (1- ),=q'
(v. 5b)

q'= (1 -m)(1 ~,) . (7 2)

Clearly mq ' and q' should add up to unity irre-
spective of the amount of SRO (c»0), and they do.

In terms of the occupation operators, o";, etc. ,
the significance of the SRO is as follows: Define

(site i magnetic) . (7.6b)

The introduction of the SRO clearly does not
affect the treatment of Secs. I-IV. Only the de-
tails of the averaging process over site 1 (see
Secs. V and VI) are affected. As such, Eq. (6. 5)
gets modified to read as follows:

mq '2S„(J—J"')(I -2S„(Z-J"')[r", , (E) -r,-'(E)+ 2r;" (E)])-'

= q'2S J '(1+2S 4 '[I' "(E)—I' ' "(E)+2r ' (&)]] . (7. 7)

The net effect of this modification is to change
the actual magnetic concentration m to an effec-
tive magnetic concentration equal to mq '. When

this transformation is introduced into Eq. (6. 5),
it becomes identical to Eq. (7. 7).

In view of the above, the results of Sec. VI can
in large part be taken over for the case with non-
zero SRO. For example, now the system Neel
temperature will scale with the- magnetic concen-

tration and the SRO as follows:

T,(m)/T, (1)= (amq —2)/(a —2) . (v. a)

mq '&2/a . (v. 9)

This means that even if the actual concentration
m is less than the critical minimum value mo we
can still get a correlated ground state with anti-
ferromagnetic LRO as long as
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m+(1-m) no&2/z (7. 10)

can be satisfied. However, if m&(~+1/z), the
system will always have a finite Neel tempera-
ture, for then there exists no effective way of
hiding the magnetic atoms from each other such
that on the average each atom has two, or less,
of its nearest-neighbor atoms magnetic.

It is interesting to note that the smallest value
of ap for which the system has no nonzero critical

But this can always be achieved by building a
suitable clustering correlation ap & 0 among the
magnetic atoms. For example, if such magnetic
clustering is perfect, i.e. , no=+1, then Q=(n
and therefore in three dimensions Eq. (V. 9) is
always satisfied. Heuristically, this is readily
understandable, for if np is +1, all the magnetic
atoms will cluster together. This way, as long
as m CO (if m were equal to zero the discussion of
the system magnetism in the present macroscopic
sense would be meaningless), all the (macro-
scopic number of) magnetic atoms would sit in one
region of the lattice and that region would be filled
perfectly with only the magnetic atoms. Clearly,
then, such a segregated alloy would be macro-
scopically ordered and its properties would ap-
proach that of a perfect magnetic system (of its
size).

On the other hand, if up&0, then the system
would attempt to keep magnetic sites apart from
each other (also, of course, it would treat the
nonmagnetic sites similarly) and if perchance
m = 2, that is, if the system consisted of half
magnetic and half nonmagnetic atoms, then be-
cause of the choice of the lattice (which admits
two nearest-neighbor interpenetrating sublattices)
the system would be able to keep the magnetic
and nonmagnetic sites apart perfectly when np
= —1 ~ In other words, it would then order in an
AB pattern such that a magnetic atom will see only
nonmagnetic atoms (as its nearest neighbors) and
vice versa. Such a system would then be com-
pletely nonmagnetic. This heuristic argument is
supportedbythepresent result, for then [see Eqs.
(7. 1) and(7. 8)j we find that T,(m) becomes nega-
tive. The negative Neel temperature is a mean-
ingless concept. It only implies here that in such
a situation the antiferromagnetic LRO does not ob-
tain at all. For yes-,', the occurrence of a com-
pletely perfect alternating AI3 type of order be-
comes a physical impossibility. Other more com-
plex stoichiometric situations can, of course, oc-
cur but we will not discuss those here. It is, how-
ever, clear that by suitable manipulation of the
SRQ, if the magnetic concentration is less than
(—,'+ 1/z), the system can be kept from attaining a
state with antiferromagnetic LRO at all tempera-
tures, for then the inequality

concentration is equal to+(2/z). For this value
of the SRO parameter we have

T,(m)/T, (1)=m(l —2/z), ~O=2/z . (V. i&)

(m;)'=m( (7. 13a)

causes the correlation (7. 12) to reduce to that of
one lower order, we only need to consider the
case where all the given locations 1-p are dis-
tinct. Of course, here p & z. Now, according to
the treatment presented in Sec. VI, correlations
of the type (7. 12) contribute in the leading order
in the z ' expansion. Moreover, in the lowest-
order cumulant decoupling approximation, we have

