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the angular dependence of the resonance fields
and the static torques with this value of ~,„. For
such a small value of ~,„one cannot neglect the
coupling of states differing in S, =m by the ef-
fective Hamiltonian given by Eq. (6). Apart from
a less important splitting of the doublets for H,„
close to the [111]direction this coupling gives an
angular-dependent second-order energy, which
is equal for the states I E„2) and !Ee, 2):

6E = —(6'/4 s,„)[1+11(nf u', + a', o.,'+ ~,' af )] .
(20)

With ~,„=62 cm this gives at low temperatures,
where kT«&,„, a negative K& of 7. 5 cm per
Fe ' in addition to the positive anisotropy as given
by Eq. (10). However with such a large negative
K& the angular dependence of the torques and the
resonance fields cannot be fitted. A correct fit
at 4. 2 K can only be obtained with ~,„& 200 cm ',
which confirms the estimate from the Curie tem-
perature of FeCr~S4 (Sec. II). An exchange split-
ting of that magnitude gives a negative K, com-

parable to the positive K& expected from the Cr'
ions, which anisotropy could be neglected (Sec.
IV A).

The value of 13 cm ' of the parameter 6 = 6(a2/

6, + p) compares nicely with the value of 12 cm '

from the Mossbauer spectrum of Cdo 98Fep p2Cr2S4.

In conclusion, the anisotropy of Cdq „Fe„Cr2S4
at helium temperatures can be described very
well by the single-ion anisotropy of the ferrous
ion on the tetrahedral site. Along the [111]di-
rection, where the doublet levels of the ferrous
ion are expected to come to a near crossover,
the simple model fails below 4 K. This may be
due to a small splitting of the lowest doublet and

to relaxation between the doublet levels.
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An analysis of long-wavelength magnon damping in magnetic metals is presented in the con-
text of an itinerant-electron picture of ferromagnetism. The decay is into single-particle
excitations, and is a result of spin-orbit forces. The predicted dependence of the damping
constant on the electron mean free path is in accord with recent experiments on ferromagnetic
resonance. In particular, for pure metals it increases as the temperature is lowered, and

then saturates. This anomalous rise is closely related to the anomalous electrical conductivity.

I. INTRODUCTION

Ferromagnetism in the d-band metals is a phe-
nomenon which has resisted complete understanding
for many years, despite the technological impor-
tance of these materials and the fundamental chal-

lenge to theorists which has long been recognized.
A major problem for the theory is to provide a

model which accounts for the main features of the
ground-s tate energetics. In any many-body theory,
however, the discussion of the elementary excita-
tions also plays a central role. Fortunately, it is
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not always necessary to have a completely adequate
theory of the ground state before developing theo-
ries of the elementary excitations. We shall rely
on this circumstance in the present work, which
does not bear on the problem of the ground-state
properties.

The elementary excitation most characteristic
of a magnet is, of course, the spin wave or magnon.
As compared with the insulating magnets, the main
complication encountered in the case of metals is
that there are present over the same energy range
the single-particle excitations associated with the
conduction electrons. This circumstance is ul-
timately responsible for the relatively short life-
time of magnons in metals. Models in which local-
ized magnetic electrons interact with nearly free
itinerant electrons are quite common, and indeed
offer a good account of the rare-earth ferromag-
nets. Such models do not literally apply to the d-
band ferromagnetic metals, since there is strong
evidence that the magnetic electrons are themselves
itinerant, although they retain some properties of
localized spins. It is this localized-vs-itiner-
ant dichotomy of the magnetic electrons which has
so far resisted theoretical understanding. '~

We shall in this work adopt the band model of
ferromagnetism, even though it fails to account
correctly for the localized aspect of itinerant elec-
trons. A localized-magnetic- electron-itinerant-
conduction-electron model also gives qualitatively
similar results, and we believe that the Landau-
Fermi liquid model should do the same. In the
problem to which we address ourselves the local-
ization of the electrons does not play a conspicuous
role.

What we wish to study is the interaction of the
spin wave with the single-particle excitations.
Whatever the spin wave is, it certainly has a strong
interaction via exchange with the conduction elec-
trons. Then, at the least, the spin wave is strong-

ly renormalized, most simply through the process
in which the magnon becomes a virtual spin-up
particle spin-down hole pair.

