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Using a simple polarization picture of a medium in which there is spatial dispersion and
using the integral equation method of Ewald-Oseen, some rigorous results are obtained for
the optics of a bounded spatially dispersive medium. In particular, an extinction theorem for
polaritons, and rigorous additional boundary conditions are obtained. The normal-incidence
propagation of transverse modes for an isotropic crystal bounded by a plane is analyzed.
The rigorous boundary conditions obtained by this method, in general, do not agree with other
popular choices, based upon the same constitutive relations.

I. INTRODUCTION

The purpose of this paper is to give a simple
derivation of results needed for an analysis of
wave propagation in a bounded medium in which
there is a nonlocal constitutive equation. Physi-
cally the nonlocality can arise from an exciton ab-
sorption lying close to the frequency of the propa-
gating wave. This produces a wave-vector-de-
pendent dielectric function and leads to propaga-
tion of the mixed exciton-photon modes known as
polaritons. '-'

When an incident plane wave impinges upon such
a medium from vacuum, several polaritons can be
excited in the medium. In a particular geometry
these propagate parallel to the incident wave, but
with different phase velocities. The total field
consists of incident plus reflected fields in vacu-
um, plus the polariton fields in the medium. To
determine the amplitudes of all fields, we need a
complete set of boundary conditions. In addition
the polariton dispersion relation for waves propa-
gating in the medium is required. Finally, in or-
der that the incident wave shall not propagate in
the medium, we require an extinction condition.

The method we use to solve this problem is
based on the Ewald-Oseen integral equation for-
mulation of optics, plus a polarization picture of
the spatially dispersive medium. In this frame-
work the results can be derived in a particularly
transparent fashion, and a comparison with the

Some field vectors needed in our work are
E(r, t) the macroscopic electric field and P(r, t)
the dielectric polarization at (r, t). The time and
space Fourier transforms are defined as

P(r, &u) = (1/(2p)'t') f p(r, t) e '"'dt (2. l)
and

P(k, v) =(1/(2w) t )f P(r, ~) e '"'dr . (2. 2)

treatments of the usual "local" optics can be made.
The extinction theorem, and the boundary condi-

tions were first obtained by one of us' using a
somewhat different method. That derivation along
with detailed numerical analysis and comparison
of calculated and experimental ref lectivity will be
published separately. The calculated ref lectivity
is in satisfactory agreement with experiment.

Tlie results of our analysis have been used in
recent theoretical work on Raman scattering in
the polariton picture. There, a quantum-mechan-
ical treatment of polariton scattering inside the
crystal, plus the polariton ref lectivity at the crys-
tal boundary was needed in order to compute cross
sections for Raman scattering.

Besides being relatively simple and familiar,
the method we use to analyze wave propagation is
rigorous. It does not require, for example, that
the surface boundary conditions be assumed, but
yields them as a result of the theory. We return
to this point later.

II. SPATIAL DISPERSION
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The inverse of (2. 2) is

P(r, v) = (I/(27/)" ) f P(k, (g)e'~'"dk . (2 3)

Similar definitions apply to other field vectors.
The constitutive relation which characterizes a

spatially dispersive medium is

P(k, ~) = X (k, (u) E(k, (o), (2. 4)

with X (k, +) the Fourier transform of the macro-
scopic susceptibility. In writing (2. 4) we assume
a nontrivial wave -vector dependence. Nonlocality
is immediately apparent when (2. 4) is Fourier
transformed. We have

P(r, ~) = (I/(2v) / )f X (r' —r, &o) E(r', ~) d r',
(2. 5)

with

X (» ~) = (I/(2v)" ') f X (k, ~)e'"' dk (2 6)

Then (2. 5) proves that the polarization at r in the
medium is determined in a nonlocal fashion by the
electric field.

