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Local-Field Effects on Electroreflectance Line Shapes: the Contact Exciton
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Rowe and Aspnes have calculated the effect of a Slater-Koster interaction, or contact ex-
c;iton, on the electroreflectance line shape of a semiconductor. We comment that their result
is equivalent with the Lorentz-Lorenz result for the effect of a local electric field.

It has been noted ' that one-electron-approxi-
mation calculations do not predict experimentally
observed optical-modulation line shapes for any
semiconductor modulation experiment. Rowe and
Aspnes have investigated'~ the effect of including
a Slater-Koster interaction, or contact exciton,
on the dielectric function at interband frequencies
and, in particular, on the predicted electrore-
flectance line shape of Ge. If we denote4 by
e(q, q, &) the one-electron dielectric function to
which this contact-exciton correction is applied,
i.e. , the dielectric function defined by Ehrenreich
and Cohen, ' then the result obtained by Rowe and
Aspnes for the corrected dielectric function,
e(q, q, ~), may be written as

e(q, q', ~) —1
( e~ qq &)i—1=

1 — f (
~

) —1] (1)

In (1), q and q denote the wave vectors of the mac-
roscopic average electric field E(q, (u); &u is
macroscopic average electric field E(q', &); &u is
their common frequency. The parameter g is pro-
portional to the depth of the assumed square-well
interaction between the electron and hole in the
contact-exciton model. The parameter g is fitted
to experiment for each critical point of the observed
spectrum, but is assumed to be constant across the
width of the electroreflectance signal associated
with each critical point.

Rowe and Aspnes'~ showed that this correction
to the dielectric function greatly improved the cal-
culated electroreflectance line shape. However,
they did not realize that Eq. (1) is a widely used
result of a simple Lorentz-Lorenz treatment of
the local effective electric field in a solid with
overlapping atoms. Such a correction must be
made to e because Ehrenreich and Cohen neglected
all polarization fields except that having the fre-

quency and wave vector of the applied field. 5'
Thus c is analogous to the "atomic polarizability"
in the Clausius-Mossotti model in the sense that
both are defined in terms of the polarization that
would occur if the single-particle wave functions
of the medium responded independently (i.e. ,
with random phases) to the external applied field.
In a Lorentz-Lorenz treatment one introduces an
average field E,(q, +) effective in polarizing the
medium. Except for the dependence on the small
wave vector q of the external field, E,(q, ~) is
defined to be constant throughout the unit cell. It
is in fact the average of the full local field, which
varies rapidly with position in the unit cell and
fluctuates in time (at frequencies other than that of
the driving field a), weighted by the local polariza-
bility of the medium. 4'7' The Lorentz-Lorenz local
effective field is often written as

E,(q', ~) = E(q', ~) +~ vfP(q', ~),
where P(q, ~) is the macroscopic average polar-
ization. In Eq. (2) the parameter f is the ratio of
the actual value of the Lorentz-Lorenz effective
field to the value calculated for a Clausius-Mossotti
model, E= +~wP. (In a noncubic material, f is a
tensor. ) Equation (1), with f = 3g, may be derived
from Eq. (2) by writing

P(q, ~) = X(q, q', &) E(q', ~~) = X(q, q', ~) E,(q', ~) (3)

and solving for X in terms of X (q, q, ~) = [ e(q, q, ~)
—1]/4v, i.e. , the polarizability that would result
in the absence of all local-field corrections.

The reason that the contact exciton and the Lor-
entz-Lorenz local-field treatments give the same
correction to the Cohen-Ehrenreich dielectric
function e (q, q, &o) is that they represent the same
approximation to the energy arising from the cor-
relation of the induced polarization, or, equiva-
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lently, the electron-hole pairs. As the spacial
average of a dipole electric field is zero, the full
local field would not affect the polarizability if it
were not for the fact that the microscopic polariza-
tion induced at various points is correlated in time
and in space. Both the Lorentz-Lorenz and the
contact-exciton treatments replace the effect of
these correlations (both umklapp and dynamical)
with an interaction which is constant in the unit
cell and independent of frequency. Then the value
of either f or g is adjusted so that calculation and
experiment agree for some limited optical feature
or phenomenon. Different values of f and g would
be required to fit different optical features or
phenomena in the same material. '3'6 It is very
easy to evaluate the correlation energy U(f) in
the Lorentz-Lorenz picture:

r f
U(f) = ' —l I'(f) «.(f) = -

z ll
f ~(xE)' df

+0 ~0

f(xE)'
i-s~vf x

'

The contact-exciton picture must give the same
correlation energy U(g) = U(f) for the same change
in e(q, q, ~) in order that energy be conserved in
that picture. This is difficult to show in general
but for the limit I+«8„, where g~ is an excita-
tion energy, the total energy of a solid in the pres-
ence of a field E can be written (see Appendix)

W(E) = W(0) = —,X(q, q, ~) E ~ (5)

Thus the ground-state energy W(0) is lowered by
the induced polarization and for the same change
in the polarizability p- X, both models result in
the same change in total energy.

