
PHYSIC AL REVIEW 8 VOLUME 6, NUMBER 7 OC TOBER 1972

Excitations in Magnetic Systems with a Singlet Ground State

Y. Y. Hsiehtt
Physics Department, State University of New Fork at Stony Brook, Stony Brook, Negus Fork 11790

and Brookhaven National Laboratory, Upton, New York 11973

M. Blume
Brookhaven National Laboratory, Upton, Nezo Fork 11973

Q,eceived 9 March 1972)

We have studied the magnetic properties of a system with a crystal-field-only singlet ground
state and a triplet first excited state in the presence of exchange interactions by using a
pseudospin formalism, in the molecular-field and the random-phase approximations. By us-
ing the molecular-field results as a first approximation, we obtain the low-lying collective
excitation spectra at zero temperature. The spontaneous magnetization and the correlation
functions at finite temperatures can then be deduced. As a practical application of the model,
we extend the calculations to a face-centered-cubic antiferromagnet and calculate the excita-
tion spectra of the rare-earth compound TbSb. An estimate of the validity of this application
is given and further studies and possible improvements of the present calculations are also
suggested.

I. INTRODUCTION

The importance of crystal field effects in mag-
netic materials has long been recognized. For
certain rare-earth compounds, such as those of
NaCl structure with group-V anions, it is possible
for the crystal field to be comparable to or even
dominant over the exchange interaction between the
rare-earth ions. Thus, the crystal field is ex-
pected to play a very important role in the nature
of the macroscopic magnetic properties in such
materials. ' " The most striking situation occurs
when the crystal-field-only ground state of the
rare-earth ion is a singlet, which can happen when
its total angular momentum is an integer. It was
found '' ' that in such systems, there would be a
threshold value for the ratio of exchange to crys-
tal field interaction necessary for nonvanishing
magnetic ordering even at zero temperature. As
the exchange interaction increases, magnetic or-
dering at low temperature occurs not through the
usual process of alignment of permanent ionic mo-
ments, but rather through a polarization (or in-
duced-moment) process corresponding to the Van
Vleck susceptibility in a paramagnet with the ex-
change field taking the place of an applied external
magnetic field. Trammell '3 first pointed out the
possibility of such ordering. The case where the
first excited state is also a singlet state (the
singlet-singlet problem) was first studied by
Bleaney' in the molecular-field approximation
(MFA). The singlet-triplet system, i. e. , where
the first excited state is a triplet, has been studied
by Blume, ' and Kitano and Trammell, "again in
the MFA. Recently, Cooper' calculated this criti-

cal value in the constant-coupling approximation
and found that this value was significantly increased
over that in the MFA.

The energy spectrum of the low-lying collective
excitations for such systems is rather important,
not only in itself but also because its behavior pro-
vides a criterion for the threshold value of the ex-
change interaction necessary for magnetic order-
ing. One also hopes to observe the excitation
spectrum directly from an inelastic neutron-scat-
tering experiment. This in turn should allow us to
determine the exchange interaction, as has been
done in terbium'6 and erbium' metals. These ex-
citations have been investigated using the tech-
niques of Bogoliubov' by a number of people, e.g. ,
Bozorth and Van Vleck in their investigation of
the paramagnetic regime of metallic europium,
Trammell2 in his treatment of the rare-earth ni-
trides, and Grover~a for both ferro- and antiferro-
magnetic materials. It is found 3 that the critical
value in this approximation is exactly the same as
obtained in the MFA for the singlet-singlet system.
Quite recently, an improved calculation has been
done by Wang and Cooper ' on this problem by
using a pseudospin formalism. This approach has
the advantage over the Bogoliubov formalism in
that it can, in principle, take into account the fluc-
tuations of the ground state as well as the interac-
tions of the excitations. The same problem has
also been approached by Pink, ~s using a similar
technique. Pink has studied the simple singlet-
triylet problem, in which the magnetization is due
both to an induced moment and to nonzero eigen-
values of the spin operator associated with crystal
field eigenstates.
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FIG. 1. Level scheme for Trn3'

or Tb ' M=6) in octahedral crystal
field with degeneracies of levels in-
dicated.

atures. The transitions to which the excitations
are attributed can be identified in the molecular-
field picture. Application is also made to the ex-
citation spectrum at zero temperature. An esti-
mate of the validity of this application is discussed
in Sec. V, where we also compare the results ob-
tained from these two approximations. Possible
improvements on the techniques used in this paper
and suggestions for further studies are also pro-
vided.

II. HASIILTONIAN

Figure 1 shows the level scheme for Tms' or
Tb ' in an octahedral crystal field with level of
degeneracies indicated. Within the physical range
of interest for rare-earth group-V compounds, the
ground state is a I', singlet and the first excited
state is a I"4 triplet. These two lowest states are
separated by an energy splitting 6, which is about
100 'K for TmN, '3 30-40 K for the heavier com-
pounds, '3 and 11.9 K for~ TbSb in zero magnetic
field. We assume that at low temperatures, only
these two low-lying levels are important in the
thermodynamics, the justification of which will be
discussed in Sec. V. In Sec. II, we use a spin-
Hamiltonian formalism, replacing the original
Hamiltonian of the ion with all its states by another
one which can accurately describe the two low-
lying states. The advantage of this pseudospin
formalism is that we reduce the original compli-
cated problem to a simpler one in a pseudospin
space so that the well-developed algebra of angular
momentum can be used. Such a Hamiltonian is
constructed by using two spin--,' operators to de-
scribe the singlet-triplet system, instead of a
single spin- —,

' operator. The model we develop can
hence be used as an interpolation scheme for real
compounds. By taking appropriate limits of the
model, it can be seen that this Hamiltonian cor-
responds to several different specific problems in
magnetism. The Hamiltonian is then first studied
in the MFA in Sec. III, where we reproduce the
phase diagram of three regions of magnetic order-
ing as obtained by Kitano and Trammell, " study
the nature of phase transition and Curie tempera-
ture of magnetic ordering according to the theory
of Landau, ' and the temperature dependence of
magnetization and various thermodynamic correla-
tion functions. The calculations are also extended
to the case of a fcc antiferromagnet. In Sec. IV,
we apply the double-time Green's-function method
to study the pseudospin Hamiltonian in the random
phase approximation, both for ferro- and antiferro-
magnetic exchange interactions. By using the
molecular-field results as a first approximation,
we obtain the excitation spectrum at zero tempera-
ture and thermodynamic functions at finite temper-

In the absence of an external magnetic field, the
Hamiltor. ian for rare-earth group-V compounds
assumes the form

K=K v„-Z Q(i —j ) J, Jq . (2 I)

J,- aS, +bT

Its matrix elements in the representation of I'
= S+ T space are

(2. 2)

Here V„ is the single-ion crystal field potential
which gives a singlet ground state and a triplet
excited state separated by an energy gap 6 for the
present problem under consideration. J, is the
total angular-momentum operator of the rare-earth
ion at the ith site and $(i —j) is the effective ex-
change interaction between ions at i and j. We have
considered only the simplest form of isotropic ex-
change. More complicated mechanisms, e.g. , or-
bital effects on exchange, biquadratic exchange,
anisotropy, etc. , can be included without difficulty.

Our work next is then to find the equivalent
pseudospin operators corresponding to these opera-
tors in real space to operate in their own fictitious
spin space. It is natural to think that we can use
a fictitious spin S' =-,' to describe the present level
scheme. Since, in the representation of spin--,'
space, there are 16 linearly independent opera-
tors, any 4&&4 matrix can be written as a linear
combination of these operators. The tranformed
Hamiltonian would in this case be even more com-
plicated than the original, however. A simpler
approach is then to consider two spin--,' operators
S and T. Pink" has already used the expression

T to explain the singlet-triplet level of scheme
of the crystal field term. To find the representation
of the angular-momentumoperator in this fictitious
spin space, we note that the system under consid-
eration is of induced-moment nature. From the
requirement that the thermal average of the total
angular momentum along a certain direction J, is
proportional to the magnetization, we try the fol-
lowing linear combination of S and T with real co-
efficients a and b, respectively:
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The matrix elements of J, in this space are

(2. 4)

The ket vector on the left-hand side of these equa-
tions refers to I I", M„) and that on the right-hand
side refers to I M2, Mr &.

As an example we consider the levels of Tb ' or
Tme' in an octahedral crystalline field. According
to Lea, Leask, and Wolf, ' the F& and I'4 states
have the following representations in the manifold
of constant angular momentum (J'= 8):

I
r ) =--'~714) -'~210&--'~71-4&,

Xp= hZ, S( ' T;+2K; (H2$'(+Hr T', ) . (s. 1)

Ko can be diagonalized in the direct product space
of the single-ion Hamiltonian, which has the follow-
ing complete set of eigenfunctions and eigenvalues:

E, = b, + (H2 + Fir ),
E2= 6 —(82+Hz, ),

Is&= a210*0&+P 11 o&

where we neglect the constant term 4NL. By tak-
ing different values of a, b, and b, in Eq. (2. 8),
our model corresponds to some specific problems
in magnetism. For example, if we take a=b=1
or a= —b =1, it reduces to the singlet-triplet
problem considered by Pink, and if we take a=1,
b = 0, 6 to be the hyperfine interaction between the
electronic spin S and nuclear spin T, it reduces to
the problem of simultaneous excitation on nuclear
and electronic spin waves discussed by de Gennes
et al. and Ninio and Keffer. ' The details of these
limiting examples will be studied in Sec. IV. We
note also that since we have assigned two spin--,'
operators with different weights on each site, Eq.
(2. 8) corresponds to a, particular model of ferri-
magnetism.

III. MOLECULAR-FIELD APPROXIMATION

We first work out the ferromagnetic case by
assuming all 4's & 0 and begin from the Bogoliubov
variational principle3 to obtain the molecular-field
equations. Since we have assigned two spins S and
T on each site, we are obliged to introduce two ef-
fective fields H~ and H~. Hence we take the trial
Hamiltonian

&l,
l

&141

& r,'I ~14

&141 0

0 0

0 0 0
1
20 0

114&

0 0 ~14 0

(2. 5)

Z2 = g~+ [~'+4(H, —H, )'] "g,
14 &

= ~,
1
o, o &+ p, I

1, o &,

E, = —,'I ~ - [~'+4(H, —H, )2]"2),
(s. 2)

A comparison of Eqs. (2. S) and (2. 5) shows that a
and b are determined by

H~ —H~
[Z'+(H -H )']"' '

or

a —b = 2414, a+b=1,

(2. 8)

g
Pf [E2+ (H H )2]l/2 i

(s. s)

a= 2(1+2''l4), b= 2(1 —2414) .
The representation of the angular-momentum op-
erator J has hence been found to be

Bogoliubov's inequality then states

(1/N) Ii & —(k2 T) ln Z2 —J'(0) (a &S, ) + b & T, ) )

J=aS+bT . (2. 7)
—2(H, &S, )+Hr&T, &) .

