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The normal-superconducting phase boundary for a thin-film microcylinder was measured
in a magnetic field H making an angle (9 with the cylinder's axis. The depression of the transi-
tion temperature for small values of transverse field H& was proportional to H& as predicted
by Tinkham, and equaled the predicted magnitude. At larger values of 0& there was a sudden

discontinuity of slope in the Tc-vs-8 curve at a critical value of the transverse field H«.
This discontinuity in slope apparently corresponds to a change from a superconducting state
with uniform field penetration in the transverse direction to one with a single row of trans-
verse vortices, the transverse-angular-momentum quantum number of the carriers changing

from 0 to l. A peculiar splitting of the flux-quantization resistance maxima was observed in

the neighborhood of H«and qualitatively explained.

l. INTRODUCTION

Paper I' reported measurements of the phase
boundary between the normal and superconducting
states for thin-film superconducting hollow cylin-
ders of micron size. The transition temperature
was measured as a function of the magnetic field
applied parallel to the axis of the cylinder. The
results agreed well with Tinkham's theory of the
transition temperature in a parallel field. In
Paper II we now report measurements of the phase
boundary in which the effect of the angle between
the axis of the cylinder and the magnetic field is
investigated. A theory predicting the angular de-
pendence of the transition temperature was briefly
suggested by Tinkham' in explaining some of the
earliest results by Little and Parks on micron-
sized hollow cylinders.

II. THEORY

A theory for the transition temperature of a
small cylindrical thin-film superconductor in a
magnetic field has been given by Tinkham. This
theory was briefly summarized in Paper I'; the
main result is the prediction that the variations of
the transition temperature can be described by the
expression

~T, (H, e)=,', — Hcos(e)—T,(0)H'
-

ny, '
c 7 ay2 O ~2 0 m'R

+——,H cos (e) + 4H' sin'(e) . (1)
1 d

Here 6) is the angle between the axis of the cylin-
der and the magnetic field; R is the radius of cylin-

der; d is the thickness of thin-film cylinder; II is
the magnitude of the applied magnetic field; e is
the quantum number of the angular-momentum
state; X(0) is the penetration depth of the film at
T = 0; H„(0) is the thermodynamic critical field of
the film material when in bulk form; T,(0) is the
superconducting transition temperature for II= 0;
and AT, (H, e) = T,(H, e) —T,(0) is the depression of

T, as a function of H and 0.
Equation (1) is derived by considering the Gibbs

free energy of a superconductor as postulated by
the Ginzburg-Landau theory, 4' which can be writ-
ten in the form

G, = &„f dr[~I q(r) I'+-.'~l q(r) I'
suyercond

+(&'/»-*) I&le(r) I
I'+ l I

el'~*&'.]

+ f„dr[-,' p, (r)
I
H(r) —Ho(r) I'] . (2)

G„ is the Gibbs free energy of the cylinder in the
normal state. G, is a functional which when mini-
mized with respect to g, and A gives the equilib-
rium Gibbs free energy. g(x) is the order param-
eter and I $(r)1 is interpreted as the number of
superconducting carriers of mass ~~* and charge
e*. The velocity operator V, is a function of the

magnetic vector potential A and the phase 4 pf the
order parameter g,

V, = (1/m*) [SVe(r) —e*A(r)] .
In deriving and applying Eq. (1) it must be kept

clearly in mind that we are dealing only with the
limit in which T- T,(H, e), the transition tempera-
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ture for a given magnetic field and angle. T,(H, 8)
marks a second-order phase transition (by assump-
tion in the Ginzburg-Landau theory) and for such
a transition the order parameter P decreases con-
tinuously to zero as the temperature approaches
T, from below (H and 0 constant). Thus, as we ap-
proach the phase boundary at T, as defined by Eq.
(1), the density of supereonducting carriers I ( I

approaches zero.
In this limit there can be a velocity field V, of

the superconducting carriers but no diamagnetic
currents, since the current density J,=

I ( I e*V,
will approach zero because the carrier density

approaches zero. No diamagnetic currents
imply no distortion of the applied uniform mag-
netic field, and it is this geometrical simplicity
that makes the problem tractable. This simplifi-
cation is reflected in Eq. (2) by the disappearance
of the last integral since I H(r) —Ho(r) I is propor-
tional to the induced current density J, at any value
of r in the cylinder. This is fortunate, since this
integral is over all space, not just the volume of
the superconductor, and would not lead to the
local Ginzburg-Landau equations.

