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Comment on Gorkov and Eliashberg's Result for the Polarizability
of a Minute Metallic Particle
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The potentially important theoretical prediction of Gorkov and Eliashberg that the electronic
polarizability of a minute metallic particle is enormously enhanced is shovrn to be invalid be-
cause of the neglect of the effect of depolarization fields. But a more serious objection is the
assumption of a constant internal field.

A few years ago Gorkov and Eliashberg' pub-
lished the remarkable theor etical prediction that the
electronic polarizability of a metallic particle—
sufficiently minute that its electronic energy lev-
els are discrete-should be enormously enhanced
with respect to the classical polarizability o& = x
of elementary electrostatics (x is the mean par-
ticle radius). The order of magnitude of the pre-
dicted enhancement was (k~r)3, where k~ denotes
the limiting Fermi wave vector, and the effect
should be observable in external fields E and at
temperatures T such that the discrete electronic
energy levels of the minute particle system re-
main unmixed. Under such conditions the minute
metallic particle was considered to behave as a
dielectric. Besides the intrinsic physical interest
of the effect, such an anomalous enhancement of
the polarizability would have important technolog-
ical applications since the effect could clearly be
used to synthesize dielectric materials with large
controllable dielectric constants. Naturally
enough, several experimental investigations of the
effect have subsequently been made. All such
attempts, however, have failed to observe the
enhanced polarizability.

It is the purpose of this paper to review criti-
cally the validity of Gorkov and Eliashberg's po-
tentially important result.

We first note that the result of Gorkov and Eliash-
berg (GE) can be ruled out on the grounds of clas-
sical electrostatics alone. The mathematical rea-
soning behind the latter statement is contained in
the following familiar set of equations:

o, =~mr'P/E = (1 —E„,/E) ~',

E„,= E —+smP= 0 (conductor) ~ 0 (dielectric). (2)

Here P denotes the induced homogeneous polariza-
tion and E„,the local field inside the sphere, which
differs from E on account of the depolarization
field —+zmP. Since, in general, E„,~O, we ob-

tain the result, known in electrostatics, that the
polarizability of a homogeneous dielectric sphere
cannot exceed z, i.e. , that for an isolated con-
ducting sphere. Providing the metallic particles
considered by GE are not too small, i. e. , z is
still large by comparison to a typical interatomic
distance, the above electrostatics argument ap-
plies as well to the situation in which the electronic
energy levels are discrete as to the more usual
situation in which they may be regarded as con-
tinuous.

A consideration of GE's paper in the light of
elementary electrostatics reveals that these au-
thors have made a trivial, yet drastic, error in
their calculation of the induced polarization P.
Whereas in the presence of sufficiently weak fields
P must invariably result as the linear response to
the local field E„„GEhave erroneously regarded
P as the linear response to the external field E.
Introducing, for the case of the minute metallic
particles, the susceptibility X,

P= XpEu, „.)

it follows from (1) and (2) that

and
E„,= E/(1+ +~ myp)

a, =~smr'1, /(1+~s my p) .

(4)

Now GE's calculation is essentially for the sus-
ceptibility X~ which, for the minute-particle sys-
tem, they find is very large - (kzx)~. Since they
have written P= X~ E, they conclude that e~ is like-
wise very large. However, in view of (4) the very
large X~ found by GE actually implies an almost
complete screening of the external field (E„,=0)
so that n~ is consequently close to the classical
result o'~= xs, as explicitly shown by (5).

As assumed by GE, when the electronic energy
levels are tobe regardedas discrete, X~ may be cal-
culated by treating the metallic particle as a
"macroscopic atom, " in which case one may apply
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standard linear-response theory to obtain p~ in
terms of the matrix elements of the coordinates of
the electrons (i. e. , oscillator strengths) and their
respective energy eigenvalues. We present now

a fairly general expression for p~. Its derivation
renders transparent the underlying approximation
of GE's calculation of this quantity.

Written in its most general form the linear-re-
sponse expression for y~ actua, lly relates p~ to the
familiar static density-density response function
y(r, r ) of the many-electron system4:

(6)

where ~ denotes the volume of the system and x„
denotes the spatial coordinate in the direction of
the applied field (for convenience, we have con-
sidered g~ to be a diagonal component of the gen-
eral susceptibility tensor). We recall that y(r, r )
is defined as

y(r, r') = (&/ik) f dt([ p(r, f), p(r, 0)]),

where Io(r, f) denotes the Heisenberg operator speci-
fying the electron density at the point r and time t,
and the brackets ( ~ ~ ~ ) denote an equilibrium en-
semble average. Now in the interior of the many-
electron system y(r, r') will be strongly peaked in
the vicinity of the point r=r', its range about this

origin being of the order of the inverse of some
appropriate screening wave vector q„ i. e. , of
the order of an interatomic distance a. The
screening wave vector may actually be defined by
the relation

q', = (4me'/0) f dr' y(r, r'), (7)

where r denotes a point in the interior of the sys-
tem, in which case the integral in (7) does not de-
pend on r. For the special case of the bulk metal
we would have

q', = (4me~/&) f dr y(~r —r ~)

= (4 ~e /Il ) X( q = 0, & = 0) = 4 me 'N(e ),
where y(q, &)s denotes the wave-vector- and fre-
quency-dependent density-density response func-
tion of the bulk metal and N(ez) the corresponding
density of states per unit volume at the Fermi en-
ergy &„. Clearly, q, is just the Fermi-Thomas
screening wave vector. If now in (6) we neglect
possible boundary effects on y(r, r ) in the small
region of integration in the vicinity of the surface
of the system (r» a) we have, to the approxima-
tion indicated,

q,X

q'.
I

dr
(8)

y, = (q, ~)'/20m. (9)

If in (9) we now replace q, by its value for the bulk
metal, and reexpress this in terms of k~, we ob-
tain precisely GE's result. It is therefore evident
that the central approximation of GE's calculation of
y~ is the replacement of y(r, r') by its value for the
bulk metal.

