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Kinetic-Theory Calculation of the Nuclear-Magnetic-Resonance Line Shape
in Dipolar and Exchange-Coupled Systems
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A set of kinetic equations for the anisotropic Heisenberg paramagnet is presented. These
are an extension of equations derived previously for the isotropic system and used to predict
the spectral densities in RbMnF3. The equations conserve the total spin and energy and have
for their stationary solution the anisotropic-spherical-model correlation functions. An ap-
proximate solution of these equations using a constant-relaxation-time approximation yields
results for the free-induction decay of the transverse magnetization in a dipolar lattice in a
strong magnetic field that is in good agreement with the experiments on CaF2.

In this paper we present a kinetic theory for the
anisotropic Heisenberg paramagnet with applica-
tion to a microscopic calculation of the free-induc-
tion decay and diffusion coefficient in a dipole lat-
tice subject to alarge external field. This problem
has been the source of considerable theoretical
work. ~ ' Previous treatments, however, have
either introduced ad hoc assumptions about the
shape of one or another of the spectral functions
involved in the calculation, and hence must be con-
sidered phenomenological, or were based upon
arbitrary operator expansions, which do not give
the correct long-time behavior, and in any case
yield little insight into the physics of the problem.
The first attempt at a microscopic theory was due
to Borckmans and Walgraef, who used a set of
kinetic equations analogous to those derived in the
early work of Resibois and DeLeneer, ~ and ob-
tained rather good agreement with experiment by
iterating their equations using as zeroth-order so-
lution the phenomenological form suggested by Abra-
gam as a fit to the data, with the parameters of
this form calculated from the exact second and
fourth moment. This procedure is inconsistent,
however, since the fourth moment predicted by
their equation is seriously in error, which would

lead, if the equation were solved exactly, to a
solution that seriously underestimates the damping
of the oscillations appearing in the data. This in-
adequacy is a reflection of the fact that their equa-
tions do not include any scattering processes for
the intermediate fluctuation modes in the "mass
operator" [4 (q, z) in this paper]. This is a de-
ficiency also of more refined theories based upon
the independent mode approximation for the mass
operator that could be applied to this problem,
such as the equation derived by Kawasaki, Resibois
and DeLeneer, %egner, and Blume and Hubbard. '

The calculation we shall present is based upon a
kinetic theory for the anisotropic Heisenberg
Hamiltonian,

H= —2 E a~»Sq S„+ bq»S]S»,
ggk

and is an extension of a theory for the isotropic
system developed by one of us. ' As for the iso-
tropic case, the theory gives the correct second
and fourth moments of the spectral density to low-
est order in 1/z, where z is the number of spins
in the range of the interaction and the kinetic
equations conserve the total spin and energy. They
include the effect of the scattering of intermediate
fluctuation modes. The equations are valid at any
temperature for which there is no long-range or-
der, and describe as special cases the Ising, X-Y,
Heisenberg, and truncated-dipolar models. The
latter is appropriate for the calculation of the NMR
line shape at infinite temperature (or equivalently
the free-induction decay) in a dipole lattice sub-
ject to a magnetic field much stronger than the
dipolar coupling between the spins. An arbitrary
combination of Heisenberg and dipole interaction,
in this limit, can be treated by making the choice

a» - V» + [(yh) /2R»] (1 —3 cos 8»),

b» = —3 [(ya') /2R»] (1 —3 cos'8») .

V» is the exchange interaction, y is the gyromag-
netic ratio of the spins, and ~z„ is the angle between
the quantization axis, taken as the direction of the
external field, and the vector R& —Ry= B&y. The op-
erator 5(q) is defined as N '~ g, e ' '"~ 5;,

a(q) = Q& e ~ g a b(q) p e ii (R& S)b-~-
The response of the system to an external perturba-
tion is given by
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Z (q, z) = ) e'" &S (q) ~S (q, t))dt,
where

(2)
I' (4, q„z)-=(S'(q, )S (q, )

xl[z —(I p—)Z(I-p )] IZS-(q)&/X-(q, O), (5)
&A ~B&= && f e'"A e '"Bd~&), &&0&)= Trp„O,