It seems that the question of whether or not the
contact-exciton treatment of the electron-hole in-
teraction is identically the same as the crude Lor-
entz-Lorenz treatment of the local fields resulting
from the polarization of the medium is not well de-
fined. If one restricts the consideration of each to
the estimate of the energy resulting from the cor-
relation of the induced polarization, then they are
the same. If one considers the dynamics of the
induced polarization, or the electron-hole pairs,
then there is a question of how the models are to
be adapted to the situation in a real material. It
has been shown that the Clausius-Mossotti model
can be adapted to give a good explanation of the
pronounced anisotropy of the third-order electronic
susceptibility in Si and Ge. This adaption con-
sisted of placing the dipoles at the bond site be-
tween the atoms rather than on the nuclei and com-
puting the dependence of the field at the various
bond sites on the direction of the applied fieM.
These calculated local-field strengths were used
to determine the proper value of the f parameter

Equation (5) is usually derived by classical meth-
ods using a longitudinal geometry with associated
boundary conditions. It is therefore of some in-
terest to show that the energy lowering due to the
electric field is independent of this geometry since
the boundary condition which relates the field to
the total energy can be replaced by the variational
principle. Here we derive Eq. (5) by quantum meth-
ods suggested by Halperin. '

The Hamiltonian of a solid in an applied fieM E
is

H=HO- xE ~a(nap'a+ ~a~ a) (Al)

where Ho is the unperturbed Hamiltonian and ~ is a
dipole matrix element assumed constant. The sec-
ond term in Eq. (Al) is just the classical induced
polarization interaction 0 ~ R. The operator o.~t pt~

creates an electron-hole pair with relative momen-
tum k and no center-of-mass momentum (i. e. , di-
rect transitions). The wave function can be written

l
q) =(i+Ed,f(k) ~', P'„)lo) (A2)

in terms of the unperturbed state i0). The mixing
coefficients f (k) can be determined from the varia-
tional principle which gives the result

f(k) =x/b„ (A3)

in the Lorentz-Lorenz model in order to calculate
the Franz-KeMysh-Aspnes effect at the Eo critical
point. From this, the third-order susceptibility
for different field orientations was obtained. It
seems likely that a similar adaptation of the con-
tact-exciton model could be made, but we have not
attempted this. Because of the simple form of the
classical formalism, it appears that the local-
field treatment can be applied to a wide range of
problems in addition to the two examples discussed
above.

As a final comment we will note that workers in
the field of modulation spectroscopy generally ne-
glect local-field effects, and occasionally assert
that they are negligible in semiconductors. '
Workers in the field of nonlinear optics observe the
same physical effects, the electric field depen-
dence of the optical index of refraction, as those
which account for electroreflectance. These work-
ers have long acknowledged the importance of local
fields and invoked them to achieve agreement be-
tween theory and experiment. '~ A similar correla-
tion exists between infrared absorption, where the
full Lorentz-Lorenz correction is assumed, and
stress-modulation experiments, where no correc-
tion is assumed. It woul. d seem that it is time that
the close connection between these experiments
should be appreciated'3; effects which are important
in one must be present in the other.

APPENDIX
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where S~ is an optical transition energy. These
excitation energies correspond to the direct inter-
band gaps 8, in the one-electron approximation but
are lowered by the electron-hole interaction which
shifts oscillator strength to lower photon energies.
By combining Eqs. (Al)-(A3) one obtains

~W=&qIH
~
q) -&0~a,~o)=-~'Z'g, h„-'. (A4)

The susceptibility is defined as

(A5)

and using Eqs. (A3) and (A4)

& W= —& E Q ~ 8„'= —,
' gE (A6)

which is the classical result obtained by using the
variational principle instead of solving a boundary-
value problem. The classical boundary-condition
solution does not make clear the equivalence' of
transverse and longitudinal fields in the long-wave-
length low-frequency limit with respect to the total
energy of the solid. '

Present address: Bell Telephone Laboratories, Mur-
ray Hill, New Jersey.
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Nuclear-quadrupole-resonance and relaxation measurements have been made at low tern-
peratures in the dilute LaGd)A12 system at zero and low applied magnetic fields. The results
complement those of McHenry, Silbernagel, and Wernick at high fields, and are consistent
with the onset of magnetic order in the Gd random-spin system.

McHenry, Silbernagel, and Wernick' (here-
after referred to as MSW) have recently reported
a series of nuclear-resonance and relaxation mea-
surements in the pseudobinary alloy system
(I &Gd)Ala. Their results were consistentwith the ab-
sence of long-range magnetic order in this system,
even in alloys with up to 10 at. % Gd and at tem-
peratures below 4. 2 K. Magnetization measure-
ments in the same system indicated that, on the
contrary, magnetic order is formed at or above
1.5 K for Gd concentrations above 2 at. %. Thus
an apparent discrepancy exists between the nucle-
ar-relaxation and magnetization results. MSW
point out, however, that their relaxation measure-
ments were carried out in applied magnetic fields

of greater than 2. 5 kOe, whereas the magnetization
measurements were made for the most part in low
fields, of the order of 250-500 Oe. MSW specu-
lated that the ordering process might affect mag-
netization and high-field nuclear-relaxation mea. —

surements quite differently, and also that the field
might itself strongly influence the magnetic order.

We wish to report the results of Al 7 nuclear-
quadrupole-resonance (NQR) and relaxation mea-
surements on the (IaGd)Alz system in zero and
small applied fields which confirm qualitatively
the first, and possibly the second, of the above
speculations. The Al ' nuclei are situated in non-
cubic sites in the cubic Laves-phase LaA12 lattice, '

and in zero static field exhibit the usual NQR spec-


