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We develop a Monte Carlo method to study the influence of static random strains on EPR
and acoustic-paramagnetic-resonance (APR) spectra. The method consists of calculating the
line shape using random numbers which represent the random strains. We have applied this
method to the particular case of a S=1 system in cubic symmetry in the presence of I'y, ~type
strains. The important parameter is the product of the strain-ion coupling coefficient and
the width of the distribution function of the strains. When this parameter is small compared
to the Zeeman term, we find the known results obtained using perturbation theory. When
this parameter is of the order of the Zeeman term, the line shape is profoundly modified and
the spectrum has great similarity to an axial spectrum. The comparison between calculated
and experimental spectra obtained with MgO:Vs* confirms the previously proposed interpreta-
tion. The strain-ion coupling coefficient is deduced from this comparison. We also discuss
the possibility of deducing the Jahn-Teller energy and covalency from our recent experimental
results interpreted within the model developed here. The values obtained show that Jahn-Teller
coupling is only slightly greater than spin-orbit coupling. Thus, the MgO:V®* system appears to

be near the limit where the Jahn-Teller effect is stabilized by spin-orbit coupling.

I. INTRODUCTION

It is well known that random static strains which
exist even in good crystals are frequently the
cause of line broadening in electron paramagnetic
resonance (EPR) and acoustic paramagnetic res-
onance (APR). Quantitative calculations of their
effect have been made for two typical situations.

In one, the ions are relatively weakly coupled to
the lattice as compared to the Zeeman interaction,
so that perturbation theory can be applied. =3
Stoneham has given a review of the subject.? The
other situation concerns strongly coupled ions and
particularly some ions subject to the Jahn- Teller
effect. In the case of the SrCl,:La* and CaF,:
Sc? systems, *~7 and more recently in the case of
the MgO : Cr? system, ®° the observed spectra
have been explained on the basis of the strain effect
exceeding the Zeeman effect. In the first situa-
tion, the spectrum has the average symmetry of
the site. In the second, the experimental method
of observation can “select” some of the ions which
are in particular distorted sites. The resulting
spectrum no longer has the average symmetry of
the site and it can be strain dependent.

In a previous paper on the MgO : Fe? system, ?
we made an exact calculation, instead of using
perturbation theory, for a particular magnetic
field orientation. This calculation showed that the
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center of the AM =1 line is strain dependent. The
purpose of this paper is to study, using a new ap-
proach, the more general problem of a triplet
state in cubic symmetry for which the strain and
Zeeman interactions are of the same order of mag-
nitude. This is, indeed, the case for V' in MgO
and we show that the interpretation we have pro-
posed!! is correct. In particular, our calculations
describe very well the shape of the spectrum and
its angular dependence, while the work of Ray'?
does not. We also obtain some results which con-
firm qualitatively Ham’s interpretation of the spec-
trum of Cr2* in MgO.® (See note added in proof. )

In Sec. II we describe the method used which has
some features in common with a Monte Carlo cal-
culation. The general results we obtain are given
in Sec. III. We then compare the theoretical and
the experimental spectra for the V3 ion in MgO
and we deduce the magnitude of the strain-ion cou-
pling. In Sec. IV, we discuss the values of the
physical constants, such as Jahn-Teller coupling
and covalency, deduced from our recent experi-
mental results.

II. DESCRIPTION OF METHOD

The general Hamiltonian for a triplet state in
cubic symmetry and in the presence of strains and
magnetic field can be written

=g 1g(Hy - s‘)+§cu([33§_s(5+1)]e(r3,, e)+§v_3(sf+s_2)e(r3,,€)>

[
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where the strains e(T', , B) have the usual defini-
tions 314,

e(Ty)=(1/V2)(em+ey+e,,) ,

e(Tg, 0)=3(2e,,~er—eyy)
e(Ty,€)=3V3(ex—ey,) , (2)
e(Ts,,0)=4V 3e,, ,

e(Ts,,£1)=F1¢ «/%(ey‘il'e”) .

In the Hamiltonian (1), the g value takes into
account the spin-orbit coupling, the Ham reduc-
tion, and possibly the effect of covalency. Gy
and G44 are the conventional coefficients, often
called the spin-phonon coefficients, which char-
acterize the coupling of the ion with the distor-
tions of the cubic site. The strains vary from site
to site and we shall consider that they are random
quantities with a Gaussian distribution. This
choice is one of convenience, but we think that
other choices would not greatly modify the results.
This point will be discussed in Sec. III.

We consider the frequently encountered case for
which the coupling with the I';, strains is dominant.
This hypothesis will be justified a posteriori, for
the system V* :MgO, by the good agreement be-
tween theoretical and experimental spectra. Also,
we limit most of the calculation to the problem of
an ion without hyperfine coupling. Again, these
points will be discussed in Sec. III.