The Hamiltonian (2. 1) is then transformed into this
fictitious spin space and assumes the form

&=~ZS, i,. -Zg(i-q)(aS, +bi, ) (aS, +bT, .), .

(2. 8)

Here I' is the free energy, Zo is the partition func-
tion, and J(0) =P, 4(i- j). Subject to the variational
principle, this free energy is to be minimized with
respect to the two molecular-field parameters II~
and H~,
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ep 0, 0.
The combination of these two results gives the
two molecular-field equations

Hs = —aj(0)M, Hr = —bJ(0)'M. (3.4)

Here M is the magnetization and is to be deter-
mined self-consistently by the equation

M = a(S, )+ b(T', )

=—s(a+b)(e "t-e '")1

Zo

Z(0) {a-b)'M
[~s+4(a —b)V'(0)M']"' ('

and
4

Zs—-5 ~ ~', 0= ilk Tn.
)=1

The single-ion energy levels are then given by

E, = ~ —(a+ b)Z(0)M,

E, = ~+ (a+ b)Z(O)M,

E, =-,'(a+[a'+4(a —b) j (0)M']'/s),

E = —(6 —[b +4(a —b) J' (0)M ] / }.

(3. 6)

J(0) (a —b) & 6 and J(0) (a+ b) & 4b, . (3.7)

(ii) The molecular-field ground state is ferro-
magnetic but magnetization is not fully saturated,
but given by

[gs(P) (a b)4 gs]1/ 2

2Z(0) (a —b)

The idea of heat magnetization in such a singlet-
triplet system has already been discussed by Kitano
and Trammell. " We will not repeat their analysis
here, instead we just state the main results which
will be needed in later discussions. In terms of
our parameters a, 5, and A, three regions of
magnetic ordering can be classified as follows:

(i) The molecular-field ground state is ferro-
magnetic and the magnetization is fully saturated,
i.e. , M= s(a+b), if

f t|p'3 ttE4 $

[ns 4( b)2 gs(p)M2]1/s (

(3. ll)

(SsT s) (e-s&t+e-8&s ~-8&s e-884)1
4ZO

(3. l2)

The E,'s are given by Eq. (3.6).
Values of these correlations at 0'K are rather

important for later use; we write them out explicit-
ly in accordance with the three different classes
of molecular-field ground states:

M (Spontaneous Magnetization)
in units of Olga+b)

I.O

08

0.6

magnetized singlet is lower than the triplet in en-
ergy and the exchange field is not large enough to
overcome the crystal field splitting. As the tem-
perature is raised, the triplet will be populated
and hence the exchange field gets larger. This in
turn will lower the triplet. All these processes
will work self-consistently in the molecular-field
picture. The unsaturated curve (b) at 0 'K is due
to the fact that the exchange field is compatible
with the crystal field splitting so that both the
triplet and the singlet are populated at zero tem-
perature. The magnetization at low temperatures
is indeed affected by the crystalline field, as has
already been predicted by Trammell's work. ~ 3

The correlation functions which are of interest
and turn out to be useful later on are those between
the S and 7 spine on the same site, e.g. , (S"7"),
(S'T'), and (S'T'). We give their expressions
both in the ferromagnetic and paramagnetic phases.
In ferromagnetic phase, we have

(s"r")= (s'r")= —,'(s "r )=-,'(s-z"')

Z(O) (a- b)'& ~ .
(iii) The molecular-field ground state is non-

magnetic, i.e. , M=O at O'K, if

J(0) (a- b) & b and J'(0)(a+b) &4n, . (3. 10)

04

0.2

02 04 06 08 l 0
~kT

)4
To show the above picture, we have done some nu-
merical calculations and plot the temperature de-
pendences of magnetization in Fig. 2. The low-
temperature behavior of curve (c) is known as heat
magnetization, which is due to the fact that the un-

FIG. 2. Spontaneous magnetization M in units of &(a+b)
as function of temperature for different values of param-
eters: (a) J(0)(a —b) --0.56, J(0)(a+b) =64; (b)
~(0)(a-b) =&.5&s J(0)(a+b) =26; (c) J(0)(a-b) =0.9~,
~(0) (a+ b)'=3. 6~.
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In paramagnetic phase, we have

1 —e ~
(S"T")= (S"T')= &S T'&=—4(i+3e-") '

(3. 15)
Figures 3-5 show the temperature dependences of
these functions with the same parameters chosen
as in Fig. 2, and the values of M are also bor-
rowed from that figure. Manifestations of the un-
saturated and heat-magnetized ground state are
hence reflected in these functions.

The nature of phase transitions and Curie tem-
perature has been studied by using Landau's theo-
ry of second-order phase transition. ' The Curie
temperature Tc is determined by the equation

1+ac "'2T-e= (a ——b)'Z(0) (1 —e "'2'c)1

+ (a+b)2e ""2Tc . (3. 16)
z(0)

kBTC

It reduces to Blume's result' on the UO2 model if
we put a=b= 1, while for a=o and a=i, b=o (or
a = 0, b = 1), it reduces to the usual expression for
a Heisenberg ferromagnet (S= —,') in MFA.

Eventually, we will apply our model to the rare-

6(a+ b) J2 -~/22T„
kBT~

(S. 1V)

IV. DOUBLE-TIME GREEN'S-FUNCTION
METHOD: RANDOM-PHASE APPROXIMATION

A. Transverse Modes and Decoupling Scheme

To study the transverse mode, we look at the
Green's function

G, , «- t') = «s;«)I s, (t-')) &

= - ttj(t - t') ([s;(t), s, (t')] )

as defined by Zubarev. Its equation of motion is

earth compound TbSb, which is a two-sublattice
antiferromagnet with fcc structure. By limiting
our calculations to this case, we find all the con-
clusions obtained in the ferromagnetic case are
valid with the replacement of Z(0) by —6', where
J2 is the exchange interaction between next near-
est neighbors. The Noel temperature T~ is now
determined by

1 +2 - 4/22T// 2( )
(1 -6/22T//)6g (~

i —G, , (t —t') =26(t —t')5, , (S,')+a«sg'(t)T g(t) —Sg'(t)Tg(t)l S, (t')))

—2aZ, 8(t -g)[a« s;(t)sg(t) —sg(t)sI(t) l s, (t') ) ) + b(& sg(t)T;(t) —sg'(t)TI(t) l s, (t') )) ] . (4. 1)

Here we put 8=1. The right-hand side now in-
volves Green's functions of higher order. Since
we are now interested in the case where the crys-
tal field splitting s is comparable with respect to
the exchange interaction, we regard the operators
on the same site (the crystal field term) as inde-

pendent Green's functions. For Green's functions
which involve operators on different sites, we use
the simplest random-phase decoupling, namely,

((s;(t)s,'(t) I s, (t') )&- &s,
'

& «s;(t) l s, (t'}» .
Equation (4. 1) now becomes

i —
Gg, I(t —t') =26(t- t')bg, l &S'&+/2«sg(t)T;(t) —S;(t)T,'(t)l Sj(t') »

-2Z, ~(i-g)(a'&s ) ((s,.(t) —s, (t)l s;(t ))) +ab[&s') & &TI'(t)l s, (t')) &- (T'& &&s;(t)ls, (t')&&]] . (4. 2)
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The above expression shows that we need to consider three other independent Green's functions
((T,'(t) IS,(t'))), «S~(t)T,'(t)I sj(t'))), and (&S;(t)T,'(t)lSq(t'))). By using the same approximation, the
equations of motion of these three Green's functions are

i d, « T;«)I si(t') » = —a« s,'(t)T;(t) —s;(t)T;(t)
I
Si(t') »

—2Z& 8(i —g)[b & (T;(t)T'(t) —T '(t) T'&(t)
I S, (t') ) ) +ab «S;(t)T~(t) —S&(t)T~'(t)i S,(t') ) ) ], (4. 3)

i
dt

&(s'(t)T (t)i s, (t')&)

= —5(t —t )bg ) (S T')+ —,'6« S '(t) —T'(t)i S,(t'))) -Z, Q(i —g){2b ((S'(t) [T,.'(t)T~(t) —T', (t)Tg(t)] IS, (t')))

+a ((T '(t)[s'(t)s&(t) —S &(t)s~(t)]i S, (t'))) +ab&&[s~(t)T, (t) —S~(t)T&'(t)]T~(t)i S,(t')))

+2ab«S'(t)(S,'(t)T'(t) —S;(t)T (t))l S, (t')) &},

i —
(( sg (t) T', (t)

I
s, (t') ))

= 25(t t') 5, ,—&S,'T',
&
--,' ~

&& S,'(t) —T,'(t)
I
S,(t'))) -Z, 8 (i -g)(2a'&& T,'(t) [S,'(t) S',(t) —S*,(t) S;(t)] I S,(t')))

(4.4)

+ b ( S(t) [T'(t) T, (t) —T&(t) T (t)] I S,(t ) )) + ab « [S,(t) T,'(t) —S&(t) T (t)] S~(t)
I
S,(t') ))

+ 2ab &( Tg(t) [Sg(t) T)(t) —Sg(t) T)(t)]
I

S-,(t') » }. (4. 5)

Furthermore, the other higher-order Green's functions on the right-hand side of Eqs. (4. 4) and (4. 5) can
also be decoupled in this approximation with the consideration on the symmetry properties of the original
Hamiltonian. We then have

«s,'(t) T;(t) si(t)
I
s (t )))-0, (& S'(t) T'(t) T«t)

I
s «) »-0

«s (t) T',(t) si(t) I
s (t') »- &s-T'& «s~(t)I si(t') &&, &&s;(t) T,'(t) Ti(t)

I
si(t'))) -{s T'&

&& Tl(t)
I s, (t'))&,

«s (t) T'(t)s'(t)is, (t ))) (s'T') (&s'(t) Is, (t ))), ((s (t) T'(t) T'(t)is, (t )))-&s T')((T'(t) s, (t ))),

(& s,'(t) T',(t) s;(t)
i
s, (t') »- &s') «s', (t) T',(t)

i s, (t') &), « s', (t) T,'(t) T', (t)
i
s-, (t') »- &T'& «s', (t) T,'(t) I

s-,(t') » .