The requirement that we consider only the limit
of T- T, avoids another difficulty. As T- T, the
characteristic length over which the order param-
eter can change from 0 to I g I with an associated
energy/unit volume equal to I o I I g I is g(T)
=(8'/2m*i nl)' '. When T- T, , $(T)-~ as
(T, —T) ' . This means that the energy associated
with the gradient term over a sample of dimension
L will be [L/((T)] times the energy associated with
the o. I(I~ term. When the characteristic dimen-
sion of the sample L «$(T), we can neglect the
gradient term, and since I ( I2 is uniform over the
superconductor we can write the Gibbs free energy
(per unit volume) as

G. = G. + ~
I o
l'+ -'&I ~ I'+-'

I e I'm* «'.&- (4)

The condition L«$(T) is certainly met when the
characteristic dimension is the film thickness.
%hen the characteristic dimension is the perim-
eter 2mB, this condition will no longer hold for
some value of 0 greater than zero. At this point
the validity of Eq. (4) will be questionable.

The vastly simplified expression for the free
energy, Eq. (4), is now minimized with respect
to I/I and the limit of I/I -0 taken. This re-
sults in the condition

—n =-, m*( V', ),„.
Equation (5) states the condition for the transition
temperature in a magnetic field is that the kinetic
energy of the superconducing pairs equals the pair
binding energy. The above argument was made in
detail because, particularly for a transverse mag-
netic field, it may not be intuitively obvious that in

The binding energy of a superconducting pair is

a,',{T) e'.,(T)e+'&'(T)
4m I ( I

m*ca

where the last expression comes from the defini-
tion of the penetration depth &

& —= m*c /4@i(l e*

Finally, when we introduce the usual two-fluid
empirical temperature dependences for H, and X

in terms of t= T/T„

a„(T)= H, „(o}(1-P),
~(T) =~(0) (1-t') '",

Eq. (5) becomes

(lo)

(12)

Equati, on (1) follows from Eq. (12) by averaging
in the radial direction (R =average radius) and

neglecting higher-order terms. In Eq. (1}the first
term in the parenthesis describes the periodic
variation of T caused by tile quantlzatlon of flux
associated with the magnetic fieM parallel to the
cylinder's axis. The second term gives the mono-

tonic decrease in T, because of the screening cur-
rents within the film caused by the parallel field.
This term is equivalent to the Ginzburg-I andau

expression for the (parallel) critical field of a thin

film,

a„,(T) = ~24 e.,(T) [~(T)/d] . (13)

The last term in Eq. (1) represents the monotonic

the limit of T = T, the kinetic energy of the carriers
is finite but there is no distortion of the applied
field by diamagnetic currents. The validity of this
picture is strongly supported by the experiments
described in Paper I.

After disregarding the magnetic field energy we

have to consider only the kinetic energy of the
carriers. The velocity fieM can be found from the
fluxoid-quantization condition. This condition,
given by Eq. (6) follows from Eq. (3) and the fact
that $ is a single-valued function:

gm*V, dl+(e*/c) f f H. ds=nh. (6)

Equation (6) is applied to any contour within the
superconductor, and the second integral for the flux

is over the surface enclosed by the contour. H is
the applied magnetic field (which in the present
experiments is uniform}, and n is an integer or
zero. Knowing V, we find that for a, cylindrical
superconductor the kinetic energy per carrier as
a function of radius r is

Sn R m*c
-', m~ V'(~) = (ne, —vda}'
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decrease of T, caused by the component of the
magnetic field perpendicular to the axis of the cyl-
inder. This term was derived by Tinkham by as-
suming that for a small transverse magnetic field
the velocity-field pattern is similar to that shov n
in Fig. 1(b). The motion is down one side of the
cylinder, half around the cylinder at the end, and
back up the other side. When the length of the
cylinder L»R we can neglect the end effects, and
the fluxoid-quantization condition, Eq. (8), is at
any angle Q,

r~*V,2L+ (e*/c)H sin(6) 2R sin(g)L = vh .

