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schematically in Fig. 2. Measurements of such
temperature-dependent effects would also give the
temperature dependence of the effective droplet
surface tension and perhaps clarify whether this
droplet surface tension is approximated better by
the bulk surface tension used in this paper or by
the "microscopic" surface tension used in Ref. 1
(see also Binder et al. ' and Frisch').

We conclude that Fisher's droplet picture basical-
ly reconfirms the results of the classical homoge-
neous and heterogeneous nucleation theory near
0'C; near the critical, point, our correction fac-

tors g, and Za make the nucleation rates much
smaller. We suggest to measure the nucleation
rates over a larger temperature interval in order
to determine the effective droplet surface tension
and to check our result (Fig. 2) that near T, the
homogeneous nucleation rates dominates the heter-
ogeneous one. A more detailed report is available
upon request.
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The magnetic-resonance spectrum of dilute Mg: Gd alloys is analyzed using the full coupled

localized-conduction-electron transverse-susceptibility expression derived by Barnes. An

analysis of the significance of the individual terms in the susceptibility matrix is presented,

along with a physical interpretation of exchange narrowing of fine-structure splittings in dilute

magnetic alloys. A value of D =140 G for the fine-structure parameter is extracted from a

fit to the theory. Comparison is made with a rpoment analysis utilized previously.

I. INTRODUCTION

Previously, ' we reported the anisotropic mag-
netic-resonance spectrum of dit.ute single-crys-
tal Mg: Gd alloys (referred to in the following

as I). We attributed the temperature and angular

shifts of the field for resonance to unresolved
fine structure. Using the method of moments, we

extracted a fine-structure parameter D= 155 G

and an (isotropic) g factor of 1.98. Our moment

analysis of the linewidth was not satisfactory; the

magnitude scaled correctly with the angle, but

was nearly an order of magnitude larger than what

was observed. 'We speculated that this discrep-

ancy was caused by a magnetic-resonance bottl, e-
neck, leading to an exchange narrowing of the fine-
structure-split line. After our paper appeared,
we did observe resolved fine structure in another

dilute single-crystal alloy, Au: Gd. We developed

a theory for the exchange narrowing of fine struc-
ture in this alloy. The method was limited to al-
loys in the absence of a magnetic-resonance bottle-

neck and was applicable to Au: Gd because of the

large contrast between the host and (rare-earth)
impurity spin-orbit coupling. 3 We also included a
crude form of spin-spin interaction.

However, as discussed in I, Mg: Gd is al.most

certainly bottl. enecked. Using the value of the
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exchange-coupling constant J extracted from line-
width measurements of Burr and Orbach4 on (un-
bottlenecked) Mg: Er, one expects an increase in
the resonance linewidth of Mg: Gd of 150 G/deg
at 8 = 55' (8 is the angle between the c axis and the
magnetic field), where the fine structure collapses.
Instead, we measure 12 G/deg. The discrepancy
was attributed to a partial magnetic-resonance
bottleneck in I. Recently, Barnes, ' using a dia-
grammatic method developed by himself and Zit-
kova, developed a full theory for the dynamic
transverse susceptibility of a dilute magnetic al-
loy, including fine structure and the coupled re-
sponse of the localized and conduction electrons.
The purpose of this paper is to apply his results
to our measurements on Mg: Gd as reported in I.

In Sec. II we discuss some of the physical con-
tent contained in Barnes's theory. His full. ex-
pression for the dynamic susceptibility is fitted
to our experimental spectra in Sec. III. A dis-
cussion is given of the sensitivity of the fit to
changes in the parameters, and a comparison is
made with our previous moment analysis. We also
point out a possible method for the determination
of the actual spin-spin field" distribution in a
dilute alloy from an analysis of partially resolved
magnetic-resonance fine structure in the inter-
mediate-nar rowing r egime.