(4. 6)

By introducing the parameters M = a & S,) + b & T,) and J(0)= g g(i —g), and using Eq. (4. 6), Eqs. (4. 2) -(4. 5)
can be written

s-, (t') )) = 26(t t') 5, , &s')

+ & ((S~(t) T~(t) —S'(t) T (t)
I

S
&
(t ) )) —2a & S,) Z& g (i —g) &&

a S
& (t) + b T &(t) I S,(t ) )) + 2aM J(0) (( S'(t)

I
S&(t ) )),

(4. V)

—S (t) T',(t)
I S& (t ) )) —2 b & T,)Z, g (i —g) (& a S'(t) + b T;(t)

I
S,(t ) )) + 2 b J(0)M &{T'(t)

I S,(t ) )), (4. 6)

i —„((s,'(t) T'(t)
I
s, (t ) )) = —6(t —t') 5,&s T')+ ,'b, «s'(t) —T'(t)

I s, (t')))—
+ (a&S T') —2b &S*T'))Z&g(i —g) «aS', (t)+ b T&(t) IS&(t )))+2bM J(0) «S'(t) T~(t)i S (t ))), (4. 9)

i —
„,&(s,'(t) T,'(t) is;(t'))) =26(t t') 5„,&s'T'& --,'~ &—&s'(t) —T,'(t)i s-, (t')))

+(b&S'T ) —2a&S'T'&)Z&g(i -g) (&aS;(t)+ bT,'(t)i S (t )))+2aM J(0) «S~(t) T'(t)i S (t ))) . (4. 10)
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Again, because of translational invariance, we
can Fourier transform our Green's functions wi'. h

respect to the reciprocal lattice, e. g. ,

0.25-

0.20-

O.IS-

O.IO-

n 0.05-

~-0.05
-O.IO

-O.I5
-0.20
-0.25

2 l.6 20 24 28

where the summation over jg is to be summed over
all wave vectors within the first Brillouin zone and
N is the total number of spins in the lattice. For
convenience, we label the Fourier transform of
the above four Green's functions as follows:

G»
' (E) is the Fourier transform of ((S'i St»s,

G» '(E) is the Fourier transform of ((T'is&))s,

(4. i2)
G»'»& (E) is the Fourier transform of ((S' T'i St»s,

G,'»' (E) is the Fourier transform of &(S'T~i S, &&s .
FIG. 3. 7 =k&T/D. Temperature dependence of the

correlation functions &S' T ) and &9'T»& corresponding
to case (a) in Fig. 2. (a) denotes the ferromagnetic state
and (b) denotes the paramagnetic state.

After doubly Fourier transforming Eqs. (4. V)—
(4. 10), we finally come to the following set of
equations:

(E —2a[MJ'(0) —a(S, ) j(k)]) G» '(E)+2ab J'(k) (S,) G» '(E) —n G»a'(E)+n G'»'(E) = —(S,),
2ab(T ) J(k) G» &(E)+/E —2b[MJ(0) —b&T, ) J(k)]] G» '(E)+ r»G&~&(E) —&G»' '(E)=0,

(4. ia)
—[» 6+ a J(k) (a&S T') —2b(s' T'))] G» '(E)+[» & —bJ(k) (a(S T') —2b(S'T'))] G» '(E) —[E —2bMJ(0)] G„' '(E)

=-(I/»)&S T')

[» s —aJ(k) (b &S'T ) —2a(S'T'))] G»'&'(E) —[—,
' &+ bJ(k) (b &S' T ) —2a(S'T'))]G„' '(E) + [E —2aMJ(0)] G» '(E)

= (I/&& ) &
S' T'),

where

J(k) =Z e(g —I)e""" (4. 14)

The Green's functions considered above will give
the following correlation functions:

«s, is-, ))i, , -&s-s'&=-,'-(s &,

&&S;T,iS-, »i, , -(S S'T &= ,'&S Tg--(4. iS)

«s;T;is-, » l, , -(s s'T )= —'(T, ) —&s'T ) .
Note that the third line of the above equations dif-
fers from the second only by a factor of —,'. This
originates from the fact that we have used spin- —,

'

operators so that the identity S S'= —,
' S holds.

The above set of Green's functions do not pro-
vide the correlation (S' T ) which does show up in
the fourth equation of Eq. (4. 13). In order to com-
plete this information, we consider another set of
Green's functions. They are labeled as

K»"&(E) is the Fourier transform of ((T~i Tt&&s,

ff»ts&(E) is the Fourier transform of «S~i Tj&&s,

(4. 16)
ff»'3&(E) is the Fourier transform of «S»T»i Tt»s,
ff„'»&(E) is the Fourier transform of «S~T»i Tt&&,

and their corresponding equations of motion after
using the same decoupling scheme as above and
doubly Fourier transforming are
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(E —2b[MJ(0) —b&T»& J(k)]}H» (E)+2ab(T»& J(k)H„' '(E)+AH» (E) —r»H» ~(E)=—(T,),

2ab (S,) J(k) H» '(E)+ (E —2a[MJ'(0) —a & S,) J(k)])H» '(E) —r» H»@'+ r»H» '(E) = 0,
(4. 1V)

[-,' 4 —bJ(k) (a&S T') —2b(S'T*))]H» '(E) —[-,' b + aJ(k) (a&S T') —2b(S' T'))] H,' '(E) + [E —2bJ(0) M] H» '(E)

= (1/w) (S*T'),

—[—,
' r»+ bJ(k) (b&S' T ) —2a&S*T'))]H»"'(E)+ [—,

' 6 —aJ(k) (b(S' T ) —2a&S'T'))] H» '(E) + [E —2aJ(0) M] H» '(E)

=-(1/2.)&S'T &
~

Hence the Green's functions introduced in Eq.
(4. 16) will give the following thermodynamic cor-
relation functions:

«T»l Tt» lr i &T-T'&= —&T.&

«s;IT ))I,— -&T s')

«T:S:IT ))I.= -&T T'S'&=-,'&S'&--&S'T'&,

(( S,' T» I
T, )) I,.i

- ( T S' T') = -'
&
S' T ) ~ (4. 18)

Each individual Green's function is then obtained

by solving these two sets of linear equations (4. 13)
and (4. 1V). The transverse excitation spectrum
is then determined by the vanishing of the deter-
minants of the coefficients in these two sets of
equations. One can easily show that both deter-
minants are equal to

E -2a[MJ(0) —a(S.) J(k)]

2ab(T, ) J(k)

--,'~ —~(k) (a &S- T'& —2b &S'T'&)

—4& —aJ(k) (b&S'T ) —2a(S'T'))

2ab(S.) J(k)

E —2b [MJ(0) —b(T, ) J(k)]

—,'~ —bJ(k) (a&S T') —2b(S'T'))
—»6 —bJ(k) (b &

S' T ) —2a &
S' T')) E —2aMJ(0)

=E» —2E» [2(a+ b)MJ(0) —(a (S,)+ b &T,)) J(k)] +E (4J(0)M{(a +4ab+ b ) J(0)M

—[abM+ (a+b) (a (S,)+ b'&T, ))]J(k)] +&&-&+ (a —b) J(k) [b(S'T ) —a(S T'& —2(a —b) &S'T'&]))

—Ef8abJ (0)M [2(a+ b)MJ(0) —(a+ b) MJ(k) —(a (S,)+ b (T,)) J(k)] —&[2b(a+ b)MJ(0) —&M(a+ b) J(k)

+2(a —b) J(0) J(k)M(a (S T') —b &S'T &)])+J(0)M [J(0) —J(k)][16a b J (0)M —& (a+b) ] . (4. 19)

This equation is symmetric with respect to a —5
and S—I', as it should be since the original Ham-
iltonian does have this property.

B. Two Limiting Examples

To illustrate the generality of our model, we
reproduce the results of two examples which have

been considered previously.

l. System of Pure Singlet-Triplet Crysta/ Field States

The properties of this system have already been
investigated by Pink. By just putting a= 5=1 in

our model, we are then considering the same prob-
lem as Pink. Equation (4. 19), which determines
the excitation spectrum, for example, becomes

E —2ME [4J(0) -J(k)]+E (4J(0) M [6J(0) —3J(k)] —a ]. —2ME(4J (0) M [4J(0) —3J(k)] —b, [2J(0) —J(k)]]

+ 4J(0)M [J(0) —J(k)] [4J (0)M —& ] = 0 .

It has the following four real roots:

2M [J(0) —J(k)], 2MJ(0),
Z+2J(0)M, —S+ 2J(0)M .

They are exactly the same as obtained by Pink.
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because of hyperfine interaction, a ferromagnet
in which the magnetic ions also carry a nuclear
moment has two spin-wave branches at sufficiently
low temperatures. The upper branch relates es-
sentially to the electronic system and deviates
slightly from the usual electronic spin-wave spec-
trum while the lower branch refers essentially to
the nuclear system but deviates to a relatively
greater extent from the usual NMR frequency. This
effect can easily be demonstrated in our model by
putting either a = 1, b = 0 or a = 0, b = 1. We take
the first case, so that the Hamiltonian now takes
the form

x= ~Q s,. V;-Z 8(f-q)i, . L, ,

FIG. 4. Temperature dependence of the correlation
functions &S'T ) and &S'T') corresponding to case (b) in
Fig. 2. (a) and (b) denote the ferromagnetic and para-
magnetic states, respectively.

This is to be expected since we have used the same
decoupling scheme. Other physical properties can
hence be reproduced according to the Green's-
function formalism. However, one can see that
this system is not of induced-Inoment nature from
Eq. (2. 3) in the molecular-field picture since it
contains no contribution from the off-diagonal ma-
trix elements.

2. Simultaneous Excitation ofNuclear
and Eleetronie Spin Waves

It has been shown by de Gennes et al. that

where 6 now represents the electron-nucleus hy-
perfine coupling, S refers to the electronic spin,
and T the nuclear spin. If an external magnetic
field 0 is applied in the z-direction, we have to
add the corresponding electronic and nuclear Zee-
man energies, namely,

+= ~& s, T, —Ze(f-~)s, s,

-y.@f1&S,'-y„ke Z T,' .

Here y, and y„are the electronic and nuclear mag-
netogyric ratios, respectively.

If we now puta=1 and b=0 in Eq. (4. 19), the
equation that determines the excitation spectra
becomes

E - 2 (S, )E [2J(0) —J(k) ]+E {4J(0) (S ) [J'(0) —J(k)] —6 [4+J(k) ((S T'&+ 2&S~T'&)]].

+ A&S,)E[26J(0) —hZ(k)+ 2 J(0)J(k) (S T')] —dPJ(0) (S,) [J(0)—J(k)] = 0.

This equation corresponds neither to the results
30

of de Gennes et al. nor of ¹inio and Keffer ' in
that we have here four branches of excitation
spectra and the spectra contain the correlation
functions between the electronic and nuclear spins,
e. g. , (S T"& and (S'T'). It should be the correct
expression to determine the excitation spectrum
if 4 is comparable with respect to the exchange
interaction Z's. However, their results can be
reproduced by using a different decoupling scheme,
if we do not stress the coupling between 8 and T
spins. For this purpose, we consider the following
Green's functions:

«s, (f) Is-, (f )», «T'(f) Is;(f )»,
since

SgTg - (S,) Tg, S~T~ - &T,&S~,

while the random-phase approximation is still
used on the 8 spins on different sites. After doubly
Fourier transforming the equations of motion, we
have

EGI,"(E)= I/s (S.)+ ~ &S.) GI"(E) —& &T.& GI"(E)

[S,', X]= ~(S,'T,' -S', T,')
—2+(8 (i -g) (Sg S~ —S~S;)+y, HS~ .