In fact, we shall regard the spin wave as being
nothing but a sequence of virtual spin-up particle
spin-down hole pairs, successively scattered by
means of the exchange potential. The Feynman-
graph description of this is given in Fig. 1.

This treatment of the exchange interaction (the
random-phase approximation) gives the dominant
features of the spin-wave dispersion and has al-
ready been widely studied. ' It cannot account,
however, for the main features of the real decay
of the spin wave into other excitations, particularly
into the single-particle excitations.

The fact is that the exchange interaction con-
serves spin, and therefore the infinite-wavelength
spin wave cannot decay at all through this mech-
anism. At finite wave number, diffusionlike pro-
cesses can occur which give damping rates pro-
portional to q . Much effort has been expended on
the evaluation of such terms but they are generally
known to be negligible under the experimental con-
ditions prevailing in the study of ferromagnetic
metals. '

Thus it is necessary to invoke the spin-orbit in-
teraction if one wishes to study the possibility of
decay of spin waves into other elementary excita-
tions in the long-wavelength case.

This program has been worked on for some time,
but no mechanism in agreement with experiment
has been put forward until the present work.
The main problem is that the spin-orbit coupling is
quite difficult to handle, being off-diagonal in both
spin and space variables. In order to get large
enough spatial matrix elements of the spin-orbit
interaction, one has to deal with a nontrivial band
structure. What is more, one has to take into ac-
count real imperfection or phonon scattering in
order to dissipate the momentum carried by the
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spin wave.
The only mechanisms which seem to have a

chance of giving acceptably large decay rates are
based on the process of the spin wave decaying in-
to an electron-hole pair, but without the conserva-
tion of spin. The spin nonconservation can come
about either through a real scattering in which
spin-orbit effects are involved, or througha virtual
modification of the exchange interaction, introducing
an effective exchange interaction which no longer
conserves spin. The former case does not seem
to be in agreement with experiment, as the real
scattering is bound to have an important tempera-
ture dependence of a type which is not observed.

The latter possibility is the subject of the pres-
ent paper, and it gives rise to a decay whose tem-
perature (i. e. , mean-free-path) dependence is in
qualitative agreement with experiment.

The propagation of a magnon and its damping
are studied experimentally by observing the response
of a magnetic system to an imposed (microwave)
magnetic field (ferromagnetic resonance). '0 The
experiments are analyzed in terms of the phenom-
enological Landau -Liftshitz —Gilbert' equation,
which describes the evolution of long-wavelength
slowly varying spin deviations. This equation is
written

=yMx H+ &3M + ~
Mx™, 1

where y is the gyromagnetic ratio, M, is the sat-
uration magnetization, and D is the exchange stiff-
ness. The damping is given in terms of the param-
eter ~, which is the main object of our attention.
Alternative phenomenological equations are in
much worse accord with experiment, ' and our
theory, in fact, predicts that Eq. (1) is correct.
Equation (1) gives the linear response of the mag-
netization to the local magnetic field. This re-
sponse is a dynamic wave number and frequency-
dependent susceptibility, which is then used to
connect B and H in Maxwell's equations. Maxwell's
equations are subsequently solved with appropriate
boundary conditions to yield the required system
response.

Although the actual magnons excited are more
complicated, it is sufficient to study the response
to a right circularly polarized local microwave
field, which drives a pure right circularly polar-
ized spin wave. According to Eq. (1) the magnetic
response to such a field k'(q, 0) is

(2)

where

'( n)=--0 —yH-Dq —iA&/yM,

Clearly, Eq. (3) describes the propagation of a

spin wave, with a damping term characterized by
the parameter &. Generally, in a given metal, X

is a constant, independent of frequency, magnetic
field, and temperature over a wide range. Our
theory is concerned with an anomalous contribution
to the damping, ' which can still be written as a
contribution to ~. This damping is anomalous in
the sense that it consists of a plateau in ~, re-
garded as a function of temperature, which adds
to the usual constant value only in pure nickel and
cobalt at low temperatures, and which vanishes at
higher temperatures (Fig. 2). It is also, as we
shall see, anomalous in precisely the same sense
that the "anomalous skin effect" is an anomaly,
namely, the wavelengths of the excited spin waves
are shorter than the mean free path, which means
there are wave-number-dependent effects which are
independent of mean free path.