II. DYNAMIC-SUSCEPTIBILITY ANALYSIS

The result of Barnes' for the dynamic coupled
magnetic susceptibility of an alloy, including fine
structure, is reproduced in the Appendix. When
the lattice damping is sufficiently large to break
the magnetic-resonance bottleneck, his response
function should reduce to that of Ref. 2. Before
actually carrying out the detailed fit to Barnes's
theory, we discuss some of the physical conse-
quences of his result. We firstnote that, even in
the absence of a magnetic-resonance bottleneck,
exchange narrowing of fine-structure-split lines
can occur. This is illustrated in Fig. 1, where
hypothetical fine-structure-split spectra are dis-
played for various values of the localized-conduc-
tion-electron exchange parameter J. The various
contributions are as follows.

conduction electrons. Though it may not seem
obvious, (1) represents the longitudinal scattering-
out contribution from the localized spin-resonance
line to the conduction-electron spin-resonance line.
This is demonstrated explicitly in Ref, 6.

I I I 1 I I I
I I I I 1 I I I

A. Longitudinal Fluctuations

Each fine-structure line is broadened by longi-
tudinal fluctuations of the conduction-electron spin.
In conventional terminology, the contribution to
the linewidth is equal to

Here, p is the conduction-electron one-spin density
of states at the Fermi energy and J is the exchange
integral defined by 2J S ~ s, where S is the spin of
the magnetic impurity and s is the spin of the

2000 2500 3000 3500 4000

H (gauss)

FIG. 1. (a) Resonance spectrum for 8 = 2, D =140 G,
T =1.O'K. Large lattice darn. ping of the conduction-elec-
tron spins is present, and a nominal exchange J= 0.015 eV
is used, so that no bottleneck is present. (b) Same as
(a), but J'=0. 2 eV, the value appropriate to Mg: Gd {see
text). (c} Same as (b}, but scattering-in terms have been
omitted from the response matrix. (d) Same as (b), but
with no lattice damping of the conduction-electron spins
so that an extreme bottleneck is present.
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B. Transverse Fluctuations

At small t, we can discuss the structure of the
individual fine-structure lines. The transverse
fluctuations of the conduction electrons contribute
to the linewidth of the transition S' S'+ 1 an
amount equal to

I/T, = w(p J) kT([8(8+1)—(S'+ 1)(S'+ 2)]

+ 2[8(8+ 1) —S'(S'+ 1)]+ [S(S+1) —S'(8' —I)]] .
(2)

The second square-bracketed term in (2) arises
from exchange-induced transitions between the
states S' and S'+ 1, while the first and third arise
from exchange-induced lifetime-broadening transi-
tions between states S'+ 1 and S'+ 2, and S' —1
and S', respectively.

The contribution of (2) can also be thought of as
a "scattering-out" contributiontothe linewidth, but
to a number of resonance lines as wel. l as the con-
duction electrons, In a matrix representation of
the response function, where the rows and columns
are labeled by the localized and conduction-elec-
tron transition energies (an 8&8 for Mg: Gd, com-
posed of 2S= 7 fine-structure lines and the conduc-
tion-electron line), Eqs. (1) and (2) will be found
on the diagonal. Then (2) represents the diagonal
scattering-out rate to the two neighboring fine-
structure and the conduction-electron transitions.
This can be seen by rewriting (2) as

I /T, = 2 m( p J)k7 ([S(S+1') —(S*+1)(S*+2) ]

+ [S(S+1) —S (8 —I)])+21r(p J) kT. (3)

The two terms in the curly brackets of the equa-
tion represent the rate of "scattering out to other
fine-structure lines" —in this instance those two
spin-resonance lines corresponding to the transi-
tions S'-1—S' and S'+1—S'+ 2. The second
term represents a contribution to the linewidth of
the S'—S'+1 transition line from scattering out
to the conduction-electron spin. Comparison with
(1) demonstrates the equality of this contribution
with that arising from longitudinal fluctuations,
a point first made by Zitkova et a/. It will
turn out (see below) that scattering-in terms from
the adjacent fine-structure transitions will cancel
the first but not the second term in (3), if J is suf-
ficiently large such that the sum of Eqs. (1) and
(2) exceeds the fine-structure splitting. We will
then obtain a linewidth only from scattering-out
terms to the conduction electrons. This is seen
to be just the Hebel-Slichter' result that

indePendent of S and S'. This width is substantial-
ly narrower than a fine-structure-split spectrum

with each line possessing the full scattering-out
width. This can be seen by comparing Fig. 1(a)
and 1(b). The former exhibits the fine-structure
spectrum with parameters appropriate to Mg: Gd