To be specific and useful, we shall take a par-
ticular form for X(k, ar) which is appropriate to the
spatial-dispersion effects associated with incident
frequency ~ close to an exciton-absorption band. '
Let

&o —1 F
x(k, (u) = + 2 74& o-co -iI'+&k (2. 7)

X(r, ~)=Xo&(r)+XiG. (r, ~),
where

X,
-=[(e, —I)/4v] (2~)'/',

(2. 8)

(2. 9)

(2n') 5(r) = f e'"'dk,

Xg—= vF/B(2v) /3,

G. (r, &u) = e'"'"/r =- G,(r) .

(2. 10)

(2. 11)

(2. 12)

For brevity we may suppress the ~ in the argu-
ment as in (2. 12). The quantity k. is a complex
wave number defined as follows. Write the second
term in (2. 7) as

where &o is some effective background dielectric
coefficient; I' a real positive damping constant;
&o is the exciton resonance frequency; B= (k~o/—
m*), where m* is the exciton effective mass; and
F = no ~o, where no is an oscillator strength.

Carrying out the Fourier transformation [Eq.
(2. 6)], we find the kernel function X(r, ~) needed
in (2. 5). The details are elementary and are given
in Appendix A. Thus we have

k, =
(~ C((u) ~/B)' ' exp(i[-,'(H~m)]),

where

C(&u) -=no —&o —i&el =
~

C~ e'

[( 3 2) 3 I R]1/8

(2. 14)

(2. 15)

(2. 16)

tang = —(el'/((g)o —(g ),
with

-w«8«0.

(2. 17)

(2. 18)

5 = (
~

C
i
/B) / cos ,' 8 )0, -

e = —(
~

C
~
/B) /' sin-,' 8 ) 0 .

(2. 19)

(2. 20)

The important inequalities on the right-hand side
of (2. 19) and (2. 20) follow (2. 18). It is also very
useful to write the susceptibility [Eq. (2. 7)] in the
form

4&x~
X( t ~)

(2 )3/3 Xo+ k2 k2 (2. 21)

From (2. 8) it is clearly seen that the second
term Xq G,(r, &u) is responsible for nonlocal be-
havior. Notice the form of G,(r) from (2. 12). The
range of nonlocality is 5, with 5 defined in (2. 19).
Clearly 5 depends upon &. For example, if 8=0
for all ~ and I"= 0, then

5-'= (B/~ ~,'- ~'~ )"',
so that 5 - as ~-&o. Thus at resonance, ne-
glecting damping, the polarization at any point is
determined by the field at all points in the medium;
this is the maximum possible nonlocality. Still
taking I'= 0, when is very far from resonance so

I p —+ I
» 0, then 5 0 and the theory becomes

local (G,-O). For B =0, or infinite exciton
mass, a local theory results for all frequencies.
Nonlocality is thus seen to depend on the finite ex-
citon mass and the frequency .

Although we only concern ourselves here with a
susceptibility (2. 7) corresponding to a single reso-
nance, multiple resonances can be simply incorpo-
rated into the work. A sum of terms such as yq G,
will then arise in the generalization of (2. 8). Sim-
ilarly, tensorial effects can be incorporated if
needed.

The function G,(r, &u) is the Green function of a
Helmholtz equation:

The range (2. 18) is chosen so that 8 will be a con-
tinuous function of + as 0 «&( ~. We may write
the real and imaginary parts of k, as

k, =-i5+ &

and then

—i&el'+ Bk C(u&) + Bk (2. 13)
& G,(r —r ) + k. G.(r —r ) = -4w5(r —r') . (2. 22)

Then this term has simple poles at complex wave
numbers given by

In our case k. is given in (2. 14) and

k', = —C(~)/B . (2. 23)
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with
G (R)=—e' o"/R,

where

ko = (()/c ~

(3. 3)

(3.4)

In the sequel we always take the constitutive
equation in the medium to be (2.4), with (2. t) de-
fining the susceptibility: This will include the case
of a bounded crystal. We assume also that for all
cases the nonlocal relationship (2. 8) applies in the
medium, including points right up to the surface.

III. THE INTEGRAL EQUATION: POLARIZATION

FRAMEWORK

The treatment of local optics by the integral
equation method is discussed in many places. 4'

We give a brief review here to establish notation
and to bring out new points applicable to spatial
dispersion.