The successive steps of the method are the fol-
lowing: (i) Pairs of random numbers [e(l"&, 0),
e(Ty, €)] are numerically generated, i.e., the dis-
tortion of a site for an ion is defined; (ii) the values
of the magnetic field for which two levels of the
ion are separated by the quantum 7Zw, are deduced;
(iii) the eigenstates are determined; (iv) the
transition probability between the two states is then
calculated.

In order to obtain more general results, we
write the Hamiltonian (1) in the reduced form

a+h k c
B* -2a k , (3)
c B a-h

where
h=Xcosf, kE=Asinfe ®/V2 ,
A=g g Hy/liw,, a=a/6X (4)
4
c=3av2Y, a=Gyy/Mw, ,

X=f%e(r&,9)’ Y=\/_§e(r31,€) 9

the magnetic field orientation being defined by the
polar angles (8, ). The variables X and Y have

Gy 1
+ N ((S,,S,+SZS+)e(1"5,, 1) 73
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(si-s?)e(rs‘,,o)+(s_s,+s,s_)e(r5g,—1)> , (1)

I
a Gaussian distribution of width 26. Two param-
eters, a and 0, appear, but the result depends
only on their product 6. We choose arbitrarily
a=-4, avalue which corresponds to the case of
Fe? in MgO when the width 0 is expressed in terms
of 10°° units strain. Thus, the width A of the dis-
tribution for the strains e;; themselves has a nu-
merical value given by A=06x10"% and the product
adis ab=GA/4w, However, we stress that
with the choice of the reduced variables, the im-
portant parameter is the product @6 (or Gy;A) and
that a variation in 6 will mean as well a variation
in the ion-strain coupling or a variation in the
width of the strain distribution.

For each set of calculation, we fix the values of
5,0, ¢. Once the pair (X, Y) is defined, the eigen-
values of (3) are the roots of a cubic equation of
the form

x*+xp(N)+g(V)=0 , (5)

where p and g depend only on A. The resonance
can occur if two of these roots have a difference
of 1. It is easy to show that this is true if A is a
root of

1+6p+9p%+4p%+274%=0 . (6)

This equation is of third degree with respect to

2% and has 0,1, 2, or 3 positive roots (negative roots
correspond to opposite magnetic field orientation
and are not considered). Putting these values in
(3), we calculate the eigenvectors and from them
the transition probability. For this last calcula-
tion, we use the Hamiltonians

1y =gkp(H, - §)coswt (7
for EPR transitions and

3y1=$ Gy e 3(S2+52) - 2[352-5(S +1)]} coswt
(8)
for APR transitions induced by longitudinal acoustic
waves propagating in the x direction.

Calculations have been made with an IBM 360-
65 computer. The Gaussian numbers were gen-
erated by a method given in Appendix B. Various
histograms were made to test the Gaussian char-
acter of the numbers generated. The shape of the
surface of the probability density p(X,Y) was mon-
itored and no correlation between two successive
numbers was observed. Most of the results were
obtained with only 1000 pairs (X, Y). For a given
magnetic field orientation and a given value 6, the
calculation takes from a few seconds to 1 min.

As shown in Appendix A, the line shape can be
obtained by the evaluation of an integral. In order
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to test the validity of the numerical method, we
have compared the obtained results with the theo-
retical line shape for two cases where the prob-
lem is analytically solvable. The first case cor-
responds to the EPR absorption with ﬁo along
[001] and the radio-frequency field H, along [100].
The result is'®

1+22 )J‘ +o e-2v¥ 362
IQ)zAxexP(‘ 108252/ ) . Y (Zr18at TR

(AZ_‘_ 18a2 Y2)1/2 >
XF”( 5402 6%

(24 lgazyz)uz > ]
+exP<" 5402 02 , ©

where A is a constant. This integral is easily
evaluated by numerical computation. The second
case corresponds to acoustic resonance with lon-
gitudinal waves propagating along [100] and with
H, along [001]. The line shape is then

IMN)=B ~——ﬂ—,§-)‘s ——2—,1 = 417 (
=B aToovr P (- g ) - (10)

where B is a constant. This last equation shows
the existence of a singularity at A=4. This singu-
larity comes from the fact that the line due to each
ion has been supposed to be infinitely narrow.
Apart from the nearest values of A, this singu-
larity has no effect. Figures 1 and 2 show the
comparison of the theoretical results (9) and (10)
with the numerical computation. The agreement
is very good. To make clearer, in what follows,
the comparison between experimental and calcu-
lated spectra, we present “smoothed” histograms
obtained as illustrated in Fig. 3.
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FIG. 1. EPR line shape with ﬁo along [001], f{, along

[100], and 6=10. The histogram is the result of Monte
Carlo calculation made with 5000 pairs (X, ¥). The
curve is drawn from Eq. (9) normalized at point N.
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FIG. 2. APR line shape with ﬁo along [001], % along
[100], and §=10. The histogram is the result of Monte
Carlo calculation made with 1000 pairs (X, ¥). The
curve represents the analytical result given by Eq. (10)
after normalization at point N.

