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Effect of Gradients of the Perturbation in Effective-Mass Theory

Bruce Friedman* and Allen Miller
Syracuse University, Syracuse, Net York 13210

(Received 9 August 1971)

Ionization energies of donors and acceptors in semiconductors generally differ from computed
values by 10-30%. We discuss a suggestion that the discrepancy may be due to the neglect in

the theory of the gradients of the impurity potential in the region of the orbit of the trapped
electron or hole. This effect is shown here to be too small to account for the discrepancy.
Hence, it must be due to the originally suggested cause —the character of the impurity potential
in the immediate vicinity of the impurity.

%hen theoretical and experimental results for
the ionization energies of donors and acceptors are
compared, the agreement is only fair. The ob-
served values are generally 10-30%%ug larger than
the computed values. '~

Kohn and Luttingers have suggested that the dis-
crepancy is due to the deviation from Coulomb
form of the impurity potential in the immediate
vicinity of the impurity ion (i. e. , in the "central
cell"). A second possibility mentioned by them
is the assumption in effective-mass theory about
the nature of the impurity potential v(r) acting on

the trapped electron or hole. The theory assumes
v(r) to vary slowly, compared to the lattice inter-
action in a unit cell of the crystal. This assump-
tion may be invalid in the central cell.

A third suggestion has been given by Zak. 4 He
has succeeded in obtaining exact corrections to the
effective-mass differential equation. The result
is expressed by adding a series to the usual ef-
fective-mass differential equation. The jth term
in the series gives the effect of the jth-order spa-
tial derivatives of v(r); the usual equation contains
only the zeroth-order term.

The result is then applied to the problem of the
ground state of holes in Ge. It is found that the
first-order term vanishes, but the second-order
term gives a substantial correction to the ioniza-
tion energy, increasing its magnitude by about ling.

Unlike the two possibilities suggested by Kohn

and I uttinger, the correction found by Zak is not a
"central-cell" effect. The correction is obtained
without alteration in the functional form of the ac-
ceptor potential v(r) from its asymptotic (large r)
form v(x) = e~/ye. (Here y is the static dielectric
constant, while ~ is the distance to the impurity. )

Schechter, ' in an earlier work, had estimated
the effect considered by Zak by using a variational
calculation. He found its size to be too small to
be observed.

In this paper, we attempted to find the reason
for the differing conclusions of Ref. 4 and 5 and

were motivated by the fact that the work of Ref. 4
implies that theoretical efforts must consider
corrections other than central-cell effects.

For this purpose, we begin by considering the
exact differential equation for the impurity en-
velope function E (5) derived by Zak [Eq. (12) of
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Ref. 4]:

e (k) F (5)+Q„v„(5,k)F„(5)=&F(5). (1)

1 B u„(q,k)
o g N 8 0

(3)

In Eq. (1), e is the energy of the impurity state,
the vector k denotes the operation —ibad, and
& (k) is the Bloch energy for band m and wave
vector k. The index m denotes the band from which
the impurity state originates, when we take the
limit in which the impurity potential v (0)vanishes.

The differential operator v „(f,k) is defined by
the relation

v„„(I),k) =v(K) B~„+f u~~ (q, k) [v (0), u„(q,k)]d~q,

(2)
Here

u„(q,k) =e '"' )t)„(q,k),

The sums on o.' and p are over the three Cartesian
components of k, denoted Pj, k&, k3. The zero sub-
script in Eq. (3) indicates that the derivatives are
to be evaluated at k= 0.

Substituting Eq. -(3) in Eq. (2), we note that there
are no zeroth-order terms in k, due to the fact
that the commutator contains no derivatives with
respect to ff.

The n am terms of Eq. (1) are "band-mixing"
effects. They have been examined by Luttinger
and Kohn' and shown to be negligible, constituting
only a 0. 2% correction. We shall then only con-
sider the n= m term of Eq. (1).

The first-order term in k of the right-hand side
of Eq. (1) is given by the expression

where g„(q,k) is the Bloch state of wave vector k
for band n. The sum on n in Eq. (1) is over ail
bands n, including the band m.