Here v represents the angular-momentum quantum
number about an axis in the direction of the trans-
verse field, H, = H sin&. When t = 0 the veLocity
field is given by

V, = (e*/m "c)Hsin6R sing .

Substituting this into Eq. (5) and using as before
Eqs. (8), (10), and (11) we obtain the depression
of the transition temperature because of the trans-
verse field:

~T, = T,(0)R'H' sin'(6)/4H'„(0) ~'(0) .
Actually this term is one-half as large as the cor-
responding term in Eq. (1). This discrepancy re-
sults from Tinkham assuming a flat film 2R wide

instead of a cylinder, the additional factor of 2

coming from the average of sin2P over the cylinder.
To use Eq. (1) to analyze the data we will mainly

consider those points on the phase boundary for
which T,(H, 6) is a, local maximum, and the first
term in the parentheses of Eq. (1) is zero. We

will assume that sin0 = 0 and cos0 = 1, which are
sufficiently accurate approximations for the pres-
ent measurements at small angles. With these
assumptions Eq. (1) can be written as

If we square t/', and average it over the azimuthal
angle P we obtain

( V, )„=(e*/v'. *c) 2 (R2H sin26) . or

T,(0)d', I 12R'6
'~H' t'~ =

(24&'(oIe' (o)
&'l&&+

(18)

T,(0) —T,(H, 6) =yoH (1+ 12R 6 /d ) .

) ZL~g
For 0=0 the depression of the transition tem-

perature due to the finite thickness of the film is
proportional to H with a coefficient yo which is
characteristic of the cylinder. For a finite angle
the coefficient of H becomes

y=yo(1+12R 6 /d ) . (20)

To compare with experimental data it is convenient
to use the following expressions:

(c)

-dT, (H, O)

dH'

—BT, H, O 1'2R 6

—9 T,(H, 6) 12R2
e(6') 6(H'), ' d'

III. MEASUREMENTS

(2i)

I[~i
1 tI/)~ ) /'))

(&)

FIG. 1. Velocity fields (averaged over the film thick-
ness) for the superconducting cylinder at the transition
temperature for different applied magnetic fields. (a)
Axial field only (H, & pro/&8 ). (b) Small. transverse
field only. Superconducting carriers in zero-angular-
momentum state. (c) Transverse field large enough to
induce a single row of quantized vortices. (d) Sketch of
the resultant veloci. ty field for a combination of (a) and
(c) resulting from a fieM II applied at an angle 0 to the
axis of the cylinder.

Experimental Procedure

The experimental procedure was described in
detail in Paper I. Thin-film microcylinders were
prepared by vacuum evaporation of aluminum onto

quartz fibers whose radii were in the neighbor-
hood of 1 p. . A cylinder was mounted on a holder
and immersed in liquid helium so that the cylinder
was held parallel to the axis of a copper solenoid
and at the midpoint of the solenoid. The axis of
the cylinder could be tipped with respect to the
magnetic field along two orthogonal axes. Mea-
surements were made of the resistance of the
cylinder as a function of the temperature T, the
magnetic field H, and the angle 0 between H and
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H~ = H sin 8

~pe AXIS OF CYLINDER
Hy= H sin $

(b)

FIG. 2. Diagram defining the components of the mag-
netic field. (a) View perpendicular to the plane containing
the axis of the cylinder and the applied magnetic field H.
(b) Axial view of the cylinder showing the components of
the transverse field A&.

the axis of the cylinder (see Fig. 2). The transi-
tion temperature at zero magnetic field T,(0), was
taken to be at the center of the steepest portion of
the resistance-vs-temperature curve. The value
of resistance at this point Rr, (0) was close to one-
half the normal resistance. The phase boundary
between the normal and superconducting state was
then taken to be at those values of T, H, and 0

which gave a resistance of Rr, (0).
The procedure was to first align the cylinder with