(see Sec. II), but for negligible Z. The latter rep-
resents the fine-structure spectrum with param-
eters appropriate to Mg: Gd, but with large lattice
damping of the conduction electrons so that the
magnetic-resonance bottleneck is broken. Full
scattering-out terms contain spin-flip rates for
S = +» S'=+ —,

' transitions which are 16 times
that for 8= —,', 8'= s —,

' transitions. (The 8= —,
' rate

equals the fully collapsed Hebel-Slichter rate. )
As Chock et a3. " and Barnes' demonstrate, ex-

change "scattering-in" terms arising from transi-
tions betseeen fine-structure lines are also present.
These terms are unimportant if the localized spin
transition rates are less than the f ine-structure
splitting 2D [Fig. 1(a)]. However, for larger J
(or kT), they can become comparable to, or even
greater than, 2D. For the transition S' —S'+ 1,
wj.th a total. scattering-out linewidth of the sum of
Eqs. (1) and (2), the scattering-in terms from
adjacent fine-structur e transitions equal

2 m( p J) k T [8 (8+ 1) -(8'+ 1)(S'+ 2)],

2 m( p J)2 k T [S(8+ 1) —8'(8' —1)] (4b)

To see the effect of this cancellation, Fig. 1(c)
exhibits the spectrum if only the scattering-out
terms (1) and (2) were kept in the rate equations.
We have certainly shown, as claimed inthe Intro-
duction, that narrowing occurs in the sense of the
fine-structure features being overwhelmed by off-
diagonal. exchange-induced transition rates [Eq.
(4)], yielding the unbottlenecked exchange width
independent of spin [Eq. (5)]. The off-diagonal
spin-flip matrix elements [Eq. (4)], when very
much larger than the difference in diagonal
energy matrix elements, destroy the phase dif-

The term (4a) is the scattering-in rate from the
fine-structure transition S'+ 1—S'+ 2 to the
transition S' —8'+ 1, while (4b) is the scattering-
in rate from S'- 1—S' to the same transition
S' S'+ 1. In the matrix formulation referred to
earlier, these terms would be found in the im-
mediate off-diagonal positions between the fine-
structure states they connect. When these rates
exceed the difference in the real parts of diagonal
energy elements (in this instance, 2D), collapse
occurs and a cancellation between (4) and (3) is ob-
tained. As one passes to the limit of extremenar-
rowing, this cancellation is complete and, as
stated above, all that remains is the uncompensated
Hebel-Slichter width

I/T~ =4m(p J)'kT.
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ference provided by the fine-structure splitting,
and cancel the scattering-out spin-dependent part
of (3). We believe our resultsa for Au: Gd are
appropriate to this limit.

If the exchange is increased still further, or the
lattice relaxation of the conduction-electron spins
is reduced, the regime of the magnetic-resonance
bottleneck is r cached. The conduction- electron
magnetization is locked in-phase to the localized
spin magnetization and provides a magnetization
scattering-in rate of (g,/g, )(g,/T„), where g is
the conduction-electron static susceptibility, and
1/T =+~ mph~ S(S+ 1) is the Overhauserg rate, p
being the one-spin conduction-electron density of
states. The collapsed fine-structure magnetization
scattering-out rate is y,/T„, where y, is the static
susceptibility of the localized spins, and 1/T„ the
Hebel-Slichter rate [Eq. (5)]. For equal g factors,
these rates are equal, and the collapsed fine-struc-
ture line is then further narrowed to the conven-
tional bottleneck limit, as displayed in Fig. 1(d).
The remaining width originates from residual
broadenings, of magnitude D Tz, and the usual
bottleneck width' arising from lattice relaxation
of the conduction-electron spin. We believe our
results in I are appropriate to this limit.