As 6, the hyperfine interaction, is usually much
smaller than the exchange interaction t, we de-
couple the operators 8,'T,' and S~ T,' in the following
way:
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The roots are

with

&u, = y, H+ 2 (S,) [J(0)—J(k)] —4(T,),
~„= y„H —6 &S,& .

These are just the results obtained by de Gennes
et aE. 30
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FIG. 5. Temperature dependence of the correlation
functions (S'T ) and &S'T~) corresponding to case (c)
in Fig. 2. (a3I and 5) denote the ferromagnetic and para-
magnetic states, respectively.

or
+ 2 (S,) [J(0)—J(k)]G,"+ y, H GI,"(E)

{E y.H -2&S.)-[J(o)-J(k)]+ & &T.&] G'"(E&

—t (S.)Ga"(E)=1&s&S.&

where G~'(E) is the energy-momentum Fourier
transform of the Green's function (&S~(t) IS,(t'))).

G„"'(E) is the energy-momentum Fourier trans-
form of the Green's function (&T~(t) ISq(t')&&. Simi-
lar calculations on «T~(t) I S,(t')&& give the equation

—6 &T,) G,"'(E)+ [E —y„H+ b (S,)]G„'(E) = 0.

The equation which determines the excitation
spectra of the system is then given by

tE —y,H —2 (S,) [J(0)—J(k)]+ &(T,))

x(E —y„H+ 6(S,)) —6 (S,)(T,)= 0.

C. Zero-Temperature Excitation Spectra in MFA

The Green's-function formalism tells us how to
obtain the collective excitation dispersion relations
of those appropriate modes as well as the interest-
ing thermodynamic correlation functions. A

glance at Eq. (4. 19) shows that, even in this sim-
plest decoupling scheme, the equation itself in-
volves the correlations (S'T ), (S T'), (S'T'), . . . ,
etc. Yet these correlations cannot be calculated
unless the excitation spectra were determined in the
first place, according to the formalism. Hence,
as a first approximation, we use the results for
these correlations from molecular-f ield calculations
to determine the excitation spectra and from which
to obtain the correlations according to the formal-
ism.

As discussed in Sec. IVB, the ground state of
the present model in the molecular-field approxi-
mation will be determined by the appropriate re-
lations between the parameters a, b, J(0), and b.
We work out three different cases as classified in
Sec. GI.

1. Ferromagnetic and Fully Magnetized Ground State

At T = 0 'K, the correlations have the values

&S,)= (T,)= —,', &S'T)= &S T')=0, &S'T')= -,
' .

(4. 20)
The right-hand side of Eq. (4. 19) now assumes the
following form:

E —2E [(a+b) J(0) ——,'(a +b )J(k)]+E [(a+b) (a +4ab+b )J (0) —(a+b) (a +ab+b )J(0)J'(k) —LP

—s ~(a —b) J(k)] —E(2ab(a+b) J (0) [(a+b) J(0) —(a +ah+ b ) J(k)] —LP (a+b) [J(0)—s J(k)])

+ J(0) [J(0)-J(k)](a+b) [a b J (0) —4 n, ] .

For more convenience in computation, we intro-
duce the parameters n, P, and y(k):

The above secular equation can be solved exactly
and has the following four roots:

(a+b) J(0)= o.'a,

(a —b) J(0)= P&,

J(k)lJ(0) = y(k)

(4. 21)

Rq(k)= —,'(J(0) (a+b) —d —(a +b ) J(k)

+ [ch,'+ J (0) (a —b ) —4ab 6J(k)

—2 J(0)J(k) (a —b ) + (a + b ) J (k)] t ),
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FIG. 6. Excitation spectra at 0 'K in RPA for case (a) in
Fig. 2.

Ra(k) = -'{&+J(0) (&+ b)'- [&'+J'(o) (&'- b')']"'l,

[LF+J (0) (a —b ) —4ab aJ(k)

—2J(0)J(k) (a —b ) + (a + b ) J' (k)] ~ } .

R3(k)= —'{6+J(0) (a+b) + [6 +J (0) (a —b ) ]
(4. 22)

R, (k) = —,'{J(0)(a+ b)' —& —(~'+ b') J(k)

Hence, the transitions can then be identified as de-
noted by arrows shown in Fig. 7. For R, (k) and

R~(k), we remember that for crystals of cubic
symmetry the following relation always holds:
namely, near @=0,

J(k)= J'(0) (1 —gk c ~
)

g depends on the geometry of the crystal. Substitut-
ing this expansion into the expressions of R, (k)
and R4(k), up to orders of k, we have

R g (k)~ 0 —,
' (a+ b ) 7l k c

R4(k) ~.0- 2ab J'(0) —6+ ~ (a —b) q J(0)k c

We would then identify R, (k) as the spin-wave ex-
citation and R4(k) as spin excitons. "4

The reason that there are two spectra which
should be independent of 0 is the following. Since
we have used the molecular-field results, it is
easy to see that the original four equations are
redundant, e. g. , the third equation of (4. 13) now

assumes the same form as the second and the fourth is
the same form as the first. Hence, we have only
two independent Green's functions.

We have justified the following conclusion: If the
system under consideration has a fully magnetized
ground state, we then have four branches of exci-
tation spectra; two [R,(k) and R2] are due to the
spin-flip origin and the other two [R~ and R4(k)] are
of excitonic origin. Yet only R, (k) and R4(k) do
have a propagating nature. The other two branches
provide only the molecular-field background and
do not contribute to the physical properties (such
as ma. gnetization and correlation functions) as is
shown in Secs. IV D and IV E.

Figure 6 shows their k dependence along the x axis
for a simple-cubic nearest-neighbor interaction
and a= 6, P=0. 5.

It should be noted that two of the excitation spec-
tra are independent of the wave vector. One would
like to undexstand the reason behind as well as to
which transitions these excitations can be attribut-
ed. This can be achieved by looking back at the
molecular-field picture. By assuming full mag-
netization M= ~(a b)+at T= 0 K, the energy levels
Eq. (3. 6) now assume the following values:

Z. Ferromagnetic but not Fully Magnetized Ground State

The correlation functions for this case in the
molecular-f ield picture are

M [J (0)(a —b) —LF] i

( b) 2J(Q)( b)

e, = —,'{~—[~'+ (a'- b')' J'(0)]"']

= -'{& [&'+ ( '-b')'J'(0)]'"I,

&3 = & —
g (a + b ) J(0),

~4= 6+ ~(a+b) J(0) .

Ne can easily see that

uT

~ ~

I

FIG. 7. Energy levels which show the corresponding
transition for a fully magnetized molecular-field ground
state.
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(S'T )= (S T") = —6/2 J(0) (a —b)2,
(S'T') = —4 . (4. 23)

l

The right-hand side of the quartic equation (4. 19}
now becomes

E —2(a + b ) M [2J(0) —j'(k)]E + E [4J (0)M (a2+ 4 ab + b 2) —4M 2 J(0)J(k) (a2+ 3ab + b 2)

—h2+ [h2/2J(0}]j(k}+—, h(a -b)2J(k)} —E[16ab(a+b)j (0)M [J(0) —J(k)] —2h (a+ b)M[J(0) —J(k)]j

+ J(0)M [J(0)—J'(k)][16a b J (0)M b—(a+b)2],

with M given by [J (0) (a —b) —4 ]'/ /2 J(0) (a —b) A.gain, it can be solved exactly:

1 g2 1/2 J(k) )R, (k) = — (a+b) j' (0) (a —b) —,1—
a —b

/

Jk

1 1/2
R2(k)= — (a+b) J (0) (a —b) —

2 —J(0}(a—b) + &
2 (a —b)

1 g2 1/2
R2(k) = — (a+ b) J (0) (a —b) —

2 + J(0) (a —b)2 —a
2 (a —b)2

(4. 24)

1 J(k)
R4(k)= 2

(a+b) J (0) (a —b)—

[&+J(0)(a-b)']'- j'(o)( '-b ) -I, ~

&'
~ ~

Their k dependences are shown in Fig. 8, again
for a simple cubic with nearest-neighbor interac-
tion and a= 2, P = l. 6.

To see what transitions these excitations corre-
spond to, we again examine the energy levels in
the molecular-field picture. They are now given
by

~1 = [~—j(o)(a —b) ]

e2 = —,
' [&+J(0) (a —b ) ],

c2 — 6 ——(a 2b) +[J (0) (a —b) —6 /(a —b) ]

e4 = S+ —,
' (a+b) [J (0) (a —b) —a /(a —b) ]'

)}E(k„)in units of6
l.5-

I.O-

One can easily see that
k~c

~2 —~3 = ~3. 64 —6p= +2 .

The corresponding transitions are again denoted
by arrows in Fig. 9. Hence, both 8& and R3 are of
spin-flip origin and there is no excitonic transition
in this category. Furthermore, one can show that
both R, (k) and R4(k) are linearly proportional to k
in the long-wavelength limit. This can be seen
by expanding R1(k) and R4(k) near k-0. We have

-0.5

FIG. 8. Excitation spectra at 0 K in H, PA for case (b) in
Fig. 2.
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2 b2 1/2" [~'(0)(a-b)'-~']"'ck'c'+ ~& lkl 2' '
0 n'+2«(0)(~-b)'-4 b(~-b)'~'(0)

k/-0

2 2 b2 1/2
+41k c [J'(0)(a —b) —& ] — —

2 & +2&J'(0)(a —b) —4ab(a —b) & (0) +O(k4c4)a —b (a -b)'

One finds that in the long-wavelength limit, the
linear dependence in k will be dominant for these
two branches of excitations. They look more or
less like antiferromagnetic magnons, a result
which is rather peculiar in itself but certainly
consistent with the molecular-field picture since
the S and T spins are now antiparallel on each
site.

3. Nonmagnetic Ground State

The last case to be discussed is that when there
is no magnetic ordering even at zero temperature.
The molecular-field values of the correlation
functions are

(s, ) =(r, ) =bf = o,
(S'r )=(S r')=-', , (S*r')=--,',

and the quartic equation now becomes

E'(~'-[~'-(a —b)'«(k)])= o.