III. RESULTS
A. General Results

We have determined the APR line shape for the
particular situation described in Sec. II, i.e.,
no hyperfine coupling, only the I';, strains are
active, the transitions are induced by the Hamil-
tonian (8). The value of 6 is very important since
it affects the general aspects of the spectrum.
When 6 is small we get the same results as those
obtained by perturbation calculation. This is an-
other test of the method.

When 0 is such that 4ad6~1, i.e., Gy A~Tiw,,
the spectrum is anisotropic as shown in the upper
part of Figs. 4 and 5. The curves correspond to

ATTENUATION —
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FIG. 3. Typical histogram obtained by Monte Carlo
calculation and its associated “smoothed histogram.”
This result is obtained with 1000 pairs (X, Y), 6=10, k
along [100], and with an orientation of H, defined by the
polar angles §=40°, ¢ =0°.
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FIG. 4. Angular variation of the APR spectrum. The orientations of ITIO and k are indicated. The upper curves are
smoothed histograms obtained by Monte Carlo calculation with 1000 pairs (X, ¥) and §=10. The lower curves are the
experimental results from Ref. 11. (Note that theoretical curves do not take into account the hyperfine interaction.)

the case 6=10, i.e., G,;; A=3w, An important
point is that this behavior results from the mix-
ing of the states and not from the fact that only the
ions which are in tetragonally distorted sites give
a contribution to the spectrum. As we have pro-
posed, ! transitions of the Am =1 type contribute
strongly to the spectrum. This is proved by the
curves corresponding to (¢ =0, 6=40°) and (¢ =0,

6 =50°) for which the Am =1 line appears. With
other orientations, however, the spectrum is more
involved and the word “line” does not have a clear
meaning. The method used here can give a good
illustration of the situation. We have looked at
the values of the numbers X and Y for the ions
which contribute to the line near a maximum of the
acoustic attenuation. Figure 6 gives the result
for Hyll[011], i.e., $=90° and 6=45°. In this
figure, a point represents an ioninadistortedsite,
the distortion being defined by X and Y, with en-
ergy levels such that a transition occurs for a
value of A such that 0. 70< A <0.75. Itis clear
that these ions are in orthorhombic and not tetrag-
onal symmetry. In addition, the examination of
their energy levels shows that the transition is of
Am=1 type. All these observations confirm the
interpretation we had proposed to explain our ex-

perimental spectra, some of which being drawn in
the lower part of Figs. 4 and 5. Both V* and Fe?
spectra are visible. The latter corresponds to a
smaller value for 8 because the strain-ion cou-
pling is smaller; the anisotropy is manifested mostly
in the linewidth. For the spectrum of V¥, even
with the presence of hyperfine structure the es-
sential behavior is explained by the theoretical
curves.

When 0 is increased, the spectrum is again
modified. The curves of Fig. 7 are obtained with
6=100, i.e., G,;A=5%wy. The spectrum is also
anisotropic but the line shapes are very different,
indicating the Am = 2 nature of the transitions. In
addition, fewer ions contribute to the lines be-
cause distortions can be very strong, hence
making impossible the resonance condition. We
observed that the maximum of the line intensity
was about five times smaller with 6=100 than with
6=10. Also, the intensity is not zero outside the
lines and this would result, inan experiment, in a
smaller signal-to-noise ratio. This decreasein the
line intensity leads us touse 5000 pairs (X, ¥) instead
of 1000for &= 10. Againwe canlook at the distortion
of the sites for the ions which contribute to the lines.
We have plotted in Fig. 8 the values of (X, Y) for
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those ions when ¢ =90°, 6=22°30’, an orientation
for which two lines exist (see Fig. 7). One can
see that the low-field line is due to ions which are
in tetragonal sites, with the y axis being the sym-
metry axis, and that the high-field line is also
due to ions which are in tetragonal sites but with
the z axis being the symmetry axis. Thus, only
a fraction of the ions are observed and, even with
a strain distribution centered around zero, the
spectrum shows an axial symmetry. These re-
sults are in agreement with Ham’s explanation of
the spectrum of Cr® in MgO.® We can point out
that although the symmetry is axial as for systems
which show a static Jahn-Teller effect, the situa-
tion is in fact very different. In the static case,
the Jahn-Teller coupling dramatizes the effect of
random static strains and the final distortion has
a value unrelated to the value of the original strain,
the symmetry being, however, the same. In ad-
dition, all the ions are in one of the three dis-
torted sites (of course, only if the coupling with
the I';, strains is neglected). On the other hand,
in the systems studied here only some of the ions
are observed and the intensity of the lines dimin-

o

ishes as the strength of the strains increases.