There is another interesting, but yet unexplored,
regime. This arises from the possibility of bot-
tlenecking each of the fine-structure lines separate-
ly. It occurs when the scattering-out rate [the
sum of Eqs. (1) and (2)] is less than the fine-struc-
ture splitting 2D, but the exchange conduction-elec-
tron to localized spin (Overhauser) rate is suffi-
ciently strong to create bottleneck conditions.
This also requires small lattice relaxation of the
conduction-electron spin. The regime is equiva-
lent to limit B of the analogous situation for hyper-
fine splitting in a dilute magnetic aHoy, as dis-
cussed by Barnes et al. " The full fine-structure
splittings occur, but each resolved line possesses
a width equal to the sum of Eqs. (1) and (3), but
with the factor 1/Ta [defined in (5)] replaced by
[(Xz ' —&&&')/&p'](1/T~). The quantity y~ '= g1zz'
from —S&S'& S —1, where g', 'is defined in the Ap-
pendix immediately after (AQ). In the high-tem-
perature approximation, this reduction of 1/T2
can be rewritten

([(4S—1)S(S+ 1)+3S'(S'+1)]/[(2S+ 1)S(S+ I)])(1/T2),

where S' labels the lower of the two levels between
which the transition is made. For hyperfine split-
tings, ~' each transition has the same oscillator
strength, so that the reduction of the width is the
simple factor [2I/(2I+ l))(1/Ta). This regime may
not be easily accessible, requiring fortuitous ratios
of a number of parameters, but its existence should
be recognized.

III, EXPERIMENTAL FIT FOR Mg:Gd

It is now of interest to determine which limit is
appropriate to the results of Tao et al. ' on Mg: Gd.
Angular measurements of the relaxation rate in

Mg: Er' demonstrate the absence of a magnetic-
resonance bottleneck in that system. I inewidth
measurements can then yield a value for J; using
the results of Orbach and Spencer. ' The density
of conduction-electron states at the Fermi energy
for Mg metal, p= 0.2 states/atom spin eV, is ob-
tained from the specific heat. " Phonon-mass en-
hancement is neglected because theoretical esti-
mates ' indicate that it is small. A Pauli-spin sus-
ceptibility of y, =13&&10' emu/mole, very close to
that measured for Mg metal, is obtained from this
value of p. This means the exchange enhancement
of the susceptibility is negligible, so that the cor-
rection factor of Moriya' canbe ignored. We find
J= Q. 16 eV for Mg: Er. The fact that Mg; Yb'
is diamagnetic implies substantial covalent (nega-
tive) contributions to the exchange couplings to-
wards the end of the rare-earth series. A slightly
larger value of J is expected, therefore, for
Mg: Gd than for Mg: Er, because of the greater
stability of the 4f shell in the former alloy. We
choose, therefore, J=0.2 eV for Mg: Gd. This
would lead to a Hebel-Slichter linewidth of 150
G/deg at 8 = 55', where the fine structure collapses
and the result (5) is expected to be valid. Experi-
ments' exhibit instead an order of magnitude
smaller width of only 12 G/deg. This result im-
plies the presence of a magnetic-resonance bottle-
neck and allows us to obtain a value for the con-
duction-electron relaxation rate 4,~= 10'o sec ' at
the Gd concentration in I of c=400 ppm. We also
observe a residual width of 100 G at this angle.
As one rotates away from 55', the fine structure
broadens the line in a complicated manner (the
whole point of this paper), and it proves very dif-
ficult to extract an angular dependence of the resid-
ual width. For that reason, we shall assume in
our final fitting procedure that each fine-structure
line is residually broadened by 100 G, independent
of angle. We recognize this assumption is very
crude. Only with a knowledge of the internal strain
distribution and the appropriate four spin-strain
coupling coefficients could we improve on this
approximation using the method of Feher. "