The roots are 0, 0, t[& —&(a —b) J(k)]'~, which
are exactly the same as obtained by Wang and
Cooper. They show that, however, instead of
having spin deviations, excitations from the crys-
tal field ground state to the excited state are pass-
ing from one site to another. The spectra have
been plotted in Fig. 10. We notice that the energy
spectrum shows a gap, and this gap decreases as
P increases toward 1 and becomes imaginary for
P & 1, indicating that the paramagnetic ground
state is not stable for p= 1. The critical ratio is
the same as predicted in the molecular-field ap-
proximation.

D. Spontaneous IVlagnetization at T40'K

The Green's-function formalism allows us to

determine the spontaneous magnetization at any
temperature. As pointed out in Sec. IVC, this
will always involve a self -consistent calculation
because of the fact that the excitation spectra de-
pend on the correlation functions, which is a con-
sequence of the random-phase decoupling. In this
subsection, we give some computations on physical
magnetization as a function of temperature by using
the molecular-field values as a first approximation.
We also limit the regions of temperature of inter-
est to low temperature and temperatures just be-
low the Curie temperatures, since it is in these
two regions that we can make series expansions.

We first look at the case where the molecular-
field ground state is fully magnetized. From Eqs.
(4. 15) and (4. 18), we know that their sum deter-
mines the magnetization. Again, by using the
molecular-field values as a first approximation,
we have

where

&4=~
(k) ~ (k)

[Rg(k)+ y(l —u+ p)+4 (u —p)y(k)],
1 4

4=+ (k) (k)
[~4(k)+ 2 (1 —&+0)+ 4 (~ —p)y(k)].

1 4

Hence

—'(a + b) —(a (S,) + b (T, ))

a+5 ~ B1 B4
1 ~)/~BT 1 eZ4& ) /kBT 1

~

Substituting the expressions of R, (k) and R4(k) into
the above equation and rearranging it, we have,
in the limit of large N,

(Z, ) =a(S,) +b(r, )

(a+b)
l l

1 1= //(a+k) —
Z(k~)//

— dk,
/

dk,
/

dk, „,/ //
k 8 // // k)ff ff ~I

I

+ P[1 -y(k)] [1+nP —y(k)(o. —P+ 2 nP)+-,' (o + p)'y'(k)] '~0 „&»&» — „&»&, r — . (4. 25)

The first term in the integrand comes from the
spin-wave and excitonic excitations. The second
term comes from the interference or interaction

of these two excitations since it is proportional to
(a —b), which is the off-diagonal matrix element
representing the interference between the S and T
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e, = —g P[1 —y(k)] [1+o.P —(n —P+ 2o.'P)y(k)
1

FIG. 9. Energy levels which show the corresponding
transition for a nonsaturated molecular-field ground
state.

spins in the molecular-field picture. We see
immediately that this interacting term will con-
tribute rather significantly to the magnetization
both at low temperatures and high temperatures.

The results computed for a simple-cubic near-
est-neighbor interaction are shown in Fig. 11. A
comparison with the molecular-field calculations
shows that at low temperatures it is of T' ~ depen-
dence, i.e. , typical spin-wave nature. At high
temperatures, e.g. , near the Curie temperature,
it shows a linear dependence on temperature,
very different from that of a pure Heisenberg
ferromagnet. We can see these two features by
making appropriate series expansions.

At first, we write Eq. (4. 25) in the following
form:

(J'g)/ g (a+5)= 1 —(eg+C 2+ eg —@4)y

where

+ T(o'+ &) y (")] z4(a&/IBr 1
~

The summation over k is limited to the first
Brillouin zone, but at low temperatures we may
replace it by an integral over the whole k space.
For example, we can replace C &

in the following
fol m:

hfdf

Cq= 3 d( sin6d6 k dk Z e '"~'~' "s
(27/)

Since only small values of k will appreciably con-
tribute to C „we expand R, (k) in powers of k.
Note also for a simple-cubic and nearest-neighbor
interaction, y(k) is given by

y(k) =-,'(cosk„c+ cosk,c+ cosk,c) .
Hence, near k- 0, we have

ft, (k) - ~+[1-y(k)]

4

3x 4l

1
1 ~ + z~&)/%sr

1
2 ~ ~ R4(R) /ke2'

&J~&=0&$ &+b(7 )
ii

$

Cg= —& 0[1-y(k)][1+~P -(o' P+ 2~P)y—(k)
1

N ~

O.S—

„E(k„)/~
I,O

-0
0.6—

0,8
0.4-

0.6

0.4

0.2 "

0.5 I.O l.5

keT

I.S

0 2'/p

kxC
I

7r

FIG. 10. Excitation spectra at 0 eK in RPA for a
nonmagnetic ground state.

FIG. 11. Temperature dependence of spontaneous mag-
netization in units of ~(a+ b) for a simple-cubic nearest-
neighbor interaction and parameters corresponding to
case (a) in Fig. 2. (a) and (b) are results from MFA and
RPA, respectively.
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i3k, T '/' 13k.T
C}y =gp — +gg

B

=&(u P-2-)

4

~ 36 (Tk'c' —
(

(k,'+3„'+3,')+ ),
where

~2= m P'&(~~),

-l(e Q-2)/2&Bz' Q 3 kB T 3 kB T3/2 5/2

42 —e (}O p~ +(77
p~

and f(n) is the Riemann f function.
Similarly,

R4(k)-~(u —P —2)+ —', P[1 —y(k)]

+02 — + ~ ~ ~

For 4 3 and C 4, we note that near k - 0

so

[1-~(k)][1+ P-( -P+2 Ph(k) -'( +P)' '(k)]'"- 2- u+P (2 —u+ P)2

7 2e
C45= »2 dg sin&de
7T/ p ~}p

kpdk 2[1-r(k)] 2(u -P)[1-r(k)]' ~ 77}7(Q)/2 T

2 —u+P (2-u+P) 2

Similarly,

p&irf( —,') 12k}}T il 537 77 p(2+ u -p) 12k T7}

4x 477 (2 —u+ P) u& & 38477 (2- u+ P) u/5,

(277)5 l, 2 —u+ p (2- u+ p)'

5 2)/22 T')g P~TT 1 ( 2 ) 12k}}T 5&71p(2+ u p) 12k }T7(g)
4x477 (2 —u+ p) ph 38477 (2 —u+ p)2 pb,

One can easily see that at low temperatures, as
long as u & p+2, 4, is the dominating term, i. ek T

a spin-wave T' contribution. The physical rea-
son behind this criterion can be traced back again
to the molecular-field picture. Namely, if we
look at the level scheme, we find that the magni-
tude of e3 and e& determines the nature of the
ground state, a ferromagnetic, nonmagnetic, or
degenerate magnetic according to Eg & E3 6f ~ 63,
or E, = E„respectively. In terms of the param-
eters u and P, it is just the condition u & P+ 2,
u & P+ 2, and u = P+ 2. Hence, we exyect the
whole argument will break down if we start from
a nonmagnetic or degenerate ground state.

In total, the temperature dependence of sponta-
neous magnetization at low temperatures can be
written

interactions. The exponential terms are due, in
the molecular-field picture, to the excitonic tran-
sitions.

%e next come to the region of temperatures just
below the Curie temperature, where we can make
high-temperature expansions. C & can be written
in the form

1+ 2C, = (1/N)QRcoth[R}(k)/2k}}T ].
The following expression is also used:

~ ZZ3u5
cothZ = —+—+—+

g 3 45 945

Hence,

1 2k}}T R}(k) R7(k)
R, R|(k) kk T 360(k T)' ) '

0 1 [(g ~ -(((3-(}- ) /2}37} )(k) Tp/2(( +k) 0+ 7

+ (@ + R -T. ((3-(}+2)/227}T]73)T5/2 ]'Jt

Similarly,

1 2k}}T R4(k) R4(k)
R, Rg(k) 6k T 360(k T) )

where Ap A| &p &] are only numerical constants.
The dependence of T, T5, T~ 2, . . . are typical
contributions from spin waves and are due to the
discrete nature of the crystal, not of spin-wave

so that

2+ 2(C, + C'2)= —Z 2k}}T —+—+
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360(ke T)

To calculate the above sum, we note that the fol-
lowing results for simple-cubic crystals have
been calculated":

E(- 1)= l. 5638, E(1)= 1, E(2) = $,

F(3)= 1.5, etc. ,

with E(n) defined by

E( ) = (1/&)& (1-~(k)P(0))".
Substituting the explicit expressions of 8& and 84
and using the above numerical results, we find

2+ 2(C, + C,) = —(k, T) +
u(u —P —2) 66

(5u +16u P —14uP+3uP —2P —12u +24u —16)+ ~ ~ ~ .(k, T)' 2 2 2

16x 360x &'

The high-temperature expansions of C3 and C 4 can be found similarly:

P 2(k T) 1' 77 „u(u - P - 2)~
'

240k, T ~

, (-', (n —p —2)'[( —y(k)]+ -', (a+ 2(()(a —2 —)()[( —y(k)]'+-, (a ~ l() [( -v(()]')+ ~

)1440(k T)

Q3

=2(-, '
2)+(2~ ~ -~20 ~)

ll(~-)( —2)'+l(~+&I()(~-2-P)~B ~ E(~+0)']+ )
Hence, one has

(Jg) 2kBT (F( 1) -1

2(a+5) 6 [, u u —p -2 12keT

Q3

T, [15u'+ 70u'P —80uP+ 22uP' -10P —36u'+ 72u+ 24P+ P' —48]+ ~ ~ ~ .

Since the coefficient of the last term in the above
equation is rather small, we can neglect the terms
from this on, and to determine the Curie tempera-
ture we just set(J, )=0,

u —2P 1 5
+ + ~ ~ ~

where 5 is very small. %'e also use the expansion

2= 27C
E(-1) 1 1

+ + (u —2 —P),Q —2 12vc

where rc=kaTc/&. As a check, we calculate the
transition temperature for the case u = 6, p= 0. 5.
Now it becomes

c -&V 7c y Vc

Hence

0. 536 vc —ac+ 3.5/24= 0 .

One solution is 7& =1.705, which is in excellent
agreement with that which has been obtained in
Fig. 11.

To find the temperature dependence of the spon-
taneous magnetization near the Curie point, we
set

~=~c -7 or 7=7c -&

(J,) E(-1) 1
(&c —&~)

2 (a+&) u u —P-2

(Z, ) 2F(-1) 2 u - P -2
2 (a+ k) u u —p —2 127~~

The above expression shows that at temperatures
near the Curie point, the magnetization has a
linear dependence on temperature rather than the
usual (vc -~)' dependence for a pure Heisenberg
ferromagnet. One can attribute the reason for
this to the fact that we have used the molecular-field
values in determining the excitation spectra, which
no longer depends on the magnetization, so that we
have not iterated the results back to correct the ex-
citation spectra. In fact, the deficiency that M,
(S'T ), and (8'T') show in Figs. 11, 13, and 14 at
high temperatures has the same cause.
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Ok6

so that

—,'(a +b) —(a(S,)+b(T,))

0.4
0.5
Ok2

O. I

I

0.2 0.4

FIG. 12. Temperature dependence of spontaneous
magnetization in units of 2 (a+5) in BPA for a simple-
cubic nearest-neighbor interaction and parameters cor-
responding to case (b) in Fig. 2.