B. Application to V 3*in MgO. An Estimate of Strain-
Jon Coupling

After obtaining qualitative agreement between
experimental and theoretical spectra, we can go
further and try to deduce the value of the strain-
ion coupling coefficient G;;. However, the hyper-
fine structure introduces complications. We can
overcome these complications for two particular
cases. The first concerns the orientation for
which H, is parallel to [001]. If there we treat
the hyperfine strucure as a perturbation, the prob-
lem is analytically solvable and the line shape is
readily deduced. The second interesting situation
corresponds to the case where strain broadening
is very much stronger than the hyperfine inter-
action. We now discuss these two situations.

When H, is along [001], the Hamiltonian (3) is
easily solved. Let E; and |i) be the eigenvalues
and the eigenvectors. The eigenvector |i) can be
written

liy=1;]1) +m;]0) +m| - 1) .
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FIG. 5. Angular variation of the APR spectrum. The orientations of i:IO and k are indicated. The upper curves are
smoothed histograms obtained by Monte Carlo calculation with 1000 pairs (X, ¥) and § =10. The lower curves are the
experimental results from Ref. 11. (Note that theoretical curves do not take into account the hyperfine interaction.)
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FIG. 6. APR resonance with §=10, k along [100],
9=45°, and ¢ =90° (see Fig. 5). The coordinates of each
point are the reduced strains of the ions which contribute
to the part of the line for 0.70 =A<0.75, i.e., near the
high-field maximum. The straight lines I, II, and III
correspond to tetragonal distortion of axis x,y, z.

By a well-known method, !¢ one can show that, in-
side the manifold |i), the hyperfine structure is
described by

A I5(0)
where Z’ is a new quantum axis defined by the
direction cosines

ay By

(af+ﬁ?+’)’?)1/2 ’ (a§+ﬁiz+.y'2)1/2 ’
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FIG. 7. Angular variation of the APR spectrum. The
orientations of H, and k are indicated. The curves are
smoothed histograms obtained by Monte Carlo calculation
with 5000 pairs (X, ¥) and § =100.

INFLUENCE OF STRAINS ON PARAMAGNETIC-RESONANCE ... 2653

FIG. 8. APR resonance with § =100, k along [100],
6=22° 30", $=90° (see Fig. 7). The coordinates of the
points + are the reduced strains of the ions which
contribute to the part of the line for 0.5 =A<0.55; the
coordinates of the points O (open circle) are the reduced
strains of the ions which contribute to the part of the line
for 1.30 =A<1.35. The straight lines I, II, IIl corre-
spond to tetragonal distorsion of axis x,y,z.

Yy
(0‘?"’ Bi+7%)
with

a£=<i‘sx‘i> ’
and where

Agl= A+ pierYE

Bi=G|S, |1y ,  vi=CiS.i) ,

A being the usual hyperfine parameter.

When ﬁo is along [001], the eigenvalues are
Ey=-2a, E,=a:(\2+c®)V? |

and the corresponding values for A, are, in re-
duced form,

Ag=Aggp/mw=0
Al=AR/Ew=2A/Mw(*+cH)V2=A"

with opposite directions for the Z*’ and 2’ axis.
The line shape is then, for the transitions AM;=0,

+7/2
IN= 2, I M) ,

M=-1/2
with
IO M= IZ[(4N + 2MA ) (A2+cB)/2 -] -v2/20?
PP 26V mac, (0 cB[1 - 403+ cH 2]
(11)

where ¢, is defined by
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&+ %= 1[1- 8MA' N+ (1 - 16MA"V)V/2]
and
Y= 01/301\/—2

Equation (11) has singularities for A=4+MA'
analogous to that of Eq. (10) but we can try to fit
the theoretical line shape with the experiments for
values of A not too near the critical values. Figure
9 shows that no value of  is convenient. This
disagreement could arise from the use of pertur-
bation theory, because this approximation is not
correct for some ions. However, we think the
number of these ions is too small to affect sig-
nificantly the line shape. Another reason could be
the choice of the Gaussian shape for the distri-
bution of the random strains. Although a Lorentz-
ian shape does not give a better agreement, other
shapes are plausible. Finally, the disagreement
could also be due to the I';, strains which have
been ignored in the calculation. We have made
some attempts to see their influence. Besides
the necessity to work with three additional random
variables, the omission of the hyperfine inter-
action makes the comparison with experiments dif-
ficult. This problem is now under study.