The only remaining unknown parameter in the
expression of Barnes is the axial field splitting
constant D. As discussed in the Introduction, a
value of D= 155 G was obtained in I with the use of
a first-moment fit. The analysis implicitly as-
sumed a symmetric magnetic-resonance line,
Lorentzian in shape. However, the exchange and
lattice-relaxation rates derived above are such
that Mg: Gd lies in the intermediate bottleneck
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(a)

(b)

FIG. 2. Theoretical line shape for
Mg: Gd, for the angle between the
magnetic field and the c axis 0 = 90,
and T=1.4 'K. J=0.2 eV, theresidu-
al width is taken to be 100 G for each
fine-structure line, D=140 6, d~
=-10 sec, and c =400 ppm. (b)
Experimental magnetic-resonance
line for Mg: Gd, at 0=90, T=1.4 K,
and at S.7 GHz.
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regime. In this region, the computer-derived
magnetic-resonance absorption line shapes are
not quite symmetric, making our previous moment
analysis somewhat in error. We find a best fit
for D=140 G, using the full matrix expression of
Barnes. Figure 2(a) illus trates the theoretical line
shape obtained at 8=90' and T=1.4'K, along with
an example of our magnetic-resonance data at the
same angle and temperature, Fig. 2(b). Figure
3 displays the field for resonance and magnetic-
resonance linewidth for arbitrary angle, at T= 1.4
and 4. 2'K, and at 8.7 and 35 GHz. The dashed
line is that which a second-moment analysis of
only the fine structure would yield. Comparison
with the experimental results and the theoretical
fit in the presence of the magnetic-resonance
bottleneck indicates that, for Mg: Gd, substantial
exchange narrowing of the fine-structure line has
indeed occurred as stated in Sec. II. Further,
the parameters used in the fit make it clear that
fine structure can never be resolved in Mg: Gd.
Breaking the bottleneck would only result in a sub-

stantial line broadening [see Fig. 1(b), where A,~
has been set equal to infinity j, and not a resolution
of fine-structure components. Thus, in materials
with substantially larger exchange couplings, but
probably comparable fine-structure splittings
(e. g. , Cu: Mn, Ag: Mn), there can be no hope of ever
resolving the S =- —,

' cubic-field fine structure.
Measurements at temperatures lower than liquid
helium do not help. The exchange relaxation rates
would be reduced, but the higher S' levels would

depopulate and only the lowest-lying fine-structure
line would be observed. Notwithstanding this di-
lemma, we have shown above that even unresolved
fine structure can exhibit strong anisotropies in
line position and width, from which the actual value
of the fine-structure parameter can be extracted.

We suggest that unresolved fine structure may
be the origin of the large "residual" width re-
ported for Gd and Eu in a large class of powdered
metallic alloys. The temperature dependence of
an unresolved fine-structure spectrum in the in-
termediate-narrowed regime is such that a nar-
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FIG. 3. (a) Linewidth as a function of the angle I9 between the magnetic field and the c axis for Mg: Gd (400 ppm) at a
frequency of 8. 7 GHz. The squares indicatemeasurements at 1.4'K; the triangles, 4. 2'K. The dashed line is the
square root of the second moment, for D=140 G, at T=1.4'K. The solid curves represent the theoreticalvalues obtained
from the fit of the resonance line shapes using the method of Barnes (Hef. 5). (b) Field for resonance as a function of
angle for the same sample under the same conditions as in (a). (c) Field for resonance as a function of angle for the
same sample as in (a), but at a frequency of 35 GHz. The squares indicate measurements at 1.6'K; the triangles, 4. 2
'K. The solid curves represent the theoretical values obtained from the same set of parameters as in (a) and (b), but
at the higher frequency.

rowing occurs as the temperature is increased.
This can be mistaken for evidence of a "dynamic"
process, if only a simple molecular-field analysis
is used. In addition to temperature-dependent re-
sidual widths, Fig. 3 also exhibits a temperature-de-
pendent field for resonance causedbyunresolved fine
structure. While we are not implying that pre-
vious experimental interpretations of magnetic-
resona, nce data on dilute Gd and Eu alloys are
necessarily wrong, we suggest that some reexami-
nation of these results using single-crystal sam-
ples might be in order, before peculiar tempera-
ture-dependent linewidths and shifts can be at-
tributed unequivocally to dynamic factors.