This effect is definitively established in the case
of nickel, '2 where it seems to have been confirmed
by independent measurement. ' Preliminary but
quite convincing data indicate that it is also present
in cobalt. ' No such effects are observed in iron~5

or in alloys. ~6

The remainder of the paper is organized as
follows. In Sec. II we develop the formalism re-
quired and consider the situation in the absence
of spin-orbit effects. In Sec. III we include the
spin-orbit terms and obtain an expression for the

damping parameter ~. In Sec. IV we discuss the
results and how they compare, at this stage, with
experiment. A preliminary report of this work has
already appeared.

II. FORMAL THEORY

We consider the band theory as a model of ferro-
magnetism. It is imagined that the band theory is
carried out in the full Hartree-Fock approximation,
or in various other approximations. In any case,
the results of such a theory are the single-particle
wave functions, together with the corresponding
single-particle energies. In all such band models
the states are labeled by the crystal momentum k
and a band index n.

As we are primarily interested in the decay of
the spin wave, it is essential to keep the spin-orbit-
interaction terms. This interaction is off-diagonal
in both spin and space variables. Naturally, the
screened Coulomb interaction, which is responsible
for the exchange mechanism, is also essential.

As we shall soon see, in order to arrive at rea-
sonable results it is necessary to treat the periodic
lattice potential in a nontrivial approximation.
This is not only because the existence of the ferro-
magnetism itself depends, for example, on having
a density of states quite different from that of free
electrons, but more directly because the effect
of the spin-orbit interaction is much reduced when
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FIG. 2. Experimental values of the
damping constant g, in pure nickel,
normalized to its value at 300'K.
From Ref. 12.
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the single-particle wave functions have too great
spatial symmetry. Therefore, the interactions of
interest would be lost if we were to oversimplify
the band aspect of the problem.

The effect of the spin-orbit interaction is twofold.
On the one hand, in its absence the spin is con-
served, and so it is directly responsible for the
decay of the spin waves. On the other hand, it
gives rise to magnetic anisotropy, which affects
the real spin-wave dispersion relation as well as
the g values, etc. We shall not be overly concerned
with these latter effects in the present paper.

Since the spin-orbit interaction is relatively
weak, it is natural to think of treating it in pertur-
bation theory. However, straightforward perturba-
tion theory is nontrivial, and we wish to search for
a formulation which will isolate the influence of the
spin-orbit interaction on the spin-wave decay. We
may then be entitled to treat the other spin-orbit
effects, which are formally included exactly, in
such approximations as can be conveniently handled.
As will be seen, the spin-wave lifetime can, in
this fashion, be expressed as the square of an ex-
pression which can be interpreted as a real mag-
netic anisotropy effect and, in fact, one which
has already been discussed in the literature. '

The Hamiltonian for the electrons is thus chosen
to be

II=H + V„+—,
' 2 5 drdr' Vc(r —r')

x[tfrt (r) g~~(r') $8(r')g (r) —2g t(r) g (r) (gt(r')(Jr~(r'))]

——,
'

y Z f dr &J(r)v, ~ [H+h(r, t)]&~(r), (4)

where 0 includes the kinetic energy, potential
energy of the lattice, and Hartree energy; V„ is
the spin-orbit interaction; and Vc is the screened
Coulomb interaction. From the latter term we
have subtracted the Hartree energy, as itis already
included in 0 . The remaining term represents

the interaction of the electronic spins with the ex-
ternal magnetic field, which we have broken up
into a static and dynamic component, the latter to
be treated in lowest order. The orbital interaction
of the electrons with the magnetic field is neglected.
The annihilation operator („(r,f) is in the Heisen-
berg representation with G. the spin index.