We consider now the case where ﬁo is far from
a (100) axis. The lines become very broad in the
region of A=1 and the effect of hyperfine inter-
action is masked. We have calculated the shape
of the lines for various values of 6 when 6=40°
and ¢ =0° and when 6=40° and ¢=90°. Part of
the results are given in Fig. 10. They show that
the spectrum is strongly strain dependent, as ex-
perimentally observed, for instance, with Cr?* in
MgO.!" But these results can also be used to de-
duce a value for 8. The curves of Fig. 10 show,
for instance, that the ratio of the intensity atx=1
to the intensity at the maximum near X=0.75 is

EXPERIMENT I/
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FIG. 9. Comparison of the APR experimenta‘l line shape
with theoretical results for Hy along [001], and k along
[100]. N is the point of normalization.
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FIG. 10. APR spectrum for various values of the param-
eter 6. k is along [100] and the orientation of His
defined by 6 =40°, ¢ =0°. The Monte Carlo calculation
was made with 5000 pairs (X, Y) for 6=40 and 6=20 and
with 1000 pairs for 6=10 and =5, (The curves are not
drawn at the same scale.)

very sensitive to the value of 5. Comparison with
the experimental spectrum given in Fig. 4 leads to
the value 6§ ~10. If we suppose the same distribu-
tion for the strains in the vicinity of V¥ and of Fe?”,
we can deduce the value of Gy; for V¥ from that of
Fe?*. We get Gy;~1500 cm™ per unit strain.

A value for G4; can be deduced from the mag-
nitude of the acoustic attenuation. For a longi_:
tudinal wave propagating along [100] and with H,
parallel to [001], this attenuation is given by

_ 31N’ wig(w)G3 "

= T . ©™) -
Here, N’ is the total population per cm?® of the ex-
cited triplet in which the resonance is observed.
The presence of the line shape g(w) is a complica-
tion in the use of this formula. Fortunately, we
can use the results of the preceding calculations
which show that 13% of the ions contribute to the
line for a range of 100 Gs about the maximum of
attenuation. It is then possible to consider g(w)
as a rectangular line of width Aw = (gu/%)AH due
only to 13% of the ions. The nominal concentration
for the vanadium is 10~ ions. We suppose that 60%
are in the trivalent state. Taking the values of
p=3.58 g/cm®, v=9%x10° cm/sec, we obtain
Gy1=950 cm™. In view of the uncertainty of the
concentration, this value compares well with the
preceding one.

IV. ADDITIONAL COMMENTS ON SPECTRUM OF
V 3¢ IN MgO

The experimental results of Brabin-Smith and
Rampton?® interpreted as an axial spectrum have
been discussed elsewhere. #1® We wish here to
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deduce new values for the physical constants from
our recent experimental results!! and within the
interpretation developed here which supposes that
the sites of the V3 ions are, on the average, cubic.
The experiments yield essentially two quantities:
the g value and the splitting between the two low-
lying multiplets. We begin to discuss the various
mechanisms which are at the origin of the splitting
of these multiplets.

A. Splitting between Two Low-Lying Multiplets

The ground term °F obtained from the config-
uration 342 of the V¥ ion is split by the cubic crys-
tal field leaving a I'y, triplet as the ground state
(see Fig. 11). However, term mixing is not negli-
gible and we must write the ground state as

| Ty ) =cosa |°Ty,, te) +sina|°Ty,, 3y ,  (12)

where @ is given by
tan2a = (12F, - 60F,)/(9F,—45F,+10Dgq) ,

F, and F4 being the usual radial integrals and Dg
being the parameter which characterizes the
strength of the crystal field. The notation used in
(12) for the states is the conventional one: |T'y,, te)
is the state belonging to the I'y, irreducible repre-
sentation arising from the crystal configuration te.
We then introduce the Jahn-Teller coupling sup-
posing it to be bigger than spin-orbit coupling. We
shall discuss this point later. In view of the re-
sults obtained in Sec. III, we consider only the
coupling with the I's, modes. It is well known®
that a manifestation of the Jahn-Teller coupling
is a reduction of the first-order spin-orbit cou-
pling. Using the notation of Ham, ? we can write

13, 3
Lo (CP)
I’/ 28 r‘s
1
I ! 3
3d2 'Iljng(‘G) I} +«£=
[y :
Ny °F) 1_Tag °r,, 110>
i !
ll“ I’,‘ r49,|0,1>
1
@ | a b ()
Il \lragzl:‘:g 4 r4g 3
Ty ' < —
I
| I A
a
'| agtlsg 100> \ \
?Q“(SF) \:‘ T. \
S °(1) S 0(2) S 0(1) S o(?)
FIG. 11. Energy levels of V3" ion. (a) Splitting of the