We next consider the case where the ground
state is not fully magnetized. Again we find

aG)()E) + bH p (E):
( )(

(1) (g) M E —X(k)

where M is given by Eq. (3.8) and

a+ b 2ab
M a -b 4J'(0)(a -b)' 4

Writing in partial fractions, we then have

2M' 1 R~ —X

88$/kg f + eR4/4gT $
p

4M
(J,)=-,'(a+b) 1- (--

]. R A, -R4
R -R

a & 4

The results after numerical integration for a sim-
ple-cubic nearest-neighbor interaction and G. = 2,

P = 1.5 are shown in Fig. 12. Similar analysis can
be carried out without difficulty.

The last case where we have a nonmagnetic .

ground state has been discussed elsewhere; we
will not repeat their results here.

E. Various Thermodynamic Correlation Functions

We again use the molecular-field values as a
first approximation to calculate the correlation
functions according to the Green's functions form-
alism. The first case to be worked out is the one
where we have a ferromagnetic fully magnetized
ground state in the MFA.

(a). (S'T-) and(S T'). Since (S T') and (S'T ) are
determined by GP (E) and HP'(E), respectively,
we solve these two Green's functions from Eqs.
(4. 13) and (4. 1V). They are given by

GP'(E) = (1/b')((1/v)(S, ) (2ab (Tgj(k) [E —2a J(0)M][E —2b J(0)M]

+ rk[E —2b J(0)M][-,' & —aJ(k)(b(S'T ) —2a(S'T'))]+ rk[E —2aJ(0)M][-,'4 +aJ(k)(a(S T') —2b(S'T'))]J

—(n/v)(E —2aM [J(0) —J (k) ]]((S'T') [E —2bJ(0)M] + ~ (S T') [E —2a J'(0)M ])),

H„' '(E) = (1/b' )((1/v)(T, )[2ab(S,) J(k) [E —2aJ'(0)M][E —2b J'(0)M]

+ &[E —2aJ(0)M j[—,
' b —bJ(k)(a(S T') —2b(S'T p)]+ &[E —2bJ(0)M][—,'&+ bJ(k)(b(S'T ) —2a(S'T))])

—(b /n)(E —2bM [J(0) —J(k') ]){(S'T')[E —2aJ(0)M ] + 2 (S'T ) [E —2b J(0)M ]$)

where &' is the quartic equation given by (4. 19).
One finds that G,' '(E) is not equal to H,' '(E) and
hence (S T') 0 (S'T ). This is reasonable since S
and T do not have the same weight in the original
Hamiltonian. Af ter substituting the corresponding
molecular-field values into the above expressions,
we find

G "'(E)=H"'(E)

~ 1--,'(o —P)y(k) 1 1
kw R(k) B4(k) Z R(k) Z R4(k))

The above equation shows that (S T') = (S T ), a re-
sult consistent with the molecular-field picture.
The correlations are then given by

SkT 1 ~z( P)&(k)
2N , R, ('k) R,(k-)

1 4(~ P)~(k)-—
4v [E—Rq(k)][E —R4(k)]

j.
eBg(A )/ k~ T I ~R4(A )/ k~T
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(s+y-)
20xlO ~i,

l5xlO'

iOxlO'

5~IO~

.0

ent. The random-phase picture shows that corre-
lation between S and T spins first increases as
temperatures go up from zero, reaches a maxi-
mum, then indefinitely decreases linearly at high
temperatures after vanishing at the Curie point
without concaving back to horizontal axis as in the
molecular-field picture. This behavior can be ex-
plained by looking at Eq. (4. 26) which shows that
this correlation comes essentially from the differ-
ence between the contributions of the spin-wave
and excitonic excitations. Hence the compatibility
between these two excitations gives this manifesta-
tion. While the linear dependence on temperature
near the Curie point can still be seen in the follow-
ing way.

At high temperatures, the integrand can be writ-
ten

1 ——,'(a. —P )P(k) keT ke T

R~(k) —R4(k) Rg(k) R4(k)

-5xlo~

FLG. 13. Temperature dependence of correlation (S'T )
in BPA, using parameters of case (a) in Fig. 2.

In the limit of large N, the summation over k can
be replaced by the integral

(S T')=(S'T )

and hence

R k'R k
[

1
8~1~ ~~~B ~- ] e~4~~)~~8

(4. 26)
An example for a simple cubic with nearest-

neighbor interaction and & = 6, P = 0. 5 has been
computed by using computers and the result is
shown in Fig. 13. A comparison with the molec-
ular-field result (Fig. 3) shows that their behav-
iors as functions of temperatures are quite differ-

ar( ( &~
~-

)
We note also that the magnitude of this correlation
is of the order of 1/0 This gives a good justification
to the approximation which we used in the original
decoupling scheme.

(h) (S'T'). Equa, tions (4. 15) and (4. 18) tell us
that this correlation cannot be calculated unless
(S,) and (Tg are known. Hence we solve G„"'(E)
and HP'(E) first:

G» '(E) = (1/6') ((1/m) (S,)([E—2aj(0)M][E —2b j(0)M][E —2b j(0) +2baj(k)(T,)]

+ &[E —2aM J(0)][——,'&+ bj(k)(a(S'T ) —2b(S'T))] —r [E —2bM J(0)][—,
' 4+ bJ(k) (b(S T') —2a(S'T'))]]

—(&/m'){E —2bM J(0)[1 —r(k)]] (2 (S T )[E —2aJ(0)M]+ (S'T') [E —2bJ(0)M]]l,

H» '(E) = (1/6')((1/v)(T, ) f[E —2aj(0)M][E —2bj'(0)M][E —2a j(0)M +2a j(k)(Sg]

+ h[E —2bj(0)M][-,'r»+ aJ(k)(b(S' T)——2a( ' S'))T] —.4[E —2a j(0)M][-,' b, + aJ(k)(&(S T') —2b(S'T))]]

—(r»/v) (E —2aM j(0)[1—y(k)]H —,'(S'T )[E —2b J(0)M] + (S'T') [E —2aJ'(0)M ]]) .
After substituting the corresponding molecular-field values into the above expressions, they become

G (E) = (1/2mb')([E —2a j(0)M][E—2bj(0)M][E—2bJ(0)M+b j(k)] —2&[E —2b j(0)M]
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—b [—,'4+ baJ(k)][E —(a+b)J(0)M]],

HP'(E) = (1/2mb') f[E —2a J(0)M][E —2bJ(0)M][E —2aJ(0)M+a J(k)] ——,'~[E —2aJ(0)M]

—'[—,~+a J(k)][E —(a+b)J(0)M]).

They are not equal, and hence (S,)c(T,). But

g(g) g H(g) g
kw Z —R&(k) Z —R&(k))'

so that

1 & 1 1(&Z)+(Z))=Z'I » ~ »& )+ z&& ~» )}
or

Similarly, we have

(4) {3) 1 1 1
kw Z —R&)k) Z —R&(k))'

which leads to the following result:

R(&S&+ &T.&)
—2&S'T*&

1~ 1 1
2N

~ Rg(0)/kgT 1 e R4(a')/k g T 1

Combining with (4. 27), we get

1 1
(Z &=k kRE ~R&»» 7 )+~ 4»» &' ))

(4. 27)

1~ 1 1
&Sz)+&Tz) 1 g~ Rg(R)lasT 1+ B4{a)/R TN ~ e e 4

and in the limit of large N, it becomes

(S'T'&= —— (,~ dk„dk, dk,
2 2'I)4 22)„~z J

1 1
eRg(k)/4'gT j + R4(A)/kg T 1

~

A similar example as (S T') has been done by com-
puters and plotted in Fig. 14. A comparison of this
figure and Fig. 3 can also be made. One sees that
these two curves look similar at low temperature,
though the molecular-field approach has an expo-
nential dependence at low temperatures while the
random-phase one has a 1'3/~ dependence due to
spin-wave excitation in addition to the exponential
one which is due to the excitonic excitation. This
can be seen from the above equation by taking the
low-temperature limit. By taking the high-tem-
perature limit, the linear dependence will again
be seen.

We next consider the case where the ground state
is not fully magnetized.

(a} (S'T ) and (S T'). With the corresponding
molecular-field values at O'K, we have

(3) ~ 8abJ(k) p
( )= -(o)(. ) -(. )

0.25

0.20

O.I5

O.IO

&S*T*& 1 1
Z —R(k) Z —R(k))'

The correlation is then given by

(S T'&=(S'1 )

(1+ 1/P)[1 ——,'(& —P)(1 —1/P)r(k)]
(1/')[R (k) -R (k)]

0.05 1 1
4(& )l "3

-0.05

-O.IO-

-O.I5.

05 and in the limit of large N, we have

(S T') =(S'T )

r&

( )3 dk„dk, dk,
Q-e

-0.20-

-0.25-

(1+1/I') [1—-'( —0)(1 —1/P)r(k)]
(1/b)[Rg(k) -R4(k)]

FLG. 14. Temperature dependence of correlation (S~T~)
in RPA, using parameters of ase (a) in Fig. 2.

1 1
e Rg(A)/k gT 1 eR4LA)/%AT
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-0.5-
h -0$-

+ -05
"-02-

-O.I

0 Q2 0.4 0.6 0.8 I.O

Hence,

1 & (1.P) --.'( P)(1 —1/P')~(k)
(1/&) [R,(k) R4—(k) ]

1 1
eRg(k) /kgT 1 eR40. )/kg1'

Note also that

-0.25
n 020

-O.I5
V OIO

-0.05

0 02 0.4 0.6 0.8 I.O

(4) (3) 1 1 1
4m E —Ri(k) E —R4(k))

or

R (&Sd+ &T.)) —2& ~.T.)

1 1
Bg (|Il )/&8 T 1 &4(A )/0'g T

FIG. 15. Temperature dependence of &S'T-) and (gETE)
in RPA, using parameters of case (b) in Fig. 2.

The numerical integration has again been computed
by using computers and the result is shown in Fig.
15.

(b) &S'T'). By using the molecular-field values,
we have

G &1&(E &1& (1+p) (o+ p)(1 —1/p')1'(k)
(2~/~) [R,(k) —R,(k) ]

1 1
E —Ri(k) E —R4(k))

'

By combining with E&l. (4. 30), we then have

1 p (1+p) - E (o + p) (1 —1/p')r(k)
4 N

)& (1/&)[Rt(k) -R4(k)]

1
+4(& &/~g &

1 1 1
+R& z~n&t )"~ ~t&v ()

(4. 31)
and in the lim&it of large cV, the summation is re-
placed by integral over k,

1 1 " "
k

" „(1+P)——,'(o+ P)(1 —1/P')y(k) 1 I,

4 (km)' J " ' ()/k)(R (k) —R (k)) &""' —) "&""' —()

+
(2~)3

dk dk dk st && 1+ e&&4&

Numerical integrations have been done by computers
and the results are also shown in Fig. 15.