We now assume the Hartree-Fock problem to be
solved in the static case with h=0. We shall, how-
ever, write out the equations in an arbitrary band
representation since we wish to consider bands
in which the spin-orbit force may or may not be
included. In this case the Hartree-Fock energies
can be labeled by k, but are not generally diagonal
in the band index. They may thus be labeled by
two band indices or, alternatively, be regarded as
a matrix in the band labels. We shall denote such
matrices with a caret. Thus, the Hartree-Fock
energy is

[~(k)]„„=~.„(k) .
We introduce as well the spin matrix S defined by

S „(k~q)= Z f dru.*., (r)a„~u„-';(, „(r)
e, g

and the overlap function A, where

A~„(k, k' ~G)=Z fdru„*- (r)e' '"uP. „(r)

and the integrals are over the unit cell of the lat-
tice. In these definitions, uf „(r) is the Bloch func-
tion, the label n gives the band index (which cannot
in general be separated into space and spin parts),
and & labels the spin component.

It is convenient to introduce the abbreviation

S,(k)=-S(k~a) . (8)

It may easily be shown that So satisfies the rela-
tion

So(k)A(k, k') = A(k, k') So(k') .
Next we introduce a shorthand for the operation



ANOMALOUS DAMPING OF SPIN %AVES IN MAGNETIC ME TALS 2773

of multiplication by the Fourier transform of the
screened Coulomb potential, integration over the
first Brillouin zone, and summation over the re-
ciprocal lattice. This operation will be denoted

9, where

n(k)= —iG(k/t, t') . (12)

The problem of the band theory is stated in the
present nomenclature as the problem of the self-
consistent diagonalization of Eq. (11).

The response function to a right circularly po-
larized magnetic field is of direct interest. This
function is defined by

~(m'(rt))
X (rtp r t )= 6t+( ptp)

where we have used coordinate-space nomencla-
ture. The magnetization is given by the Green's
function according to

(m'(rt)) = —,'iyEGI& (rt—,rt)cr„'~ .
ag

(14)

This response function is essentially the magnon
propagator. It also contains a transient response,
consisting of high-energy single-particle excita-
tions, and is of course renormalized; but in the
long-wavelength low-frequency case of interest
here, the magnon pole dominates, and we shall
ignore the transient terms.

As we have noted, in the absence of the spin-
orbit coupling there is no decay of the magnon
in the long-wavelength limit. This fact is mani-
fested by a pole on the real frequency axis in X',
and is a consequence of the conservation laws.
Therefore, in order to describe correctly the ef-
fects of the breakdown of the spin-conservation law

due to the spin-orbit interaction, we must use an
approximation in which the conservation laws are
maintained. The appropriate approximation con-
sistent with the use of the Hartree-Fock approxi=»
mation for the single-particle energies may be
represented by the "ladder" sum of Feynman
graphs shown in Fig. 1. An integral equation for
this sum is as follows: Define

—ir6G, (r,t;r,t')
su& 1 2t~ j 6I+(pfp)

Applying the usual finite-temperature formalism

B=-Z, g Vo(k —k'+G) .
G ~ $27f

Using this notation, the Hartree-Fock equation is

E(k)=&'(k) ,'r-H-S,(k) —gAn(k')A',

where the electron density n is given in terms of
the single-particle Green's function at equal times
by

nM —[E,M], = —,
' y [n, S ],+ 8 [n(k), A'M (k') A" ], ,

(20)
where we have introduced the generalized commuta-
tor

[c(k), D],=c D Dc" . - (21)

Note that [C, D], becomes the ordinary commutator
at q=O.

It is now easy to verify that these equations in
the absence of spin-orbit interaction indeed predict
that the infinite-wavelength spin wave does not de-

cay. Let us make the ansatz

M(k~qn) = [n(k), i(k~qn)], . (22)

Using the fact that n and E commute, we may re-
write Eq. (20) as

at temperature T, taking matrix elements with

respect to the band wave functions, and Fourier
transforming with respect to r', t', we may obtain
an integral equation for M(k lqn) in the band repre-
sentation, where 0 is the frequency and q is the

wave number of the magnon. Since q, 0 are fixed,
we generally suppress the dependence on them.
We also introduce the notation n'(k) =n(k+-,'q) and

n (k) =n(k ——,'q) in which the dependence on the
momentum variable (s) is shifted by a —,'q. A similar
notation is used for other functions.