configuration d* for the value Dg=1700 em™! deduced from
Sturge measurements. (b) Splitting of the ground electronic
triplet by spin-orbit coupling at first (SO'’) and second
order (SO®)), (Jahn-Teller effect is ignored.) (c) Split-
ting of the ground vibronic triplet by spin-orbit coupling

at first (SO'"’) and second order (SO®?),
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188 = Mg cK(T)(E-8) (13)

with £=1, S=1, g, =1sin%a - cos?a - 2sina cosa,
K(Ty,)=eFrm/# ¢, ). is the spin-orbit coupling
coefficient for the free ion, E;; is the Jahn-Teller
energy, 7w is the energy of the most active modes,
and ¢ is the covalency reduction factor. This first-
order spin-orbit Hamiltonian leaves a quintuplet
as a ground state and it is necessary to go to
second-order effects to lift this degeneracy. As
proposed by Ray, 1 we first follow Ham for the
evaluation of the effect of the vibronic excited
levels associated with the Ty, electronic state. The
general calculation made by Ham? leads to the
second-order effective Hamiltonian

568 =K (£ 52+ K, (L2521 £252 1 £252) |

with
>tfagicz exp<_3EJT) G(SEJT> ,

K== aw Wi

A2g2c? 3E

where G(x) is defined by
¥ u
G(x)=J’ e -1 du
Q

u

The application to our case is straightforward
and leads to a splitting of the quintuplet into a
lower doublet and an excited triplet, the energy
separation being

D=-K, . (14)

However, we must look at the second-order
terms due to other excited levels. For a general
treatment, we ought to consider all the vibronic
levels associated with all the crystal field elec-
tronic levels. This treatment would be very cum-
bersome. To simplify it, we shall neglect the
term mixing and consider only the ground °F term
for which L =3. This term is split by the cubic
field into a ground TI'y, triplet, a I';, triplet, and
a I'y, singlet (see Fig. 11). As spin-orbit cou-
pling has nonzero matrix elements only between
the states of the two triplets, we do not consider
the T'p, level. Ignoring for a moment the Jahn-
Teller interaction, we can calculate easily the
second-order effect of spin-orbit coupling inside
the Ty, triplet. We find that the ground quintuplet
resulting from the first-order effect is split into
a lower doublet and an excited triplet, the energy
Separation being

D'=15)%/2a (15)

where A is the energy of the T';, triplet. We must
now introduce the Jahn-Teller interaction and dis-
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cuss the possibility of the reduction of this value.
The vibronic states associated with the two orbital
triplets Iy, and I'y, have an electronic part iden-
tical to that which exists in the absence of the
Jahn-Teller coupling and a vibrational part which
is that of a “displaced oscillator.”® But as the
couplings are different for the two triplets, the
displacements for the oscillators will be different.
An estimate of the coupling coefficients with the
I';; modes based on the point-charge model leads
to the result

Va(Tg)/Va(Ty)~ ~0.7 .

J

Owing to the sign of this ratio, the potential wells
associated with the I';, states are on the vertices
of an equilateral triangle which has a different
orientation than that of the equilateral triangle of
the potential wells associated with the I'y, ground
state. Matrix elements of spin-orbit coupling
between ground and excited vibronic levels are of
the form

(mg; Typ,i; i00|ML- 8)|m]; Ty, a;anm),
where the spin, the electronic, and the vibrational

parts of the states are explicitly written. A gen-
eral term of second order is then

b (ms;3;i00IMT - S) Im¥ ; a;anm)m ¥ ; a;omm IML - §)Imb; 7;700)

N
nym

These terms are similar to those considered by
Ham?® for the second-order vibronic effects, but
here the denominator has the additional quantity

A and the states with n=m =0 are included. Then
A> (n+m)fiw even for moderately large values of
(mn+mrw. For higher values of (n+m), the over-
lap integral of the corresponding vibrational states
]

)\2

a,my

We note that the term in brackets is the term we
obtained in the calculation where the Jahn-Teller
interaction was ignored. Thus, this equation
shows that only the off-diagonal matrix elements
are reduced, and furthermore with the same re-
duction factor as for the first-order term,

K(Ty)=(00|700)y=e™3Br/2he  (i#37) .