E(1, 2, . . . , p)—:(m ) (rn ) ~ ~ ~ (m ) . (V. 13b)

Because each of the conditional averages on the
right-hand side of Eq. (V. 13b) refers to the neigh-
boring sites of the site 0, Eq. (V. 13b) reduces to
the following:

~(1, 2, . . . , ~)=( e')', (V. 14)

Recall that mQ ' is the effective magnetic concen-
tration in the presence of the SRO and that accord-
ing to the present ansatz this replacement com-
pletely specifies the extension of the theory to the
nearest-neighbor SRO case.

In light of the foregoin. g, it can be assumed as
having been established that for sufficiently ideal-
ized structure of the substitutional correlations
(namely, a Gaussian-like structure whereby the
lowest-order cumulant decoupling obtains), the
present theory gives all the frequency moments
exactly to the leading order in z . As regards
the situation for the first few moments, it is
straightforward (though tedious) to corroborate

To conclude this section, we should like to prove
that if the substitutional correlations among the
two varieties of atoms are of a particularly sim-
ple variety such that the conditional correlation
referring to p distinct spatial locations 1, 2, . . .p,
1.e. )

(m~m2 .m )(0,,&=+(1, 2, . . . , p), (7. 12)

decouples into the two-point nearest-neighbor con-
ditional correlations in the manner prescribed by
the cumulant decoupling, ' then the accuracy of the
results in the presence of the nearest-neighbor
SRO is only slightly inferior to the case when the
SRO is vanishing.

Let us first make the above statement more pre-
cise. First, let us explain the conditional aspect
of the correlation given in Eq. (V. 12). Here, for
convenience, we assume that the site 0 is known
to be occupied by a magnetic atom (of, say, ~-
sublattice variety). Second because of the fact
that if any of the sites 1-p are the same, then the
operator identity
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that the first three moments of the single-site
density of states are now preserved exactly.

The significance of the above results is the fol-
lowing: The present theory is exact in the limit
that the spatiaj. locations are perfectly correlated,
and as a result we get a system which can be de-
scribed by two interpenetrating nearest-neighbor
sublattices. Moreover, the accuracy of the re-
sults is fairly high in the limit of vanishing sub-
stitutional correlations, especially if the coordina-
tion number of the lattice, z, is large. In be-
tween these limits, a reasonable interpolation to
the results for arbitrary SRO is provided by the
present theory as long as the many-atom cluster-
ing effects can be approximated by neighboring
atom (two-atom) clusters.

VIII. NONINFINITE z

The accuracy of the theory presented in this
paper has been justified to the two leading orders
in an inverse g expansion. Because the molec-
ular-field and virtual-crystal types of mean-field
approximations are thought to be exact only to the
leading order in z ' (note that our mass operator
agrees with that given by a proper combination of
these theories to the leading order in z '), the
present theory can be thought to give the first-
order correction to the mean-field approximation
in the asymptotic z ' regirae. The question that
arises is how good the results of the present the-
ory can be expected to be for systems where the

effective magnetic-lattice coordination number g
is of the order of 10.

Clearly, 10 is not a large number in the statis-
tical sense. Therefore for z -10, the statistical
fluctuation in the number of magnetic nearest
neighbors of a given magnetic atom can be ex-
pected to be large and hence the magnetic concen-
tration of 2/a + c, where & - + 0, cannot guarantee
the presence of at least two magnetic nearest
neighbors for all magnetic atoms. This means
that even whenm is 2/z+q, the existence of a
macroscopic network of nearest-neighbor ex-
change-coupled links cannot be assumed. Because
the antiferromagnetic LRO cannot occur in the ab-
sence of such a network, the critical concentration
mo must be larger than 2/z.

Unfortunately, an estimate of the amount by
which mo exceeds 2/z cannot be given. In the
asymptotic large-z limit, corrections to the re-
sult mo- 2/z which are in the nature of a power
series beginning with the order z can, however,
be expected. Precisely how rapidly such a series
converges, or indeed whether it converges at all,
we are not able to establish.

To conclude, it should be mentioned that a the-
ory which, unlike the present one, does not make
the quasiclassical assumption about the antiferro-
magnetic ground state would in all likelihood give
additional spin-dependent corrections to mo.
These corrections can, however, be expected to
decrease with the increase in the magnitude of the
spin S.
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