The integral equation is, then, in this notation,

M(k~ q n) = T 5G'(~, + n)[-,'iya S + bA'M(k')A"']G "(~,)

(16)
and the magnon propagator is obtained in turn as

X'(qn) = — "-, Tr S'(kl —q)M("Iqn)
2 „(2m)~

and the trace is over the band indices.
Let us now imagine for the moment that we have

solved the static Hartree-Fock problem and obtained
the eigenvalues. In the band representation de-
fined by this solution E, G, and n are diagonal and

we may perform the "temperature" sum over ~,.
This may be followed by the analytic continuation
of 0 to real frequency. Denoting the diagonal ele-
ments with a single index, the result is

l t'

+iTZG' ((u, + n) G„"((u,) =—

(18)
where, in fact, the dens'"ty is explicitly given by

(k) = (e s~ ~&~ + 1) (18)

and v is the ordinary scattering lifetime.
We insert this result in Eq. (16) after which we

multiply through by the denominator of Eq. (18).
It is easy to see that the result may be written in
a form independent of band representation. In

fact, we may write
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[z,(k), s,(k)]= o (24)

holds. Therefore, at q = 0 it is natural to look for
a solution in the form

I', (IIA- [E,A], —g A'[.-, Al, A"'--, y's-)), =o.
(23)

Now, in the absence of spin-orbit interaction, the
single-particle Hamiltonian conserves spin just as
does the interaction Hamiltonian. Thus, in this
case, the commutation relation

exist only by virtue of the weak spin-orbit force,
we are justified in treating it as small.

Inserting this ansatz into Eq. (20) we obtain two

equations for the parts which are off- and on-diag-
onal in the Hartree-Fock representation, respec-
tively. Writing out the equations in this represen-
tation we find

[n, IIA —[E, A] —gi[n, A]A' —gkPA')= [n, ,'y'S—]
(29)

A(kI o, n)=g(n)s, (k) . (25) [n-q V.(k)+f/~]M'„

It is easy to see that, by virtue of relation (9), the
Fock terms in the expression for E cancel against
the g term, in Eq. (23). Thus we readily find that

g(Q) = —,'y'/(0 —yH) .
This leads at once to the usual expression for the
magnon propagator,

q'(0, n) = -yM, /(n-ya), (27)

where M, is the magnetization. Furthermore, the
exchange-stiffness contribution to the magnon ener-
gy can be found by keeping the q dependence to
order q .

III. SPIN-ORBIT INTERACTION

In the presence of spin-orbit forces, the solution
Eq. (25) can no longer be correct, since the rela-
tion (24) does not hold. In the previous simple
case, the solution for A had the property that it
was off-diagonal in the Hartree-Fock representa-
tion, since S is off-diagonal in spin, and there is
a trivial connection between spin and band labels
when the spin is conserved. Once spin-orbit forces
are taken into account this will no longer be true,
and A and M will have diagonal elements in the
Hartree-Fock representation. These diagonal
elements are the essence of the decay process
which we envisage. In fact, the off-diagonal nature
of A in the absence of spin-orbit forces corre-
sponds to the fact that the intermediate states in
the Feynman-graph ladder sum of Fig. 1 consist
of electron-hole pairs which are split by the ex-
change interaction; i.e. , they are in different
bands. Thus energy cannot be conserved in the
decay of the spin wave directly into these pairs.

On the other hand, diagonal terms in M would
mean that electron-hole pairs in the same band
could exist as intermediate states so that energy-
and momentum-conserving final quasiparticle
states could exist for the decay process.

Therefore, we make the more general ansatz

M=M +[n, A], , (28)

where M is diagonal in the Hartree-Fock repre-
sentation and A is off-diagonal. Because M can

-'"[."y S—+gA(M +[n, A])A ], (30)

where we can put q = 0 in the off-diagonal equation
(except for the dependence of M on it). Clearly,
we must keep the wave-number dependence in the
equation for the diagonal elements, but we have
kept it only to lowest order. The velocity dE„(k)/
dk is written V„(k) .