This results in a reduction for the splitting D’
given by (15) to the value

D] = 3(1+e™3Far/2e)p’, (16)

Finally, we have obtained a third value of the
splitting by a calculation in which term mixing is
included but Jahn-Teller coupling ignored. This
calculation is easily made with the help of the
matrix elements of spin-orbit coupling given by
Liehr and Ballhausen in their paper on the d2 con-
figuration in a cubic crystal field. # We do not
give the analytical result of this calculation be-
cause the value obtained, denoted by D’’, is only
slightly different from D’ when we substitute nu-
merical values (see below). We shall suppose
that the reduction of D’ by the Jahn-Teller effect

_— A+(n+m)iw

r

with the ground vibrational states become very
small. We thus can drop the term (n +miw in the
denominator. Then, using the closure relation

2 |ammYanm| =1

nym

we obtain

FLZ ns,i|(L-8)|mg’, a)omy, a| ©- §)|ms, j) 1(i00]j00) .

r
is the same as that of D’ as given by (16).
B. g Factor

As in the absence of a Jahn-Teller interaction
the electronic excited levels have no effect on the
g value, the calculations are simpler than for the
splitting. Ham? has calculated the Zeeman effect
including the second-order contribution due to
vibronic levels. He obtains a first-order ef-
fective Hamiltonian

e =g, plH- &) +2us(H- )
and a second-order effective Hamiltonian
52 =g, us[(H- EYE- 9+ (E. HH(H- £)]
+ga Mp(EES H, +£2S H +£2S,H,) ,
with
g£ =CgLK(r4x) )

A g2 E 3E
__M81C _ofur S LEyp
&1 Aw exp( 3h’w >G<2 nw ) ’

2x, g2 c2 E E )
- eMELCT g2t 2t
g2= " exp( 3 )G(3h‘w .
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When applied to our case, these Hamiltonians lead
to the following g value for the triplet in which the
resonance is observed:

g=1+3cg,K(Ty)+gy .
C. Comparison with Experimental Results and

Discussion

For this comparison, we must estimate the
splitting A induced by the cubic crystal field. This
can be made from optical measurements of Sturge??
who has attributed the two lines observed at 16 000

and 22200 cm™ to the transitions |°F, Ty, )~ I3F, T;,)

and |3F, T, )~ %P, Ty ). We thus obtain
A=16000 cm™, tan2a=0.28 , g,=-1.24 .

The splittings D’ and D" are, taking into ac-
count covalency,

D'=4.72x10* cm?
D' =4.3¢%2x10™ cm™!

They are reduced as indicated by Eq. (16). We
must then determine the values of ¢, x=3E;r/fiw,
and Zw which best fit the two equations:

Doyt =D""[3(1 +e7/3)]
+(\2gic¥/nw)e™ [G(x) - G(Ex)]
ge“t=1+%che'xla—()\fgchz/ﬁw)e"‘G(%x) 1)

with Deype =7 cm™, g0 =0.67, 1 and A, =104 cm™,
From the work of Sangster and McCombie® on vi-
brational structure of the optical lines of ions in
MgO, we choose Zw=450 cm™. The best values
for the fitting are ¢=0.72 and x=0.9. We deduce

K(T4)=0.64 and E;p=135cm™ .

Although these values are not precise, they show
that V¥ in MgO is a weakly coupled Jahn-Teller
system. The small difference between the Jahn-
Teller energy and the spin-orbit interaction seems
to invalidate the perturbation-theory calculation.
We can point out, however, that this calculation is
justified a posteriori since the spin-orbit coupling
is reduced by the Jahn-Teller effect. Had the spin-
orbit coupling been slightly weaker, it would have
stabilized the Jahn-Teller interaction. As a con-
sequence, the second-order effects are important,
as seen above.

We can deduce the value of V3, the coupling co-
efficient between the ion and the vibrational modes

of the cluster XY, using the equation E yp= VZ/2) w2,

where u is the mass of the Y ions of the cluster.?®
With the preceding values for E;; and w, we ob-
tain ¥3=10"* erg/cm. We can also deduce the
coupling coefficient V3 between the ion and the
strains or the long-wavelength vibrational modes
by noting that Vj = (V' 3/R)Gy,, R being the X-Y dis-
tance. With the value of G,;=1500 cm™, we de-
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duce V3 =2.4x10"° erg/cm. We also calculate a
theoretical value V3’ from the usual point-charge
model,

oo 2 (18 B0

7R 5 6 R
Taking Ze,=2, (#*)=1.64a2, (+*)=5.45a} #
(where a, is the Bohr radius), we have V}’=4x10"°
erg/cm. Inview of the various approximations
made to obtain each of these values, we think it is
impossible to make a meaningful comparison. We
can only remark that they are of the same order of
magnitude.

'V. CONCLUSION

We have developed a method which permits the
calculation of the influence of the random strains
in cases where their effect is of the same order
of magnitude as the Zeeman effect. The applica-
tion of that method to the system V3 :MgO has led
to theoretical spectra which are in good agree-
ment with the experiments. The method has the
advantage of not masking the physics involved be-
hind the numerical calculations. It permits us,
for instance, to look at the nature of the distortion
of the ions which contribute to a definite part of
the spectrum. The important result is the ex~
planation of the existence of an anisotropic spec-
trum due to ions which are in cubic sites on the
average. In other words, we have explained this
anisotropic spectrum using a Gaussian distribu-
tion centered around zero strain as we had re-
cently proposed. !! We have also deduced, from
a fitting of theoretical and experimental spectra,
the value of the ion-strain coupling. This value,
as the Jahn-Teller energy value deduced from the
characteristics of the APR spectrum, shows that
the V3 ion in MgO is a weakly coupled system
where the vibronic second-order effects are im-
portant. It is indicated also that this system is
near the region where the spin-orbit interaction
reduces the Jahn-Teller effect instead of being re-
duced by it. It will be of interest to compare this
system with the CaO :V® system on which experi-
ments are in progress.