-88/ T 8H

It can be shown that

& (q, z)=ix (q, o)[z c &q, z)]-',

where

~ (q z)=«'-p )~S (q)l[z-(I-P )Z(I-p )]

x (q, o)=&s (q)ls (q)»

x(I-p )ZS (q)&/X (q, o),

2 is the Liouville operator for the system, & is the
proj ection operator

Q, ~S (q)&&S (q) ~/x (q 0)

and I is the identity operator. We define the ver-
tex function

F (q~, qa, z) =—(S (q, ) S'(q )

'I ['- &'-p') «I-p')] 'I&s'(q))/x'(q, o), (4)

with q=q, +q» we have then

4 (q, z) = zN ' Q, , [a(q —q').-a(q')]

xr (q', q —q', z),

4' (q, z) = -N "'&, [a(q') -a(q- q')+b(q')]

x I (q', q - q; z) . (I)

The spectral function is given by

Re Z" (q, &u+ie)= X' (q, &u)/u&= f(&u)-.

In order to calculate the response function Z (q, &u)

we must determine the functions I' (q, , q2, z)
which describe the time behavior of the longitudinal
and transverse two-spin correlation function for
particular initial conditions. This is obtained by
constructing a set of kinetic equations for the two-
spin correlation functions. The derivation of those
equations will be done elsewhere. The equations
we propose for I' (q» q2; z) and 1" (q» qz, z) are

zI' (q&, q2, z)=N [n(q2) -n(qi)]/X'(q&+qz, 0)+ [4' (q&, z)+ 4' (q2, z)] I' (q, , qz, z)

+N '"&, [a(qi-q') -a(q')+b(q&-q')] I' (qi-q', q2,' z) I'(q', q&+qz-q';z)

+N Q, , [a(q, - q') —a(q')+ b(q, —q')] I' (q, - q', q~, z) I'
(q —q', q'; z), (9)

zI' (q, , q2, z)=N ' '[n(qz) —2m(q, )]/X (q, +qz, 0)+ [4 (q, , z)+ 4 (q2, z)] I' (q, , q, ; z)

+ —,' N ' 'Q, , [a (q, —q
'
) —a (q ')] I'(q, , q, —q '; z ) 1 (q —q', q '; z )

—N ' 'Q, , [a(q') —a(qz —q')+b(q')]I' (q, , qz —q'; z) I' (q', q —q'; z), (10)

where

O'=Qg+92 ~

n(q) = (&S (q) S'(- q))),

m(q) = «S'(q) S (- q)».

n(q) and m(q) are obtained from a rate-balance
equation for the decay rates of the fluctuation modes
that arises as the condition for a stationary solu-
tion of the kinetic equations to exist, and are the
anisotropic-spherical-model values. These can
be obtained, of course, directly by making the usual
spherical-model approximations on the Hamiltonian
given in (1). The equivalence of the stationary so-
lution and the spherical model is a consequence of
evaluating the decay rates correctly to lowest order

in 1/z.
The problem of the isotropic Heisenberg para-

magnet has been treated by the kinetic equation
formalism' and has been shown to give very good
agreement with the neutron-scattering measure-
ments of the spectral density in the isotropic
Heisenberg antiferromagnet RbMnF3 by Tucciarone,
Hastings, and Corliss. ' The set of equations (9)
and (10) enables one to treat all cases ranging
from the pure exchange case to the pure dipole
case. [They reduce to the equation of Ref. 10 when
b (q) = 0. ] Furthermore, the same approximation
that was used to obtain the approximate solution
used to fit the data in RbMnF3, the constant-re-
laxation-time approximation, can be used to obtain
a good fit to the data in CaF2.