In order to solve Eqs. (29) and (30), we note that
it is safe to neglect the M which appears under the

g sign in Eq. (30). We may then solve for M to
obtain

dn. ,'y'S-..+ (g A[n,—Ã]g).„
dR II-q V„(k)+i/~ (31)

If the expression just found for M" is substituted
into Eq. (29), an inhomogeneous linear integral
equation for A is obtained. Clearly, we may expect
the solution of this equation to have a pole near
Q=&II which will be shifted by a small complex
value. The real part of the shift is the anisotropy
contribution to the spin-wave frequency, whereas
we are primarily interested in the imaginary part
of the shift. There will also be a change in the
residue of the pole, but this is of secondary im-
por tance.

Since the inhomogeneous equation has an isolated
pole, its solution in the neighborhood of the pole
will be proportional to the solution of the corre-
sponding homogeneous equation, and the position of I

the pole will be determined by the eigenvalue of the
homogeneous equation.

In order to find an expression for the imaginary
shift, we may employ perturbation theory as fol-
lows. Consider first the homogeneous equation for
A. , which we denote by Eq. (29'). This equation
is obtained from Eq. (29) by replacing the right-
hand side, —,'y'[n, 8 ], by zero, and regarding M" as
given by Eq. (31) but with the term —,'y S replaced
by zero. We then do perturbation theory in M".

The zeroth-order solution is denoted 4o and
satisfies

[n, n,4, —[X, i,] —g A[n, 4,] A'] = O . (32)
The zeroth-order eigenvalue Qo is not just pH since
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E contains spin-orbit effects, but it is nevertheless
real. This may be seen by defining an inner product.
Multiplying Eq. (32) by 0 o, taking the trace over the
band indices, and integrating over momenta in the
first Brillouin zone gives

n, = Tr J'dk (~,' [n, [Z,e,]]-e,' g [n, A[~,e,]Ai])

Again using the properties mentioned in the pre-
ceding paragraph, this may be rewritten

~ t - r'le (k) I'q v„(k)(dn /dz„)
0 —q ~ V +i/v

where we have introduced

rc „(k)= [g A [n, 40]A ] (36)

Clearly, &0 vanishes in the absence of spin-orbit
coupling since M does. [In order to verify this
directly from Eq. (36) one must invoke the proper-
ties of A, n, 4o in the absence of spin-orbit cou-
pling. ] We will return to the interpretation of e (k)
in the following.

The integration in Eq. (35) is a Fermi-surface
average of a type often encountered in calculations
of the conductivity. In view of the fact that the
magnitude of q is determined by the skin depth
(i. e. , q- 10' cm '), we may conclude that 0 «q V„(k).
If we also assume inversion symmetry, so
that V„(k)= —V (- k), the imaginary part of the
expression for ~A is

„- le (k) I'(dn /dz )

q V (u)-i/7

x Tr dk [4'o, 4'oi] n . (37)

x [TrJ dk4,'[n, 40] ]
' . (33)

It is straightforward to verify, using the proper-
ties of the trace, the hermiticity of n, E, and the
fact that they commute, the definition of the opera-
tor g and the relation A (kk'

I 6) = A(k'k I
—G), that

Qo is real. Further, with this definition of inner
product, the linear operator of Eq. (29) is Hermi-
tian. In fact, our motivation for obtaining an equa-
tion for the operator A rather than for M directly
is just this possibility of forming an appropriate
inner produc t.

%'e now are in a position to write down the ex-
pression for the shift in eigenfrequency ~A using
ordinary first-order perturbation theory in M".
The result is

Tr j dk 4 Oi (k) [n(k) g Ii M~(k')A ]

Tr J dk4, [Pi, 4, ]

38Tr f dkjj„4,'jn
The angular brackets are meant to indicate an
appropriate average over the Fermi surface and
AT(Z~) is the density of states. This expression
is definitely oversimplified in that, as we shall
see, e(k) is probably a quite strongly varying func-
tion of position on the Fermi surface, and, of
course, the Fermi surfaces are far from spherical.
Nevertheless, the main dependences of the damp-
ing on the experimental variables and on the
strength of the spin-orbit coupling can be made
manifest by means of Eq. (38).