~ofe odded in proof. A calculation treating the
problem of fine-structure narrowing in dilute mag-
netic alloys has also recently been performed by
Plefka [Phys. Status Solidi b51 (to be published)]
for S=1, and for general spin (unpublished). His
results appear to be identical to those of Barnes,
to second order in J, the order to which he worked.

ACKNOWLEDGMENT

We are indebted to Dr. Plefka for pointing out
some errors in the Appendix, and for bringing to
our attention the correct expression for the re-
duction of 1/Ta in the bottlenecked regime when
the fine-structure lines can be resolved.

APPENDIX

The results of Barnes' for the dynamic transverse susceptibility of a dilute magnetic alloy can be written
in collapsed form:
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[e$e p ~(~$ss1I &+ $e+1I& + $e-le &+ $e-1y')] X$s( 0)
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where &$s $, , is the Kronecker & function. The expression (Al) is in the form of a set of coupled linear
equations of dimension 2S+ 1. This represents the manif old of the 2S fine-structure localized-moment res-
onance lines and the conduction- electron resonance line. The full response of the coupled system is given
by

$-1
X+ (~p) = Z X$ (4'p)+ X+ (~p)

S»=- S
(A2)

where the individual X$, and X', are found from the solutions of (Al). The quantities appearing in (Al) are
def ined as follows, using the notation contained in the text of this paper:

e $.= ~$.+ X( ./g. ) X.~. '[~-"....+ re ",...+ ~» + X(g./g. ) X."' (~., $.+ ~$"'- ~.")] .
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(A4)

(A 5)
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The terms in (A3) and (A4) are defined by enhanced susceptibilities are given by

x C 2

+S

X $s, g
= —,

' [S(S+1) —S'(S'+ 1)]

eA( & $»+ 4]0) e&E$»~1

CO Sg 0)0
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(d Sg
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X ~ ~(0
D co S

(0), S 1co sg' ysg' cusg ~ (0),X ].+X
Sg'=-S ~S ~ S S"=-S

X, =
I

1+& Zi
S'=-S S

C 2 e-BES» - e 8{Js Sg 1-Mo)
X

Z.

S

Sg-"S

~$ = (g./g. ) ~., &= ~/g, g. .
In these expressions, E sg is the bare -Zeeman-
plus-fine- structure energy of the localized spin
level characterized by S' and ~ sg = E s »,1 -Es g. The

w here
$-1

D= &-~ X. ~ XS" ~
2 (0) ~ (0)

S' =-S

The relaxation terms appearing in Eqs. (A3)-(A9)
are given by

~..,...= 2'$(Pz)$

&[(S + 1)(u&p —co$s) 5'(&up —&u$e) —S'~p& (~p)]
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L„,, = 2m(p J)'
x [S*(u),—(usg) b ((uo —~st) —(S'+1) (sob ((u,)]

& s'.",= m( pZ)' [S(S+1) —S'(S'+ 1)] ~,b'(~, ),

~,".-', = m(~)'[S(S+ 1) —S'(S'+1)]

x (~0 —~sg i —~sg) b (~0 ~ s' i —~s )

s ss,'-I = —71( pI)' [S(S+1) —S*(S'+1)]~,b-(~,),
&s +s ~(~)s [S(S+1) S (S + 1)]

x (eo —vsg+, —vs, ) b- (~o

b, , s, =mcp J f2[(S'+1) ns~+1+S nsg]

+ [S(S+1) —S'(S'+ 1)] [nsz, &+ns~+ (nsg+g —ns&)

x tanh(-,'P(&us —&u,))]]
= 2wcpZ S'[S(S+1) —S' ]nsg

The quantities ~» and ~,L, are the lattice relaxation
rates for the localized and conduction-electron
spins, respectively.

