6 ANOMALOUS DAMPING OF SPIN WAVES IN MAGNETIC METALS

(43). Such experiments are tedious and difficult,
however, and have not so far been carried out.
There still remains the unexplained constant con-
tribution to A, independent of temperature and
mean free path. It is difficult to conceive of this
as arising from the decay of the spin wave into
other elementary excitations, since such a process
would surely show a temperature dependence 89
over the temperature range 100—600 °K. There-
fore, we feel it likely that this source of damping
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is some sort of inhomogeneous line broadening,
perhaps arising from a surface phenomenon. No
detailed mechanism for this constant contribution
has been found to date, however.

In summary, we have concluded that, by virtue
of the spin-orbit interaction, a spin wave can decay
directly into a particle-hole pair, the decay not
conserving spin. This particular source of damp-
ing has an anomalous character and depends on de-
tailed properties of the Fermi surface.
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The distribution function n, of clusters with [ reversed spins has been calculated for two
square N XN Ising lattices (N =55 and 110) at various temperatures T < T, using periodic bound-
ary conditions. These calculations strongly support the cluster model proposed by Fisher
and yield the exponent 7=2.1+0.1. However, for small I, T not close to T, and H =0, we

find considerable deviations.

Fisher’s cluster model'-? is a semiphenomeno-
logical description of critical phenomena in Ising
spin systems, leading to a physical interpreta-
tion of the static scaling relations.®* Within the
framework of the lattice-gas terminology it can
also be applied to the gas-liquid phase transition,
These results agree surprisingly well with ex-

periment for gases®™" and have also been used in
the nucleation problem®-!? to calculate the forma-
tion rate of large droplets in a supersaturated
vapor. Perhaps this model can also contribute to
a better understanding of the phenomena near
tricritical points.*=% It should be noted, however,
that it fails above the critical temperature T,.%
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Attempts to remove this deficiency!* are rather
speculative, including the proposed correction
terms!®'8 to the original model, *~? which are
necessary to get corrections to the scaling equa-
tion of state, 617

In view of this situation, it appeared desirable
to examine the range of validity of the model more
closely. We hope to clarify this point by extend-
ing earlier Monte Carlo simulations of critical
properties and metastable states to a two-dimen-
sional Ising model.'® In doing so, we calculated
the distribution function of clusters with ! reversed
spins in a two-dimensional Ising model with pe-
riodic boundary conditions by means of the Monte
Carlo technique.

In the first part of our paper we summarize the
essential predictions of Fisher’s cluster model,
In the later parts we present our results and dis-
cuss the range of validity of this model.

Using the magnetic notation, the cluster model!=?
leads to the following expression for the free en-
ergy per spin:

F=—}J,H_U0"kBTEn1- (1)
1=1

Uy is the interaction energy in the fully aligned
state, H is the magnetic field, u is the magnetic
moment per spin, and #, is the cluster distribu-
tion function varying as!~3

T.~T J s 2uH
=gy eXp< — -7
= p{ [«(%55) BT T LY
@)
as [ - with T=~T,. Note that two exponents, 7
and 0, and two constants, ¢, and a, are introduced
in an ad hoc fashion in the model. The critical

exponents® can then be expressed in terms of 7
and o, e.g.,

B=(r-2)/0, 6=1/(7-2) . ®)

Now ¢ can be related (roughly'*) to the variation

of the mean cluster surface S, with cluster size

I, S;c1° 1t is plausible that o should be close to
the geometrical estimate o,= (d—-1)/d, where d is
the dimensionality of the system., From the exact
solution of the d=2 Ising model'®'2? one derives!=?
o=1{5. This value has been confirmed by a Monte.
Carlo study of surface areas of clusters,® taking
thermal fluctuations into account. Given this value
of o and invoking the scaling relations, one finds
7=3.319% In view of this, a test of the droplet
model amounts to calculating 7, If it turns out that
the model fails, recent physical applications®-16
would appear to be data-fitting procedures. On
the other hand, if it turns out to be correct, the
applications mentioned®~'® are justified a posteriori,
and the range of validity of the model (and neces-
sary corrections) can be specified. Furthermore,
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one would have a reasonable model for all kinds of
nucleation and clustering processes in anisotropic
magnets, binary systems such as alloys, etc.,
and thus a wide class of physical problems could
be described on this basis.

For our NX N Ising system with periodic bound-
ary conditions we have the Hamiltonian

Je== 25 J;;0,0,~HN?*m, o,=21 @)

i
7..=)J if iand j are nearest neighbors
4710 otherwise, )

m=(u/N) 23, 0,.

In the Monte Carlo technique one generates a
Markovian chainof configurations of the spin system
using the transition probabilities

W;(oy. - - oy2) o %[1 =0y tanh((HquE;Ju Uj)/kBT)] .