F. Temperature Dependence of Excitation Spectra

We have seen from E&l. (4. 19) that even in this
simple random-phase approximation, the equation
which determines the excitation spectra depends
on magnetization as well as on those correlation
functions. These quantities are all temperature
dependent. They can be determined self-consis-
tently through the Green's function method. We
have used the molecular-field values as a first
approximation to obtain these quantities according
to the formalism. Their values can again be
substituted into the equations as a second iteration.

This iteration process can be carried out to the
accuracy as desired. An example has been done
on the excitation spectra for a second iteration.
The results are shown in Fig. 16 for the param-
eters used in Fig. 6 and at a finite temperature of
kI, T= 0. 3 h. One can easily see that all four
branches are now depending on wave vector.

G. Antiferromagnetic Case

As most of the rare-earth compounds are either
antiferromagnetic or ferrimagnetic at low tem-
peratures, we now extend our previous calculations
to the antiferromagnetic case. We shall follow
rather closely the notations used by Lines. Early
experiments' revealed that with the exception of
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~IF k„) in units of ~
4.366

4.362

4360.

2.555-

2.5 I I
.

2.450,

2.0-

I.O.

invariant ferromagnetic sublattices. In the ab-
sence of external magnetic field, our model still
assumes the following Hamiltonian with simple
exchange of Heisenberg type:

X= s+S(.T, Z 8(s j)—(aS&+bT&)(aS, +bT, ) .

Here the summation Z «, & &
runs over all pairs of

spine in the lattice and A(i, j) is the exchange in-

tegral between spins at r, and rz.
Due to the presence of two sublattices, we have

considered the following eight Green's functions and

used the same decoupling schemes as in the ferro-
magnetic case. Because of translational invariance
within one sublattice and time invariance, the
Fourier transforms of these Green's functions can
also be defined.

Let G'„"(E)be the double Fourier transform of
the Green's function «S4(t) IS,(t')», wheng and l

are in the same sublattice. For abbreviation, we
denote the above definition by

~/5 2~/5 3~/5 4~/5
Iix &

7r

Gl" (E&, «S;(t) IS (t')»,

Similarly, we have

same.

FIG. 16. Excitation spectra for a simple-cubic near-
est-neighbor interaction along (100) direction in RPA at
finite temperature after first iteration (k&T/6=0. 3).

HoP and all nitrides, all rare-earth compounds
become antiferromagnetic at low temperatures.
The magnetic structures are identical for all these
compounds and correspond to Mno type, i. e. ,
there are ferromagnetic sheets perpendicular to
the cubic diagonal and the moment orientation in
adjacent sheets is antiparallel. Hence the spin
structure can be separated into two translationally

G(a&(E)

G(s)(E)

G(4&(E)

G'»" (E)

Gla)(E),

G&v&(E)

G(8) (E)

«s~(t) Is, (t'))&,

«T;(t) Is- (t')»,

«T', (E) IS (t')»,

«S*(t)T (t) IS (t')»,

«S;(t)T;(t) IS,(t )&),

«S,'(t)T'(t) IS,(t )»,

«S;(t)T,'(t) IS (t')»,

opposite

same

opposite

same

opposite

same

opposite .

After doubly Fourier transforming these equations
of motion, we have

(E+ 2aA&») G»" '(E)+ 2a[A&a& G„' '(E)+ A&s& G»
' (E)+A&4, G»4'(E)] —EG»&s)(E)+ EG»&~) (E) =—S,

—2aA&a& G„"'(E)+(E —2aA&») G»N'(E) —2a[A&4)G»&s&(E)+A&a& G&»4'(E)] —gG's)(E)+ gG&s)(E) = p

2 = [(&A(s& G»" (E)+ bA(a&G» '(E)] + (E+ 2b B(s&) G&s&(E)+26—A, , G«&(E)+ t& G&»(E) gG&»(E)-p

2
S [ bA(a) G» (E)+ &sA(s) G» '(E)+ bA(4)G» '(E)]+ (E —2bB(s))G'„4'(E)+t»G»&4'(E) —tsG(»s)(E) = p,
T

+
g A(s I G» (E) — A&4& G» (E) —— A&4&G» (E)+ ——= A&s) G» (E)(» (&~ (a&

B'
(4& + &'

&s&

4 bg )~ S 4 S

S &I

+ (E—2b( S+ bT) [ E & (j —g) —Z & (j—g)]]G,"'(E)= ——
& S;T;&,

A(4 G» (E) — —+ — A(s G» ) (E) — — A(4) G» (E)+ ——=A(s) G„(E)
D- „, D- „, D- „, D (4)

) & 4 bg 3) 0 $ 4 S
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+lE-2b(aS+ br)[. & &(j -g) —&& (f g-)DG."'(E)=o,

E+ E+ E4 +

A. , G '(E)-
S A, G '(E)-

4
+ — A, G '(E)- — A, ,G (E)

S

+(E-2a(&+ br) [&& (j-g) -& & (j-g)]3G."'(E)= —(S;r,'&,

&s& E (s» E &4

A(4)Gk (E)+I 4 bS A&s)l Gk (E)-
p A(4&Gk (E) —

4 +=A(s)) Gk4 S

+ fE-2a(~+»)[&& (j -g) -& & (j-g)]]Gk"'(E)=o, (4. S2)

where

d

A„,= bS P g (q g) e(k(-)

s d d

A(f )
= aS [Z & (j—g) (e"""—1)+ Z & (j—g)] + br (Z —Z ) & (j —g),

d s

A&s&- aS Z a (j -g) e(k&~-~&,

d d s

B&„=br[ Z&(j-g) (.'"'-" —i)+Z ~(j-g)l+ ~(~ -~» (j-g) (4.ss)

D'= (a(S T') -2b(S'T'&)„,

E'= (b(S'r-& —2a(S' r'&]„,

= ( a(S T') —2b(S'TQ) )),

E-= (b(S'r-& —2a(S'r'&}, .

Z 8 (j—g) = 6 (8, + Js), +&(j -g) =«,

y —Q g (j g) e(k(J

= aZ, [cos-,'f (u„+ b,)

+ cos ,'f (b„+b,)-+ cos ,'f (Is„+b,)]-

The summations g' and $4 sum over lattice points
in the same and different sublattices, respectively.
Note also that we have assumed average values of
S and T in the "up" sublattice and -3 and —T in the
"down" sublative.

erenow

restrict our discussions to a fcc crys-
tal and the exchange interactions to nearest and

next nearest neighbors J& and Ja, respectively.
We then have

neighbors. The A's and B's in E(l. (4. 33) are
then simplified as

A&» = aS&&+ 6Js(aS+ bT),

A(p) = aS&, A(3) = bSp, , A(4) = NA. ,

B&s&= brp+6Js(aS+ bT).

Again we see that all these Green's functions
are connected with various thermodynamic corre-
lation functions in this simple random-phase ap-
proximation. As a first approximation, we use
the molecular-field values for these correlations
to determine the excitation spectra. In the case
where spins in each sublattice are fully magnetized
at zero temperature, we have the following mole-
cular-field values:

S= T= k, (S'T&= —,', (S'T )=(S T'&=0,

+ 2Js[cos A„f+ cosh„f+ cosls,f],
(4.34) so that

A
&& &

= s a p + 3 (a + b) eTs
S

Q g (j g) e&k()-4&
1

A(3) = 2 CP)
1

A(~) = 2by. ,
1

g(4 ) 2 QX~

(4. 36)
= 2J, [cos-,'f ( b„+b„)+cos sf (0„+b,)

+ cos ,' f (14„+b,)], -

where f is the distance between next-nearest

B&s&= sbl +3(a+b) Js

D D b2
E'= E-= —2 N.

Within this approximation, the above set of eight
equations becomes
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[E+ a g+6a(a+ b)J»]G»" (E)+a XG» '(E)+abpG»& &(E)+ ab&&G»&»&(E) —EG&»"(E)+ &6»&'&(E) =1/2&&,

—a'~G&,'&(E)+[E-a'p, —6a(a+ b) J ]G„"'(E) a—b& G&'&(E) a—bi G'„"(E) ~—G&' &(E) +~G&,"(E)=0,

abIJ 6'„"(E)+ab&G', '(E)+ [E+ b»g+ 6b(a+ b) J ] G,"'(E)+b»A G',"(E)+AG&»&(E) —&G&"{E)= 0,

—ab&& G,"'(E) —aha& GN'(E) —O'XG,"'(E)+[E—b'l& —6b(a+ b) J ]G',"(E)+b G»»'(E) —dG'„" (E) = 0

—(-,'4 ——,'abi&) G',"(E)+—,abA. G» '(E)+ (-,'b, + —,'b»A. ) G»o'(E)+ -', b»A. G&»4&(E)+ [E+6b(a+ b) J ]G&„"(E)=0,

—'abXG"'(E) —(—'4- ,'ab—i&)G '(E)+» b AG»»'(E)+ (4&+ ,'b —i&)G» '(E)+[E—6b(a+ b) J»]G» '(E) =0,

(-,'&+ —,'a p) G»"(E)+ —,'a &G»' '(E) —( —,& ——,'aha&) G» '(E)+»ab&G, '(E)+[E+6a(a+ b) J»]G'»"(E)=1/4&&,

-'a'X G"'(E)+ (-,'~+ —,
' a' i&} G',"(E)+—,'ab&& G,"'(E)—(-,'~ —-', ab«) G„"'(E)+ [E—6a(a+ b) J»] G,"'(E)= 0.

The excitation spectra at 0 K are then determined
by the vanishing of the determinant of the coeffi-
cients of the above eight linear equations. Once
the excitation spectra are found, the other ther-
modynamic correlations can then be determined.
We shall not go further than this step, but turn
our attention to the case where the molecular-
field ground state is not fully magnetized. This
is indeed the case for TbSb experimentally. ' It
can also be seen from our model. If we assume
that the ordered magnetic moment of this material
comes mainly from the crystal field singlet and
triplet state (the justification of this assumption
will be discussed in Sec. V) we have the values
of a Bnd b given by Eq. (2.6). The values of J,
and Jz are taken from the experimental data of
Busch to be 0. 1 and —0. 34 'K, respectively. The
singlet-triplet crystal splitting 4 is taken from
the work of Cooper and Vogt 4 to be 11.9 'K. We
immediatelyfind J(0) (a —b) /42=6X0. 34&&56/11. 9
& 1, for which, according to Eq. (3.9), the mag-
netization is not saturated. To take a step further,
we would like to predict the excitation spectra of
TbSb at 0 'K. For this purpose, we list the molec-
ular-field values for these correlation functions
needed in the random-phase calculation:

S= M/(a —b) = —T, {S'Tg= - —,',
{S'T& = {S-T")= —a/12 J,(a- b)',

M =[36J»(a —b) —& ]' /12(a —b) J».