There remains, however, a criticism of GE's
original calculation of the polarizability which is
much more fundamental than the neglect of the
depolarization field. This is the assumption that
the local internal field is constant. What we have
demonstrated in the above discussion is that if one
accepts this assumption the large polarizability
originally found by GE is suppressed by the effect
of the particle's depolarization field. However,
while the assumption of a constant local field will
hold in the limiting case of a metallic particle con-
sisting of a very small number of atoms (rq, & 1),
it certainly cannot be expected to hold when rq,
is appreciably different from unity. The induced
polarization will not be given by (3) but by

P= —e f dr f dr' r„P(r') y(r, r'), (10)

where Q(r) denotes the induced local electrostatic
potential [E„,= —VP(r)] obtained from the solution
of the Poisson equation

V p(r) =4ve f dr' &f&(r ') y(r, r') .
Thus &~ will be no longer determined by the homo-
geneous susceptibility defined by Eq. (6). Equa-
tions (10) and (11) are valid irrespective of
whether the electronic energy levels are discrete
or continuous, and they specify, of course, the
extent to which the external field is screened by
the many-electron system of the metallic particle.
Indeed, for q,~ large, the external field will al-
ways be essentially screened (E„,= 0 almost every-
where in the interior of the particle) even if r is
still sufficiently small for the electronic energy
levels to be discrete in the sense defined by GE.

An investigation of the electronic polarizabilities
of small metallic particles and thin metallic films,
based on a numerical evaluation of (10) and (ll),
will be published in a subsequent paper.

Equation (8) is our desired expression for the electronic
susceptibility. For the sphere problem it reduces to
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A complete understanding of the mechanism for superconductivity requires knowledge of the
details of electrons, phonons, and their interactions, and can be summarized by the function
c' F (~). This function is often very similar to the phonon density of states F(cu) = pd(~ —&u+),
which can be derived from an analysis of neutron-scattering data. In this paper it is pointed
out that the complete function e F((,&) is also (in principle) contained in neutron-scattering data
if the intrinsic linewidth ~ is measured as well as the di. spersion relation (,)@. It is shown
that o. I' differs from I' by having a weighting factor 2y@/AN(0)& inside the summation, where
N (0) is the electronic density of states at the Fermi surface for both spin orientations. The
dimensionless coupling constant X can also be expressed .in terms of N (0), q, and p@. In
practice, for most superconductors, the average widths p@ are smaller than presently avail-
able resolution. However, for materials with a high density of states like P —W superconductors,
the widths 'Y~ may be measurable. Also, the question of whether superconductivity arises
predominantly from coupling to certain groups of phonons can be answered experimentally by
searching for anomalously large widths. Estimates of average phonon widths are given. for a
variety of metals.

Recently, there have been several investiga-
tions of the phonon modes of high-transition-tem-
perature superconductors by inelastic neutron
scattering. ' In the A15-structure materials'
Nb3Sn and V3Si these studies have revealed that
the soft transverse-acoustic (TA) modes (known
from ultrasonic work) extend out to fairly large
wave vectors. In the rocksalt-structure materials
like TaC, these studies have revealed anomalous
regions of the LA and LO modes at large wave vec-
tor. It would be very interesting to know whether
the large observed values of T, arise in good part
from electrons coupling to these anomalous pho-
nons. This paper proposes a direct method for an-
swering this question.

The equilibrium superconducting properties of
any material can be derived from a knowledge of
the spectral function n F(tu) 'In the specia.l case
of strong-coupling s-P metals like lead, a F can
be deduced from tunneling data. For the great
majority of superconductors, however, there is
no presently feasible method of determining n F.
The main result of this paper is a relation between
nsF(&u) and the electron-phonon-induced width yo
of a phonon mode of frequency ~o. (The symbol

q incorporates the wave vector Q and a mode in
dex. )

The spectral function is closely related to the
density of phonon states F(~):

F(a')=~o ~(a'-"o) .

However, the connection is obscured somewhat in

the usual definition,

~ F(a') =~ li)fan
I

&(~ —&6-~ ) &(s~) &(sa ~ )/&(0) .

(2)
In this formula M». is the matrix element for
scattering from an electron state k of energy e„
to a state k' of energy e„.via a phonon k —k'. The
summations are restricted by the 5 functions to
run over states at the Fermi energy (which is tak-
en as the zero of energy). The symbol k incor-
porates the wave number k, band index, and spin
index, The symbol N(0) is the electronic density
of states at the Fermi surface of states ai the Fer-
mi surface for both spin orientations,

&(0)= ~~ &(&~)

The matrix element 1' includes a host of many-
body corrections such as screening, vertex cor-
rections, and the measured rather than the bare-
phonon frequency, as explained, for example, in

Ref. 5. From a knowledge of n F we may deter-
mine the transition temperature T, by solving a
complicated integral equation. For qualitative
understanding, however, it is preferable to bypass
that step and use instead the approximate equation

of McMillan '~