(6)
We generated about 2x10* to 16X 10* Monte Carlo®
steps per spin for one set of variables (N, T, H=0),
which guaranteed a sufficient statistical accuracy
and we simulated systems with NX N=55X 55 and
110X 110. At every Monte Carlo step per spin (%)
the cluster distribution #} is evaluated by counting?
all the clusters. A “cluster” is defined as a group
of reversed spins linked together by (at least one)
nearest-neighbor bond. It turns out that distribu~
tions n% at consecutive steps % are almost statisti~
cally independent, and we can derive », =(n%) from
I=1 to =100 with good statistical accuracy, The
temperatures used are J/k,T =0, 448, 0.459, and
0. 449; since J/kyT,= 31n(v2+ 1) in the infinite
square lattice!® these values correspond to | €l
=(T-T,)/T,l =0.016, 0.040, and 0.117, respec-
tively, From the “raw data” for #, (compare
Ref, 18) it is immediately clear that Eq. (2) can be
used as a rough description., Since Eq. (2) is ex-
pected to hold for large [ only, we omit values of
n; from /=1 to =10 from the first stage of the data
evaluation procedure. Using Eq. (2) in a fitting
program for 10 <! <100, we find

22,23

7=2.1+0.1, (7)

which is in very good agreement with the predicted
value 7=3 . We get the same good fit of 7 for a
broad range of values a and o with 0<o<1; since
the value of o has been confirmed in a previous
paper® it is advantageous to take for ¢ and T the
theoretical values. To demonstrate the range of
validity of Eq. (2) we plot logygn,I" vs [ in Fig, 1.
For small 7 ({ <7) one sees some deviations from
the asymptotic predictions. Thus n, " is essential-
ly constant in this region and there is no indication
of an exponential factor. For large I the data fit
nicely to the theoretical curves, establishing the
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occurrence of an exponential. The slope is indeed
roughly proportional to |e|=|(T-T,)/T,| as ex-
pected. The behavior for extremely small [ (I
=1, 2, 3) can be understood in terms of geometrical
considerations (%%), by explicitly considering the
possibilities of forming clusters of [ spins at the
square lattice and considering their energies, Ex-
cluded volume corrections are made only to “first
order.”?%% In Ref. 16 it was suggested to add a
correction term - b(J/kBT) 1°! to the argument of
the exponential function in Eq. (2). However, our
results are rather insensitive to the argument of an
exponential correction term. In any case, a term
of this type cannot account for the even-odd oscilla-
tions®"?® at small I which are seen in Fig. 1.
Finally, we have performed similar calculations
for systems with free boundaries instead of periodic
ones, and in some cases also for H#0. In neither
case, was a similarly good agreement with the
droplet model obtained. Taking into account free
surfaces, which have pronounced effects on criti-
cal phenomena,? such discrepancies must be ex-
pected. However the disagreement observed for
H #0 might indicate some more serious limita-
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Fig. 1. Cluster distribution (n;l")
N for three temperatures and two lat-
tices in units of n{. The curves rep-
resent Fisher’s droplet model (r=3},
o=§). Circles, crosses, etc., are
the Monte Carlo results.

0 bpox
——
o
(6]

4

tions of the droplet model.

To summarize, we succeeded in calculating the
cluster distribution », of the two-dimensional Ising
model and the exponent 7 which describes the decay
of this function at the critical point. We found good
agreement with the value which explains the critical
exponents of the Ising model in the framework of
the droplet picture. The range of validity T=T,
(H=0) is found to be {27. The deviations for
smaller [ are explained by geometrical arguments.
In some of the physical applications®=7? the model
has been used down to /=1. Our results indicate
that such extrapolations are doubtful. However,
since the coordination numbers of a three-dimen-
sional system are larger, the geometrical effects
for small / are expected to be less important in
that case. Our further investigations will include
the study of a three-dimensional Ising model, and
the comparison of the recently derived lifetimes
of metastable states!® with predictions based on the
cluster model.

One of us (K. B.) wishes to thank Dr. Stauffer for
stimulating and helpful discussions and for his pre-
prints, Refs. 7, 10, and 13.
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Corrections to the classical theory of heterogeneous nucleation on ions and small “dust”
particles are calculated for water with Fisher’s droplet picture. Our results do not differ
greatly from Fletcher’s and other classical theories; but our derivations should give a more
unified and reliable description of the preexponential factors in the nucleation rate. If the
vapor contains small dust particles (~10 R) and ions, then at low temperatures the nucleation
will occur mainly on small particles, at intermediate temperatures on ions, and near the
critical point homogeneous nucleation will dominate. We suggest measuring such tempera-

ture-dependent effects.

This work applies our previous homogeneous
nucleation theory' to the heterogeneous gas-to-
liquid nucleation on ions and small (~10 A) parti-
cles, for temperatures between the triple point
and the critical point. Heterogeneous nucleation
theories?® of this kind are based on homogeneous
nucleation theories, !'* and at present® there is no
general agreement about the correct form of homo-
geneous nucleation theory. The controversial
problems® of rotational, translational, configura-
tional, and replacement partition functions still
appear to be unclear. Also, most of the studies
on homogeneous nucleation have been restricted

to the temperature near the triple point. It is our
suggestion! that a study of the temperature depen-
dence in the whole region between the triple point
and the critical point should give more informa-
tion about the approximation underlying the nuclea-
tion theory, e.g., the capillarity approximation,
bulk surface tension vs microscopic surface ten-
sion.

In Ref. 1 we proposed a theory for homogeneous
nucleation for this temperature region which also
circumvented the controversial problems of the
rotation-translation “paradox” by extrapolating
Fisher’s droplet picture® from the critical point