A «&
——[a/(a —b)] M p+ 6J»M,

A&» = [a/(a —b)] M ~,

A&»&= [b/(a- b)]M p,

A&„= [b/(a- b)]M~,

B&,&

= - [b/(a- b)]M i&+ 6J,M,

D' = D = —ad/1 2 (a —b) J»+ ,' b, —

E'=E-=- W, /12(a-b) J,+ —,'a.

(4. 36)

Hence the above set of eight Green's functions can
be simplified:

The quantities which are involved in the coefficients
of the set of Green's functions now assume the fol-
lowing values:

(E+ 2aA&„) G',"(E)+2aA&„G'„"(E)+2aA&„G&»&(E)+ 2aA„& G',"(E)—~ G',"(E)+~G,"&(E)= (1/~) R,

—2a A&»&G&»&
& (E) + (E —2aA&») G»&»&(E) —2a A«, G&»»& (E) —2a A&»& G»"(E) —&G&»6&(E) + &G&»»& (E) = 0,

—2aA&3&G&» '(E) -2bA&»&G&» '(E}+(E+ 2bB&»&) G» (E) —2bA&»& 6»& '(E)+ &G&» '(E) —EG»&7& (E)=0,

2bA&»&G&»" (E)+ 2aA&»& G»& &(E)+ 2bA«& G»& &(E)+ (E —2bB&»&) G» '(E)+ AG&»6&(E) —EG&»»& (E) =0,

—(—'&+ aD'p) G '(E) —aD'&& G '(E)+ ( —,'& —bD'I») G» '(E) —bD'&&G» '(E)+ (E+ 12b J M) G» '(E) =-(1/2»){S"T'),

—aD'XG» '(E) —( —,'rh+ aD'l&) G» '(E}—bD'XG» '(E)+ (4& —bD'p) G» '(E)+ (E —12b J»M) G» '(E) =0,
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(—,'4 —aE'p) G„"(E)—aE'A G» '(E) —( —,'4+ bE'p) G»3'(E) —bE'XG» '(E)+ (E+12aJ' M) G» '(E) = (1/w)(S'T'),

—aE '& G»" (E) + ( —44 —aE 'p) G» '(E) —bE 'A. G»» (E) —( —,
' &+ bE 'p) G» '(E) + (E —12a Z»M) G»»'(E) = 0.

The excitation spectra are then determined by the vanishing of the determinant of the coefficients of this
set of equations:

E+ 2aA&1,

—2aA(q)

—2aA(3)

2bA&q)

2aA&&,

E- 2aA(„
—2bA(2)

2aA(3)

—aD'&

—,'4 —aE' p

—&aE'

—( —,'4+ aD'p)
—aE'A

—,
' ~ —aE' p

—(-,'4+ Da'p, ) —aD'A

2aA&3 )

—2aA(4)

E+ 2bB(3)

2bA(4)

—,
' 4 —bD'p,

—bD'A

2aA(4)

—2aA(3)

—2bA(4)

E —2bB(3)

—bD 'A

4& —bD'p

—(—,'6+ bE'p) —bE' »

—(-,'~+ bE'~)

E+ 12bMJ2

E —12bMJq

E+ 12aM J&

E —12aMJz

=0

One easily finds that the above determinant is
invariant under the change of E——E, so that it can
be expanded into the following form:

e3 = 4. 3086, e2 = 19.4914

so that

E + C(l) E + C(2) E + C(3) E + C(4) = 0, (4. 37) e~ —e, = 58. 7613= E» &g —&4 = 43. 5785 = E~,
which certainly means that we have four branches
of excitations, and each is doubly degenerated.
Substituting the above-mentioned numerical val-
ues for a, b, 4, J„and Jz, we have

C(l) = 0.3911 (& —p ) + 27. V557 p, —94. 7877,

C(2) = —185.8674(& —p )

q4- &, =70.6613=E3.

The corresponding transitions have been identified

92' j E(k) in'K

—1790.9083 p, + 3247. 3592,

(4. 38)
C(3) = 68 11.5844(&' —p,')

+ 37 134.5941 p, —47 600. 0155,

C(4) = —60 215.4035(A.» —p»)

—245 678.8463 p, + 250 592.4232,

where A and p are defined in (4. 34). To look at the
dispersion relations along a particular direction,
say the x axis, X and p, now assume the values

A = 2Z, (l+ 2 cos —,'k„f)+ 2J»(2+ cosh„f),

p=2J, (1+2 cos»&„f).

87-

82-

77-

72

67;
59.—
58-

57;
5l"

50-
49-
48-

Excitation sp

along

The quartic equation (4. 3V) has been solved by
computers as a function of b„f and plotted in Fig.
17. To determine what transitions these excita-
tions correspond to, we look at the values of each
excitation in the long-wavelength limit, i.e. , k = 0,
which would be the molecular-field values. In
units of K, each of the four levels now assumes
the following values:

47-

45-
40'

50
20
IO

0 02 04 06 08 I.O I.2

~kf

l.4 l.6 I.8 2.P

eq = —51.1699, &g = 63.0699,
FIG. 17. Excitation spectra predicted for TbSb at 0 'K

along (100) direction in RPA.
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UT

U-

FlG. 18. Crystal field energy levels for TbSb, which
show the corresponding transitions in molecular-field
picture.

and labeled in Fig. 18. One recognizes that the
above numerical values of E„Ez, and E3 do not
coincide exactly with the values marked along the
k„f= 0 axis in Fig. 17. This can be attributed to
the fact that we have taken the correlations be-
tween opposite sublattices into consideration. But
one can easily recognize that the E4 branch in Fig.
17 is of the antiferromagnetic magnons excitation
since it shows a linear dependence of wave vector
at the long-wavelength limit.

V. DISCUSSIONS AND CONCLUSIONS

We have studied the magnetic properties of sys-
tems with crystal-field-only singlet ground state
and triplet excited state in the pseudospin forrnal-
ism. The crystal. field level scheme and the ex-
change interactions are explained by using proper
combinations of two fictitious spin- —,

' operators
instead of a single spin- —,

' operator. Calculations
have been done both in the MFA and the random-phase
approximation (RPA) of the double-time Green's-
function method. Owing to the complexity of the
latter approach, we have substituted the molec-
ular-field results at O'K to the random-phase
approximation as a first iteration; the finite-tem-
perature behaviors of those thermodynamic quan-
tities are hence deduced from the formalism.
Comparisons on the results of these two approaches
have also been made in Sec. IV. We see that the
molecular-field effects reflect in most of the RPA
results. An example is to look at the criteria,
for no magnetic long-range ordering at zero tem-
perature. By requiring that the excitation spec-
tra be real at 4=0, Sec. IVC tellsus no more than
that obtained from the MFA.

The molecular-field ground state is not the true
ground state of the system with the Hamiltonian
(2. 8) as can easily be seen from the fact that
[X, aS, + bT,] e0. Hence the nonzero population
of the excited molecular-field state at zero tem-
perature needs to be estimated. We have done
this numerically and find that the deviations of
(S,) and (T,) from their assumed values of fully
magnetized values (4. 20) are of a few percent
and of the not fully magnetized values (4. 23) are

of orders of 15%, The calculations are again
estimated for a simple-cubic crystal with nearest-
neighbor interactions. One can hence say that the
molecular-field results are good approximations
for the RPA to start within the former case, and
for the latter case we need more iterations.
The fact that one of the exctiation spectrum (see
Fig. 8) is always less than zero, which implies
that this excitation is not stable, has again some
connection with this nonzero popularity of the ex-
cited state at zero temperature.

In Sec. IV 6, we have applied our presentmodel
to the case of TbSb. The excitation spectra at zero
temperature have hence been predicted. But how

good the experimental data of this compound is
compared with our model remains unanswered. By
using the experimental value of the Neel tempera-
ture of TbSb to be 15.1 K, 24 we find that our Eq.
(3. 17), which determines the transition tempera-
ture in the molecular-field picture, is satisfied to
within a 10% difference on both sides. The mag-
netic moment predicted by our model in the mol. e-
cular-field approximation, Eg. (3.8), is 5. 7 ps.
This comparison is rather poor. The reason behind
it is the following. We have considered only the
singlet ground state and the first triplet excited
state contributing to the exchange mechanism at
low temperatures. C ontributions from other higher
excited states to the magnetic moment at zero tem-
perature certainly need to be included. One can
estimate this contribution by putting an effective
magnetic field in our Hamiltonian. This work is
still under detailed investigation. For this appli-
cation, we conclude by saying that at low tempera-
tures, it is necessary to consider the contributions
from other higher excited states than the first
one to the exchange mechanism.

As far as the decoupling scheme is concerned,
we have used the simplest one, the RPA; hence
correlation effects of excitations on different
sites are not included. The RPA used here is cer-
tainly not a satisfactory one. Improved decou-
pling schemes such as used by C aliens' should be
tried. This is particularly needed in the case
when we have a nonsaturated molecular-field
ground state.

Another point to be mentioned is that we have
assumed that there is no crystal field or sym-
metry change which would affect the crystal field
structure as exchange interactions are increased.
For a more involved situation, a change of sym-
metry due to crystal distortion will certainly in-
troduce a further complication.

It is certainl. y desirable to extend our present
calculations to the case of ferrimagnetic materials
since many rare-earth compounds belong to this
category. For the time being, we have only the
experimental data for Tb8b on the crystal-field-
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splitting quantity 4 in Fig. 1. Determinations on
these splittings beyond the first excited state as

well as on other compounds are therefore en-
couraged.
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Superconducting and magnetic properties in the La3T1-Pr3TI system are discussed. Super-

conductivity persists up to very high Pr concentrations, Pr being in a crystal-field-singlet
ground state, The Van Vleck susceptibility per Pr ' ion at T =0 increases with increasing Pr
concentration, indicating ferromagnetic exchange coupling between the Pr ions. At concen-
trations higher than 93-at. lo Pr the system becomes ferromagnetic. No current theoretical
model accounts for the observed magnetic behavior.

I. INTRODUCTION

It is well known that many rare-earth compounds
with an even number of 4f electrons exhibit a crys-
tal-field-singlet ground state. It has been shown

by various authors using different models~ that
such materials exhibit Van Vleck paramagnetism
if the exchange forces do not exceed a certain
strength. On the other hand, if the exchange in-
teraction exceeds a certain limit, we expect a