Note added in proof. It is perhaps helpful to
add some comments in order to better illustrate
this work and to compare it with the work of
Ham.® He has shown, for another system and in
the case where the effect of strains is large
(6> 1 in our notation), that ions which are in
nearly tetragonal symmetry have their resonance
at the same value of the magnetic field, whatever
the strength of the tetragonal distortion. Thus,
only these ions can give observable lines, a re-
sult which we have also obtained with our method
(see Figs. 7 and 8). The interesting point is that
even in the case 5~1, the behavior is qualitatively
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the same, as shown in Figs. 4 and 5. Though the
spectrum is more complex, it contains peaks
whose position approximately follows the 1/cos6
tetragonal relation. However, Fig. 10 shows that
the relative contribution to the observed spectrum
of these particular ions becomes more and more
reduced as 5 decreases. The hypothesis of a dis-
tribution centered around zero for the random
strains has also been made by Ray. The differ-
ence between her recent work [T. Ray, Phys.
Rev. B 5, 1758 (1972)] and ours lies only in the
fact that we give proof that such a distribution
leads to tetragonal peaks while she has not con-
sidered the angular dependence of the spectrum.
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APPENDIX A: THEORETICAL LINE SHAPE

With the reduced values defined by Eqgs. (4), the
magnetic field is represented by A and the energy
of the transition by unity. If we denote the line
shape by I(A), the part of the line within A and
X +dX is due to ions which have two levels separated
by unity when A is in this interval. Thus, I(A)dx
= [probability of finding two levels such that AE=1,
when X is in the interval (\, » +d1)]x[transition
probability for the corresponding transition].

Let E; and |i) be the eigenvalues and eigenvectors
of Hamiltonian (3). The resonance condition for
the levels i and j is |E; - E;| —1=0, which we de-
note as g(i,7, X, Y,A)=0. In the XY plane, this
condition defines a curve C,. If A takes the value
X +dX, the corresponding curve is C,,; and its
equation is g(i,j, X, Y, A +d\)=0. Let D;,; be the
part of the XY plane which is contained between
these curves, and p(X, Y) be the distribution func-
tion for the random variables X and Y. Then

N)d\ = ij ffp,. p(X, V)dxay|G|we|i)|?
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= ), ff F(z i, X,Y)dxdy ,
i,

where %, is the Hamiltonian (7) or (8). For the
evaluation of this integral we can write, as usual,

= T [ ax [T

Yt

X, (i, j)
dYF(X,Y),
14,4
where the limits of integration are specific of each
domain D;;. For the integration over Y, the value
of X is fixed. Thus, Y,(i,j, X) is a root of g(i, j,
X,Y,\)=0and Y, (i, j,X) is a root of g(4,4, X

Y, +d\)=0. I we denote Y,=Y,+AY, we obtain
AY=—-dr (g,{/g{,)(yl) , and thus

0)=- 5 fx’iz(”)dXF[X Y10 Ngi/gt) e, -
i,d (i
(A1)

APPENDIX B: GENERATION OF GAUSSIAN
RANDOM NUMBERS

The following procedure was indicated by Lau-
rent of the Mathematics Department.

If U is a random variable uniformly distributed
in the interval [0, 1], V= —1nU is a positive ran-
dom variable having ¢™ as a distribution function.
Let us consider the function g(V, W)=~ 2_w,
where W is another random varlable uniformly dis-
tributed in [0,1]. As e"’%2 <1, the probability
for g(V, W) to have a value in [o, 1] when V=v is
simply e @%/2 Among the possible values for
V, we call R those which are such that g(V, W) is
in the interval [0, 1]. The distribution funct1on for
R is the product e e ¥ 2-(1/Ve)e=?%/2, i.e.,
a Gaussian function of unity half-width.

The generation of random variables uniformly
distributed in [0, 1] was made using an internal
algorithm of the IBM 360-65 computer. Taking
two such variables U and W, we calculate V=InU
and we retain only the values of V such that — InW
> 1(1 - V)% These are the R numbers and they are
positive. To get a symmetrical distribution func-
tion, we use another variable uniformly distributed
in [0,1]. When it is greater than %, we take the
number R; when it is less than 3, we take the
number -R.

*Laboratoire associé au CNRS.
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