The next question to be resolved is how to evalu-
ate e„(k) and the denominator. To study this, we
again note that the solution to the inhomogeneous
equation (29) for a frequency in the neighborhood
of the eigenfrequency is proportional to the solu-
tion of the homogeneous equation (29 ); that is,
at such frequencies the pole term in the solution
to the inhomogeneous equation dominates. Since
the normalization of the solution drops out of ex-
pression (37) we conclude that a correct expression
for 4o is A(klOQ) for & very near Ao.

Now, from Eqs. (12) and (15) we see that

M(k ~q 0)= (39)5h' qQ

i. e. , Mis the operator change of n in response to
an applied transverse field. Furthermore, ne-
glecting M, we have from Eq. (28)

Af (k
i
0, n) = [n, A(k

~

0, n) j . (40)

Then, from Eqs. (11) and (36) we find that e (k) is
the shift in the exchange energy with transverse
field, at frequency Ao. As a practical matter,
the pole at 0, is so isolated from the other sin-
gularities of A, which occur at frequencies greater
than the exchange splitting frequency, that it is
sufficient to find the response to a static transverse

This would be precisely the conductivity, up to an
over-all factor, if I c„(k) I were replaced by the
transverse velocity .These "v locity" factors
usually are not considered to have a dominating in-
fluence on the behavior of the integral, and they
can be treated in some average sense. It is the
denominator which is of importance. Thus, as in
the case of the conductivity, we have two extreme
cases, corresponding to the "normal" conductivity
and to the "anomalous" case. These cases are de-
fined by qV~«1/7 and q V~» I/7, respectively.
An interpolation formula, based on a spherical
Fermi surface, gives the following expression:

An=-in(A(z, )
~
~.(z, ) ~')
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field. If we make the further simplifying assump-
tion that the exchange energy depends on the direc-
tion of rnagnetie field only through the magnetiza-
tion, we find

(-) ~Em(k) d&m(k) +( )&h' d (41)

The denominator may be evaluated easily because
small spin-orbit effects are unimportant there.
We may use the solution of Eq. (25) therefore to
find

(42)

Putting these results together, and comparing
with the Gilbert equation, we finally have

2dE k ( qVF7
(43)

IV. DISCUSSION

Equation (43), although somewhat oversimplified
as compared with Eq. (3V), will be used as a basis
for discussion. In fact, using a crude model,
Kambersky obtained expression (43) with the im-
portant difference that he replaced tan 'q V~v/q V~
by v; i. e. , Eq. (43) in the normal-skin-effect
limit.

Kambersky's model, whose physical basis is
similar to ours, is based on the observation that
since the exchange energy is a function of the direc-
tion of the magnetization, so will be the Fermi
surface. Thus, as the spin wave propagates, the
shape of the Fermi surface is distorted periodically
in space and time. The eff orts of the elec trons to
repopulate the changing Fermi sea account for the
damping. We have simply found a formal proce-
dure to justify this intuitive approach and, in addi-
tion, have generalized it to the anomalous case.

Kambersky has already discussed the over-all
magnitude of the effect. This is not easy to es-
timate reliably. In general, one can expect two
kinds of contributions to dE /dm' One is a .sum
of small contributions coming from the bulk of the
Fermi surface, and the other is a sum of larger
contributions coming from special regions of the
Fermi surface. Which is the more important is a
question to be resolved by detailed band-structure
calculations.

One may note however, that if plane waves are
used as an approximation to the band states, the
effect is expected to be small. Because of the
high symmetry of these wave functions, there are
strong selection rules on the matrix elements of
the exchange energy which prohibit a dependence
of the exchange energy on the spin-orbit potential
in lowest order.