the field by maximizing the transition temperature
with respect to angle in a field of several hundred
gauss. The position of alignment was easily recog-
nized from a series of curves of resistance vs field
such as shown in Fig. 3. Here we see the flux-
quantization oscillations with their resistance
minima outlining a quadratic background. At 0 = 0
the quadratic background is caused by the finite
thickness of the films and agrees well with the the-
oretical value as was shown in Paper I. When the
axis of the cylinder is tipped slightly from align-
ment, the curvature of the background parabola
increases sharply with the angle 0. This is
qualitatively the behavior expected from Eq. (1).
It also justifies Tinkham s prediction of the ex-
treme sensitivity of this background curve to field
alignment. After the field was aligned by mini-
mizing the background curvature, the temperature
was raised above the transition temperature in
zero field to eliminate possible trapped flux. Then
starting at T,(0) with a sample resistance Rr, (0)
and a given angle 0, the temperature was succes-
sively lowered and the value ox.' values of H deter-
mined which gave a resistance Rr, (0) and there-
fore lay on the phase boundary. In some cases the
magnetic field was held constant and the angle was
varied to obtain points along the phase boundary.
In none of the measurements was there noticeable
hysteresis giving different values of the phase
boundary when approached from different paths in
(H, T, 6) space.

Results

Figures 4 and 5 show measurements of the tran-
sition temperature T, as a function of the applied

LLJ

O

M
V)
LLI

LK

I I 1

-400 -300 -200 - IOO 0 IOO 200
MAGNETIC FIFLD (G)

I

300 400

FIG. 3. Resistance of a superconducting aluminum

cylinder at T~ as a function of the applied field H at dif-
ferent angles 9 (in rad).

magnetic field H and the angle 6 for a 2500-A-
thick Al film 1.397 && 10 ' cm in radius. In Fig. 4
the values of T, plotted are the local maxima lo-
cated at integral quantum numbers when the net
circulation around the cylinder is zero. For 8 =0
the decrease in T, is accurately proportional to H'
as expected from Eq. (19). For 6 greater than

zero, (-dT, /dH~) increases with the angle. On

close inspection it is seen that for each angle there
are two regions of constant slope. The point at
which the slope changes is indicated by the small
arrows. Figure 5 shows the initial value of the
slope (- dT, /dH )0 plotted against 6~. It is seen
that this plot is a straight line as predicted by
Eq. (22). The dashed line is the theoretical value
given by the right-hand side of Eq. (22),
yo(l+ 12R 6 /d ), yo being the background slope at
0 = 0. The fit is excellent, probably fortuitously
close since the coefficient ot 6 in Eq. (1) is sup-
posed to be only approximate. But in any case the
general behavior of this 2500-A film at small fields
is exactly as predicted. The break in the slope at
some finite field was not predicted.

Figures 6-8 are similar measurements for a
very thin Al film 340 A thick and with a radius of
1.64&& 10 ' cm. Figure 6 again shows the quadratic
dependence of T, on H for 6=0. (The measured
points were omitted since they are plotted in Fig.
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FIG. 1p. (-gT /&H)p vs 0 (at small values of H) for
cylinder 4. Dashed line is theoretical value.

FIG. 8. ( dTcidH )p vs 0 (at small values of H) for
cylinder 1. Dashed line is theoretical value.

thick and with a 2. 50&& 10 -cm radius. The be-
havior is qualitatively very similar to the thinner
film with two clearly defined regions of constant
slope on the T,-vs-II plot. Figure 10 shows that
(-dT, /dH )c is approximately proportional to 8~

although the coefficient is somewhat larger than the
theoretical one. In Fig. 9 the slope (-dT, /dH )

suddenly decreases at approximately the same
value of the transverse field II, =0.36 G. This re-
sult is obtained from Fig. 11 if we neglect the point
at the smallest angle. For somewhat higher values
of field we have different values of the slope for
each value of 8.

Figure 12 gives (- dT, /dH~)0 as a function of 83

for a cylinder 1030 A thick and 1.V8 &&10 cm in
radius. The result is not very different except
that in this case the measured values are less than
the theoretical.

0

Figures 13-15 gives results for a cylinder 320 A

thick and 1.08&&10 cm in radius. The data for T
vs II~ for various angles are similar to the 1095-A
cylinder. In Fig. 14 the experimental values of
(- dT, /dH3)0 are in fair agreement with the theory.
In Fig. 15 the values of the transverse field at
which the break in slope appears in Fig. 13 are
approximately 1.2 G except for the two smallest
angles. For somewhat higher values of field we
have different values of the slope for each value
of 0.