~Work supported in part by the National Science Founda-
tionunder Contract Nos. NSF GP-21290 andNSF GH-31973,
and the U. S. Office of Naval Research, Contract No.
N00014-69-A-0200-4032.

~L. J. Tao, D. Davidov, R. Orbach, D. Shaltiel, and
C. R. Burr, Phys. Rev. Letters 26, 1438 (1971).

2E. P. Chock, R. Chui, D. Davidov, R. Qrbach, D.
Shaltiel, and L. J. Tao, Phys. Rev. Letters 27, 582
(1971).

Y. Yafet, J. Appl. Phys. 39, 583 (1968).
C. R. Burr and R. Orbach, Phys. Rev. Letters 19,

1133 (1967); see also C. R. Burr, thesis (University of
California, Los Angeles, 1967) (unpublished).

5S. E. Barnes (unpublished).
"S. E. Barnes and J. Zitkova (unpublished).
'J. Zitkova, R. Orbach, and B. Giovannini, Phys. Rev.

B4, 4306 (1971).
L. C. Hebel and C. P. Slichter, Phys. Rev. 113,

1504 (1959).
~A. W. Overhauser, Phys. Rev. 89, 689 (1953).
' H. Hasegawa, Progr. Theoret. Phys. (Kyoto) 21,

483 (1959).
"S. E. Barnes, J. Dupraz, and R. Orbach, J. Appl.

Phys. 42, 1659 (1971); 42, 5908 (E) (1971).
R. Chui and J. D. Riley (unpublished).

'3R. Orbach and H. J. Spencer, Phys. Letters 26A,
CSV (1968).

'4I. Esterman, S. A. Friedberg, and J. E. Goldman,
Phys. Rev. 87, 582 (1952); P. L. Smith, Phil. Mag. 46,
744 (1955); D. L. Martin, Proc. Phys. Soc. (London)
78, 1482 (1961).

' W. L. McMillan, Phys. Rev. 167, 331 (1967).
T. Morta, Progr. Theoret. Phys. (Kyoto) 28, 371

(1962); J. Phys. Soc. Japan 18, 516 (1963).
E. R. Feher, Phys. Rev. 136, A145 (1964).

PHYSICAL REVIEW B VOLUME 6, NUMBER 7 1 OCTOBER 1972

Low-Temperature Transitions in Tetramethylammonium Manganese Chloride

B. W. Mangum and D. B. Utton
Nationa/ Bureau of Standards, W'ashington, D. C. 20234

(Received 31 March 1972)

We have measured the proton nuclear magnetic resonance of tetramethylammonium man-
ganese chloride, a linear chain antiferromagnet, in the temperature region 0.4—300 K. In
addition, its ac magnetic susceptibility was measured in applied fields of 0 to 22 kG in the
temperature range 0. 3-4.2 K. When measured along the crystallographic c axis, the zero-
field susceptibility had an anomaly at 0. 84 K. When the external field was applied perpendic-
ularly to the c axis below 0. 8 K, a critical field of 11.5 kG was observed in dM/dB. The
proton NMR did not indicate any cooperative transition to a magnetically ordered state of the
Mn2' spins. It did indicate, however, a gradual diminution of fluctuations in the crystallo-
graphic ab plane until a nonrandom order had been established between chains below approx-
imately 0. 8 K. We find that the tetramethylammonium groups cease all rotations below
39 K. In the region of 40 to 50 K, the tetra, methylammonium groups not only undergo some
hindered rotations, but their orientation is different from the published room-temperature
x-ray diffraction results. Above 50 K only a single narrow NMB line is observed and, con-
sequently, no additiona, l information on the crystal structure could be obtained.

I. INTRODUCTION

There has been considerable interest recently
in compounds whose magnetic properties approxi-

mate one-dimensional systems. Magnetic suscep-
tibility, electron- magnetic- res onanc e linewidths,
and neutron-scattering measurements ' have
shown N(CH, )4MuCls to be a particularly good ex-