If Eq. (2) is inserted into Eq. (1), then the first
term of Eq. (2) reproduces the conventional ef-
fective-mass equation. Corrections to the equation
are then obtained in systematic fashion by expand-
ing the operators ut (tl, k) and u„(q,k) of Eq. (2)
in a power series about the value or set of values
of k for which e (k) is an extremum. The second-
order terms in k were found in Ref. 4 to be re-
sponsible for about a 10% increase in the magnitude
of the energy e. Following Zak, we consider the
case where the extremum lies at k= 0 and the band
is nondegenerate. Then the expansion is

u„(j,k)=M„(q,o)+Z ( u„(j,k)) a,

.~ Bv(5) .. . Bu„(q,k)

0f 0t N 0
(4)

Now we can evaluate Bu„(q,k)/BA, ' by k p per-
turbation theory. ' Only first-order terms need
be kept, since the derivative is to be evaluated at
k= 0. But the first-order wave function has no
component of the unperturbed state, when expanded
in eigenstates of the unperturbed Hamiltonian.
Thus, the expansion of [Bu„(q,k)/Bk ]o in the set
of Bloch states at the center of the zone will have
no u„(q,0) component. It follows that the integral
of Eq. (4) is exactly zero by the orthogonality of
the states u„(q,0).

Now consider the second-order terms in k of
Eq. (2). From the expansion Eq. (3),. v (5) is
given by

1 8 v ~v ~ ev 8 v ev
2 BR BR BR BR BR BR ~~ B BR BR BRn jS e 0 o g g e 0. g +N g g n

up to second order in k. I~~ and J z are defined by

I~= u*„(q,0)
~

' d q,
&B'u (q, k)

n 8 0&k &k

Bu*(q, k) Bu (q, k)
8& ~ &k'p

J ~~
~

~

m
~

~

~
7

~

~

m

~

~
t
~

0
d ~I

The integrals I ~ and J ~ are real, a fact that
follows from the symmetry relation U*„(q,k)
= U (q, -k). Further, J,N= —I z follows from the
fact that the normalization integral

t u„*(q,k) u„(q,k) d'q

I

is independent of k and thus gives zero when dif-
ferentiated first with respect to k and then with
respect to k~. Eq. (5) can thus be simplified to

v „g)=vg) —g &'v(A)

I
I 2

~ I
~ 3

~ I
~ I

I 8
v 8'v a'v ()

In obtaining Eq. (3), we have made use of the
fact that I is independent of &, assuming cubic
symmetry, and have defined I=I

For an impurity potential, the form v(R) = e~/yR

is valid for distances R much larger than the
dimensions of the unit cell. Then the second term
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of Eg. (8) is zero, since VER-'= 0 for R &0. In
Ref. 4, a calculational error yielded an incorrect
result [Eg. (21) of Ref. 4] for the second term of
Eq. (8). This term was then estimated to increase
the ionization energy by 10%.

Choosing v(r) = e'/XR as the acceptor potential,
Eq. (8) can be written

",V&+
' +H

~
F.(n)=.F.g), (10)

where the energy is measured from the top of the

e„(B)= e /XR —(38 /XR') (I,BR,Rz+ Iz, RzRs+ I~, R3R$).

(9)
To apply this to the ground state of holes in Ge,

we adopt the simplified model of acceptor states
used by Zak. The Bloch energy e„(k)for the va-
lence band is assumed to be independent of the
direction of k and given by the parabolic form

(k) = (h /2m*)k . m~ is an appropriately chosen
effective mass. '

This model should certainly give results for
physical properties correct to within a factor of
two, and is probably much better. Since the cor-
rection term in the differential equation has been
obtained explicitly in Eq. (9), this accuracy should
also hold for the correction. Equation (1) is then

valence band. H is the last term of Eq. (9):

I
H = —(3e /XR ) (I,zR&R2+I&~RzR3+I3$R3Rj).

II will be nonzero only if the integrals I», I~3,
and I» do not vanish. In a tight-binding approxi-
mation, such as is used in Ref. 4, these integrals
are zero. 9

However, the I~ is not zero, in general, unless
assumptions are made concerning the symmetry
properties of the Bloch states. If the effect of
H on e is desired for the case where I ~ 0, it
would be necessary to apply perturbation theory
to II . The first-order contribution would be zero,
since II changes sign when R&, Rz, or R& changes
sign, while the unperturbed ground state is un-
changed. Hence, second-order perturbation theory
would be necessary; the resulting correction would
be smaller than the effect of the interband terms
n cm of Eq. (1). These interband terms give, as
previously noted, a correction which is well under

Thus, the effect considered in Ref. 4 (gradients
of the impurity potential in the vicinity of the im-
purity orbit) is too weak to affect the ionization en-
ergy. The R ' potential varies too slowly to pro-
duce appreciable corrections.

*Present address: InforInation Division, American
Institute of Physics, New York, N. Y. 10017.
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To verify this one can insert the tight-binding form
[Eq. (20) of Ref. 4) into the definition of the integrals
I~g [Eq. (6)) for Pg&. Assuming negligible overlap be-
tween the localized states, I~& is proportional to an inte-
gral whose integrand is the product of the square of the
localized wave function and the two perpendicular car-
tesian coordinates corresponding to e and p. Taking
the square of the localized orbital to be an even function,
I~& is zero.