For this sample an additional phenomenon was
observed. As H was increased (see Fig. 16) it

0.4—

0.5—

QUANTUM NUMBER

2648 IO 15 20 25 50 55

l.264
40

C9

u 0.2—

I.262

I- I.260 O.I—
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0.4 0.8 I.2
H' (io' G' )

I.6 I

I 2
8 ( IO rad )

FIG. 9. T~ vs H for six values of 0. Cylinder 4,
d =1005 A, R =2.50 x10 ' cm.

FIG. 11. Critical transverse field Ht, vs 0 for
cylinder 4.
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FIG. 12. (-dT~/dH )p vs 0 (at small values of H) for
cylinder 2. Dashed line is theoretical value.

was found that at a finite angle the flux-quantiza-
tion resistance maxima were split. V/hen 8 = 0
these maxima in the resistance as a function of H
are in theory (and to a fair approximation in prac-
tice) the intersection of parabolas for different
values of orbital angular momenta.

However, for a finite angle and for values of H
greater than a certain value, a notch appears at the
position of the resistance maxima. If we interpret
this as a feature of the phase boundary, it reflects
a sudden increase in the transition temperature
near the values of field corresponding to half-inte-
gral values of flux quanta. As the field increases
the depth of the notch and the splitting of the re-
sistance peaks increases montonically. This
splitting of the resistance peaks was also observed
in cylinder 1, but in no others, which implies that
a small film thickness may be necessary. The

OJ6

o
O

CV

2

I

~~

~Y

&P I I

0 2 6
I

4
8 (lpga rad )

FIG. 14. (-dT, /dH )p vs 0 (at small values of H) for
cylinder 3. Dashed line is theoretical value.

significance of this effect will be discussed in
Sec. IV.

IV. DISCUSSION

For all five of the cylinders measured, the de-
pression of T, in a magnetic field was proportional
to 0~ for small values of 0, the angle between the
axis of the cylinder and the field. Table I shows
that the value of

s e7'.(sr, el)
98 8H 0

is approximately equal to the value predicted by
Eq. (1) or Eq. (22). There seems to be no corre-
lation between the deviations from the theory and

the values of the thickness d and the radius 8, and

we can probably assume the scatter to be random.

IO
I

—————e=o
8= 1.20

QU AN TUM NUMBER
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I
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~ ~

I

I 2
H~ (lo~ G~) 8 {!0~ rod)

FIG. 13. T~ vs H for eight values of 0. Cylinder 3,
d=320 A, R=1.08x10 cm.

FIG. 15. Critical transverse field H„vs 0 for
cylinder 3.
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I.O—
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FIG. 16. Resistance of cylinder 3
(divided by normal state resistance)
as a function of the applied field at a
series of temperatures near T, for
/=5. 74x10 rad. For H~20 G the
resistance maxima are split into two

peaks whose separation increases with
H.

0
IO 20

H (G)
30 40

The agreement with Eq. (1) is definitely better than
with the presumably more exact Eq. (17).

When the depression of T, is plotted against H
we obtain (for small values of H) a line of constant
slope, the magnitude of the slope increasing with
8. Figures 9 and 13 show such results for cylin-
ders 4 and 3. For 6) & 0 there is a discontinuity in
slope at a certain value of the applied field for each
value of 8. The value of the transverse field (H„)
at which the discontinuity in slope occurred was
found to be nearly the same for all but the smallest
angles (see Figs. 11 and 15). The same behavior
was observed in cylinders 1 and 5, although here
only two values of angle had been used. In cylinder
2 the field applied was presumably too small to
have reached the region of the discontinuity. This
behavior immediately suggests the quantization of
angular momentum in the transverse direction
associated with the appearance of a row of vortices.
At such a discontinuity the velocity field associated
with H, might change from that shown in Fig. 1(b)
to something like that shown in Fig. 1(c). This
corresponds to a change in the angular momentum
of the supercarriers about a transverse axis from
a quantum number v=0 to v= 1. Figure 1(d) is an
attempt to show the sort of velocity field obtained

when the transverse vortex structure of Fig. 1(c)
is superimposed on an azimuthal velocity field cor-
responding to an axial magnetic field.