The constant- relaxation-time approximation for
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FIG. 1. Comparison of theoreti-
cal spectral densities calculated
from Eq. (16) with the line-shape
measurements of Bruce on CaF2,
for several orientations of the mag-
netic field with respect to the crJJs-
tal axes. The theoretical curves
have been normalized to agree with
the data at ~ =0 for the [100] direc-
tion.
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the vertex functions I (q, , qz, z) is defined, at
T= ~, by the assumption that the vertex functions
can be written in the form

7 (q, , qz, z) =N '
—,'S(S+ 1)[a(qz) —a(q, )]/v(z),

I' (q~, qz, z) = —N '(
& S(S+ 1)

C' (q z)=-z &~) =a+ z ~(z) P(z} (fl ),=0

+z '&(z} '&fl'&, =D, (13)

where &&u ), 0 is the second moment and "'z
&04&, 0

are related to the fourth moment by

x[~(q, ) p(q2)+b(q, )]/p(z) . (12)

The approximation states that the relaxation of
the functions I' (q, , q~; z) is independent of q, and

q2. The approximation is successful because at
temperatures away from the transition point fluc-
tuations of any wave vector will decay primarily
into short-wavelength fluctuations, since the phase
space available for such decays is large, and the
relaxation times of the short-wavelength fluctua-
tions are roughly constant. The functions v(z} and

p(z} are determined in such a way that the second
and fourth moments are given by the [correct to
0(1/z)] values that one would have obtained from
(9}and (10) if they had been solved exactly.

We take the case V;& = 0 and the limit q= 0 corre-
sponding to the free-induction decay of the magneti-
zation in a dipole lattice. The q 4 0 spectral den-
sities can be used to describe experiments such as
the double-resonance experiments on Ca in CaF2. '

In order to solve for the transverse relaxation
let us insert expression (11) and (12) in the right-
hand side of (10}, divide by z, and substitute the
resultant expression for I' (q, , q2,. z) in (7} to
evaluate 4 (q, z). We obtain

The value for 4 (q, z) when (12) is inserted directly
in (7) is given by

(14)

Because for the pure dipole case the value for
"&0 ), 0 is —,

' of &0 ), 0 there is little accuracy lost
by assuming v(z}= p(z) in Eq. (13). Requiring that
(13) and (14) be consistent, we find for p, (z)

p(&+ZE)= z&+2[&0) 0/&~ & 0
——&g ]

when

(15)

The spectral function is obtained from (15), (14)
and (8):

The line shape for general q with the approximation
(11}and (12) is obtained by using the form (16) with
the appropriate q-dependent moments. To compare
with CaF2, we will use the exact values of the
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quantitative differences between the theoretical
and experimental curves for X"(+)/&u are compara-
ble to the corrections that wp expect to the approxi-
mate solution (16) from solving (9) and (10) exactly.
Iterative solutions based upon Eq. (16) as a zeroth
approximation for the isotropic case indicate that
the corrections to (16) will be on the order of 20%
at most (for the zero-frequency spectral densities).
We expect that the constant relaxation time is a
better approximation for the dipole system, since
there is no combination of wave vector for which
the relaxation time goes to infinity as it does in
the isotropic case when both wave vectors q& and

q& in the vertex function go to zero. In the isotropic
case, the deviations of the iterated solutions from
the experimental data are on the order of 10% at
most for short wavelengths.

In conclusion, we think that the present results,
together with the neutron-scattering results on
HbMnF3, demonstrate clearly the utility and lower
limits on the accuracy of the kinetic equation in

describing paramagnetic systems with arbitrary
ratios of dipole to exchange energy, at least at

infinite temperature. The constant-relaxation-
time approximation which leads to the rather simple
expression for the spectral densities, Eq. (16),when
used in conjunction with the kinetic equations, seems
to capture the essential features of the dynamics.
It can be used as it stands for rough calculations,
or as the basis for an iterative solution of the
kinetic equations to obtain more accurate results.
It is reasonable to expect that the equation will
provide solutions for the X-Y and Ising limits that
have comparable accuracy to those obtained here
and, since they are valid at all temperatures in the
paramagnetic regime and for arbitrary dimension-
ality, should provide the context for correlating a
wide range of experimental results.
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