The possibility that special regions of the Fermi
surface play an important role come:" from the
fact that there may exist band-crossing degenera-
cies near the Fermi energy which are lifted by the
spin-orbit interaction. 8 In such a case, the exact
position of the Fermi surface depends sensitively
on the spin-orbit force, since degenerate perturba-
tion theory must be used and, as a consequence,
the exchange energy in this region will depend
strongly on the direction of the magnetization.
There is strong evidence that such is the case in
nickel (near the point X in the Brillouin zone),
some preliminary evidence that it might be the
case in cobalt, and little evidence for its possi-
bility in iron. 20 This would immediately explain
the fact that anomalies have been observed in Ni
and Co, but not in Fe. (An additional consideration
is that the exchange stiffness ID in Eq. (1)] is much
larger in Fe than in Ni, though not in Co, so that
contributions to the observed linewidth of ferro-
magnetic resonance for Fe are less easily extract-
ed from experiment. Thus an existing small
anomaly of X in Fe might have gone undetected. j

If a special region of the Fermi surface is in-
volved, then obviously the density of states, ve-
locities, and free times in Eq. (43) should refer
to this region. Thus, the velocity may be quite
small and the free time not characteristic of the
conductivity as a whole. Indeed, considerable
variations in free time, not to speak of Fermi
velocities, have been found in Fermi surfaces of
neighboring nonmagnetic materials, such as Cu. '

A detailed comparison with experiment is also
complicated by the necessity to recompute the
solutions to Maxwell's equations, 2 using a wave-
number-dependent ~. This is being studied at
present.

Nevertheless, we may agree with Kambersky
that the theoretical magnitude of ~ could possibly
be in agreement with experiment. One may deter-
mine an average value of q to be used in the evalua-
tion of ~ by considering it to be given by a non-
self-consistent calculation of the skin depth. Then
q is roughly constant below 150'K for Ni. As the
temperature is lowered, 7 becomes longer so the
factor tan 'q V~7/q V„becomes larger and saturates,
as observed. The temperature region above which
this saturation occurs indeed corresponds to the
onset of the anomalous skin effect in the ordinary
conductivity. The level of saturation is indepen-
dent of residual resistivity, as observed, provided
the resistance ratio is large enough.

For small enough resistance ratio, no anomaly
should be observed, which agrees with the absence
of an anomaly in alloys. Single crystals with a
variety of resistance ratios, studied over the diffi-
cult temperature range 20-100 K, would allow a
detailed study of the correctness of the formula
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(43). Such experiments are tedious and difficult,
however, and have not so far been carried out.

There still remains the unexplained constant con-
tribution to X, independent of temperature and
mean free path. It is difficult to conceive of this
as arising from the decay of the spin wave into
other elementary exeitations, since such a process
would surely show a temperature dependence '

over the temperature range 100—600 'E. There-
fore, we feel it likely that this source of damping

is some sort of inhomogeneous line broadening,
perhaps arising from a surface phenomenon, No

detailed mechanism for this constant contribution
has been found t.o date, however.

In summary, we have concluded that, by virtue
of the spin-orbit interaction, a spin wave can decay
directly into a particle-hole pair, the decay not

conserving spin. This particular source of damp-

ing has an anomalous character and depends on de-
tailed properties of the Fermi surface.
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Evidence for Fisher's Droplet Model in Simulated Two-Dimensional Cluster Distributions

E. Stoll, K. Binder, and T. Sehneider
IBM Zurich Reseurck I aboratory, 8803 Ruschlikon, Sseitzerggnd

(Received 24 April 1972)

The distribution function nl of clusters with / reversed spins has been calculated for two

square N XN Ising lattices (N =55 and 110) at various temperatures p & T~ using periodic bound-

ary conditions. These calculations strongly support the cluster model proposed by Fisher

and yield the exponent v = 2. 1 +0.1. However, for small ), T not close to T„and 0 & 0, we

find considerable deviations.

Fisher's cluster model' 3 is a semiphenomeno-

logical description of critical phenomena in Ising
spin systems, leading to a physical interpreta-
tion of the static scaling relations. 3'4 Within the

framework of the lattice-gas terminology it can

also be applied to the gas-Liquid phase transition.
These results agree surprisingly well with ex-

periment for gases5 ' and have also been used in

the nucleation probl. em'-'0 to calculate the forma-
tion rate of large droplets in a supersaturated

vapor, Perhaps this model can also contribute to
a better understanding of the phenomena near
tricritical points. " ' It shouLd be noted, however,

that it fails above the critical temperature T,.