This vortex state should have a second-order
transition to the normal state, and its free energy
should perhaps vary as H because of the finite
diameter of the superconductor. In Figs. 9 and

13 we notice that the slopes at higher values of
H2 when extended back to the T, axis all lie in a
small region of temperature except for the data
for the smaDest angles. This can perhaps be in-
terpreted as the transition temperature for v = 1

at H=Q and is below T, for v=0 and therefore not
observed.

If this general picture is correct we should ex-
pect the v = 1 state to have a second-order transi-
tion to the normal state when one quantum of flux
is contained in an area of about 2R((T). The later-
al dimension of the vortex is fixed by the diameter
of the cylinder. The minimum distance between
vortices should be about $(T). From this simple
model we would expect the critical transverse field
to occur at

H, = P /2RE(T) . (24)

The coherence distance $(T) depends on T as

TABLE I. Summary of data on angular dependence of T~ in a magnetic field for small values of the angle 0.

Cylinder
No.

Film
thickness

d
(10-' cm)

Magnetic field
periodicity

~H
(G)

Cylinder
radius R
(10-' cm)

8 —BT~(H, 8)

T (0) yo
——( dT, /dH2) 8 ()

8-82 8H j 0 yt = V012R2/cP

{K) (K/G2) (K/G2 rad2) (K/G2 rad2) ~ /p

0.34

1.03

0.32

1.095

2. 50

2. 45

2. 07

5.70

1.03

3.38

1.64 1.3940

1.78

1.08

1.2527

l.3618

1.2648

9 25x10 8

3.58x10 ~

5. 82x10

2. 83 x10

1.40 1.2146 2.40x10 5

0.48x10 2

0. 93x10

0. 95 x10 2

2. 66x10 2

0.51x10 2

0.26x10 2 1.85

1.28x10 2 0.73

0. 79x10 2 1.20

1.77x.10-2 1 50

0.90x102 0 57

The absolute value of T~(0) is perhaps accurate to 10 K. The value given to a precision of 10 4 K is arbitrary and

used only for consistency with relative values which are at least this precise.
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TABLE II. Comparison of measured critical transverse magnetic field H«and theoretical value.

Cylinder
No.

2B
(10-4 cm) (10 ~ cm)

0

(102 rad)

1/2

T -T (d
C. Cf @0/D
(10 ' cm)

Ht
(G)

Htc D

3.28

2. 16

5, 00

2. 80

2. 33

2. 26

4, 18

6.30

0. 925
1.76

1.20
2. 13
5. 75
6.67
7. 60
8. 52

0.64
1.39
1.85
2. 78
3. 70

3.70
4. 63

18, 7
18.3

25. 0
30.0
11.3
11.1
11.1
ll. 1

20. 4
17.7
17.1
15, 3
15.1

10.0
10.3

1.43
l.40

1.22
1.46
0.55
0.54
0, 54
0.54

4. 27
3.70
3.58
3.20
3.16

1.75
1.82

1.75
1.82

1.45
1..48

1.70
1.42
3.77
3.84
3. 84
3.84

0. 48
0.56
0. 58
0. 65
0. 66

1.18
1.14

0. 89
0, 88

0.47
0.49
1.16
1.28
1.18
1.23

0. 24
0.39
0. 35
0.36
0. 32

0.63
0. 82

0.61
0.59

0.28
0.35
0.31
0.33
0.31
0.32

0.50
Q. 70
0.60
0.55
0.49

0. 53
0. 72

It is assumed for Al that $O
——1.6x10 4 cm.

h(T) = k(0) [T,/(T. —T)]'" . (25)

5(0)=(h f)'"=(( &)'"

From Eqs. (24)-(26) we have

(26)

0
tc 2H($ g)1/8 [7 /(T T)]1/2

4.0—

cn30—

LLj
CL

LLo 2.0

I—
I—

l.0—

~ 8.52
7.60

~ 6.67
~ 5.74
+ 4.8 I

3.89
x $06

2. I 5
I I. 20

For thin films such as these with a short mean
free path l, which is approximately equal to the
thickness d, we have

Table II gives the ratio of the measured to the
predicted values of H„ for cylinders 1, 3, 4, and

5. The results are rather consistent for each film
even for small values of 8 for which H„ is con-
siderably larger than for larger values of 6). The
order of magnitude of the ratio in each case is
fairly close to unity. The reasonably good agree-
ment suggests that H„marks the transition from
the v = 0 to a v = 1 vortex state with a single row
of vortices. The 2500-A-thick film (cylinder 5)
does not entirely fit this picture since the magni-
tude of the slope (- dT, /dH~) increases slightly
instead of decreases. The explanation of this is
not clear. For cylinder 3 there appears to be an

additional discontinuity at a value of H & H„, al-
though the results were not very reproducible.
This perhaps corresponds to a vortex state with

Hg (G)

FIG. 17. Separation of the split peaks in the resistance
versus H& for the data in. Fig. 16 and eight other values
of 0. The splitting correlates well with H&, and there is
a threshold value of transverse field at approximately
H&, where the effect appears.

FIG. 18. Suggested form of the phase boundary for a
singly connected film in a magnetic field H which has a
transverse component. v refers to the angular-momen-
turn quantum number in the transverse direction.
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FIG. 19. Simplified diagram showing the v =0 state
with flux-quantization oscillations intersecting the p = 1
state drawn without oscillations.

a second row of vortices when 2R & $(T). For
larger fields the dependence of T, on H becomes
linear and azimuthal flux quantization disappears.
This behavior is characteristic of the two-dimen-
sional vortex state.

The appearance of the v =1 vortex state presum-
ably explains the splitting of the resistance maxima
observed in cylinder 3 (Fig. 16) and cylinder 1
(Fig. 20). It was found that if the splitting of the
resistance maxima (measured in terms of the axial
magnetic field) was plotted (Fig. 1V) as a function
of the transverse field H, we obtain for all values of
0 a nearly universal curve. This curve implies
that H, is the controlling factor in the splitting and
that there is a threshold field (H, in Fig. 1V) at
which the effect appears. The value of H& = 0.83 G
is slightly less than the value of H„= 1.2 G for the
larger angles.

To try to explain this splitting of the resistance
maxima let us assume that the effect is a thermo-
dynamic one and that there is a corresponding
splitting of the minima of T,. This assumption is
not necessary, but it is plausible. We know that
the quadratic background and the parabolic flux-
quantization oscillations are thermodynamic ef-
fects which are accurately reflected by the resis-
tance. Furthermore, the splitting occurs at a dis-
continuity in the slope of the phase boundary which
seems to coincide with the onset of the vortex state.
These facts make it reasonable to try to explain
the details of the splitting as a thermodynamic
effect.

We will assume that the sudden change in slope
at H„may be understood from Fig. 18, in which
the transition temperature of the v=0 and v =1
states are plotted as a function of H, ignoring for
the moment that the films are doubly connected and,
therefore, suppressing the oscillations due to
azimuthal flux quantization. T, varies as K2 from
A to B. At B the single-line vortex state appears,
and we assume that T, varies with H (or at least
with a higher power of H than unity) but with a

UJ
(3
Z:

I—
(A

V)
LIJ
CC

5 IO l5 20 25 50
QUANTUM NUMBER

55 40

FIG. 20. Resistance vs applied magnetic field for cy-
linder 1. The quantum numbers correspond to values of
the magnetic field giving integral numbers of flux quanta
through the cylinder. The field period per quantum is
2.45 G. The splitting of the resistance peaks (corre-
sponding to minima in T~) starts at n=17. Noticeable
deviation from the initial slope in Fig. 6 is marked by the
arrow at a; complete transition in the slope in Fig. 6 is
shown by the arrow at b. H«determined from Fig. 6 is
also marked.

smaller coefficient. From B to C the two-dimen-
sional vortex state develops and from C to D, T
varies as H, a characteristic of the two-dimension-
al vortex state. The region CD is observed experi-
mentally at high fields after the quantization effect
is no longer observed. In Fig. 19 we suggest a
simplified picture of the intersection of the phase
boundaries of the two states. The v = 0 state is
represented as having flux-quantization oscilla-
tions. The v =1 state is represented without os-
cillations for simplicity in presenting the essence
of the argument. As T, for the v = 0 state ap-
proaches T, for the v =1 state the minima of the
phase boundary, corresponding to high values of
azimuthal circulation, are the first to become un-
stable and switch to the v =1 state. This switching
could explain the progressive cutting off of the
minima in T, (maxima in resistance). Such an
explanation is certainly not complete, a fact which
is demonstrated by Fig. 20, the measured resis-
tance-vs-magnetic-field curve at a given tempera-
ture for cylinder 1. The notch in the resistance
peak (corresponding to a maximum in T,) appears
at quantum number n = 17. As n increases, the
notch gets successive1y deeper and finally by n = 30
completely dominates the quantum oscillations in
T,. On Fig. 20 are marked the position of H„ from
Fig. 6 and the position a, where the initiation of
the change in slope takes place in Fig. 6 and posi-
tion b where the change in slope in Fig. 6 is essen-
tially complete. Coincidence in the change in slope
with the change in shape of the quantum oscillations
shows quite conclusively that both effects have
the same cause, presumably the transition from the
t =0 to the v=1 state.

The vertical lines on Fig. 20 in the region from
n = 17 to n = 30 are interpolations of the field at in-
tegral values of n as determined from n & 17 and
n & 30. Judging by these equally spaced lines the
position of the notch gradually changes from a
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half-integral quantum position to an integral quan-
tum position from ~ = 17 to ~ = 30. Also the shape
of the quantum oscillations for the v = 1 state ap-

pears to be inverted from what they are in the v = 0

state. As yet we have no detailed explanation of
this behavior.
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Using the Green's-function formulation, an expression has been derived for the thermal

conductivity of transition-metal superconductors containing nonmagnetic impurities in the

two-band model of Suhl, Matthias, . and Walker (SMW). The calculations have been carried
out neglecting the interband electron-phonon coupling and taking the interband-scattering
collision time v, &

= 10 ~ sec. The thermal conductivity K is found to be the sum of two terms

Kg and K2. KI is the dominating term and depends in a complicated manner on both energy

gap parameters &, and Q, due to s and d bands, respectively. On the other hand, K2 depends

only on 4& and is smaller by a factor of -10 . A log-log plot of thermal conductivity vs tem-

perature turns out to be a straight-line curve with a slight change in its slope at a tempera-
ture which depends upon the impurity concentration. Furthermore, K is found to decrease
with increase in impurity concentration. These qualitative features of the present study are
in very good agreement with the recent experimental investigations of Anderson et a$. on

niobium and lend support to the validity of the SMW two-band-model theory.

I. INTRODUCTION

The two-band model was first proposed by Suhl,
Matthias, and Walker~ (SMW). They showed that
at low temperatures both the s-band and d-band
electrons in the transition metals can be in the
superconducting phase. Some recent experimental
investigations also show evidence for the existence
of a second energy gap, ~'3 and this has given rise
to great interest in the study of this model. Thus

there have been several theoretical inves tig ations
within the framework of this model. It has been
found that this model quite successfully explains
various physical properties of superconducting
transition metals. Chow, for example, has recent-
ly studied the effect of nonmagnetic impurities on
the specific heat of superconducting transition
metals in the two-band model, assuming a strong-
intraband-phonon-coupling limit, and has been able
to explain the two-slope behavior of the specific
heat of niobium, observed by Shen et al.

Guided by these successes, we extend the SINEW'

two-band model to study the thermal conductivity
of superconducting transition metals as a function
of temperature, using the Green's-function formu-
lation. The effect of nonmagnetic impurities on

thermal conductivity is also determined. Starting
from the Kubo formula for thermal conductivity,
we use the technique employed by Ambegaokar
et al. The calculations are carried out on the
assumption of a strong-intraband-phonon-coupling
limit. Vfe make use of the 4&& 4 matrix formulation
of the Green's function, which becomes diagonal in

the above coupling limit.
In Sec. II we write the Hamiltonian and other

basic equations of the two-band model. In Sec.
III an expression for the thermal conductivity K
has been derived using the matrix Green's-functions
given in Sec. II. This is followed by a discussion
of the results of numerical computation and a com-
parison with the recent experiment of Anderson
et al. ~~ on niobium.