The polarization P of our medium can be as-
sumed to originate in some pseudo-oscillators
which represent the polaritons. This polarization
is assumed to be the source of the electric field.
Then if E/ (r, t) is the local field and E"&(r, t) is
the incident field [at (r, t)], then

EI(F t)= E(r, ))+ d)" vxvx)~ ' / ).
(3. 1)

In (3. 1) we omit a small sphere g(r) centered at
the field point r. The integral is taken over the
interior of the crystal, bounded by the surface Z,
and omitting o(r). Also R= Ir —r'I. Taking all
fields time harmonic as e'"', Eq. (3. 1) becomes

E,(r, &) = E( &(r, &) + J d V' V x 0X P(r', ~) G,(R),
(3. 2)

E~ (r, (o) +f 3 P(r, (u) = E "' (r, (d)

+VxVx f P(r', o)) G (R)dV' . (3 6)

To proceed we need to employ the constitutive
relation (2. 5). But this requires that we eliminate
the local field E~ appearing in (3. 6) in favor of the
macroscopic field E. We assume that the Lorentz-
Lorenz expression applies

E~(r, (d) = E(r, (d)+, w P(r, ~) . (3. 'I)

Substituting this in (3. 6) gives

E(r, (o)+4m P(r, (o) = E"'(r, o/)

+VXVX J P(r, (()) G()(R) dV (3 8)

which is the familiar equation. An a posteriori
plausibility argument for the use of the Lorentz-
Lorenz expression for the present situation of a
polarization produced by exciton polaritons will be
given below. But it would be of interest to study
this question by microscopic theory.

Now we multiply both sides of (3.8) by (27/) 3/3

xy(r —r) and integrate the variable r over the
medium. When the expression (2. 8) is substituted
for the susceptibility, and (2. 5) is employed to
recognize the polarization, we obtain the basic in-
tegrodifferential equation

Since Go(r —r ) satisfies the wave equation

V Go(r —r')+ko Go(r —r ) = -4v5(r —r'), (3. 5)

we may take the operator Vx Vx ouside the integral
to obtain

P(r", (o)+4m
( )3/3 P(r", &u) +47/

( )3/3 P(r, (d) G.(r —r) dr

~E Q

3/3 E (r (o)+,2,3/3 G.(r" -r) E"'(r, (d) dr +, ",,/3 Vx Vx P(r (d) Go(r' —r") dr'
(2')

Xi+
(2 )3/3 G.(r —r) VxVx

~

P(r, (o) Go(r —r) dr dr (3. 9)

Local optics ' is recovered if y& is set equal to
zero.

I

ing the vacuum wave equation

V E"'(r, (d)+ko E"'(r, (o) =0, (4. 1)
IV. CONDITION FOR SOLUTION OF INTEGRAL EQUATION:

TRANSVERSE WAVES

The integral equation (3. 9) has both longitudinal
and transverse solutions, but in the interest of
simplicity we shall treat only the case of trans-
verse wave solutions here.

As an incident wave we take a wave E"' satisfy- and

P(r, (d) = P,(r, (u) + P,(r, (o) (4 2)

where ko is given in (3.4). In the medium we take
the total polarization as the sum of two plane
waves, each one satisfying a wave equation with
undetermined wave vector. Thus we have
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V P]+k~P)=0, j= &, 2 . (4. 3)

S.(P, ) t' k'r Xrl
— & „r,r I „r'„r—))

+ E ) 0

yq ~ (-(,) ~ S.(Ao(Pq))+
(2&)o& P (ko k~) r(

(4. 4)
All the objects in (4. 4) have been previously de-

fined with the exception of: the surface integral

8() (P,) = d()' P~(r', (o) ' (r' —r")
an

—Gr(r'-r") ' '(r', rt)), (4 S)an

the vector

k~ and kp will be determined by (3. 9).
At this point the analysis, although straightfor-

ward, is somewhat untidy, and it is easy to lose
the thread of the argument. Actually we follow in
principle the kind of analysis used in local optics.
In effect, when (4. 2) is substituted into (3. 9), we
find that (3. 9) contains terms (fields) which propa-
gate at four different velocities. That is, there
are terms which satisfy the wave equation with four
different wave vectors: ki, k2, k0, and k, . As
these are independent, each term must vanish
separately. The vanishing of these terms pro-
duces (i) the dispersion relation which determines
k, and ko, (ii) the extinction theorem which elimi-
nates the incident wave in the medium, and (iii) the
exact additional boundary conditions ("a.b. c.").

In order to obtain this result a certain number
of manipulations of (3. 9) are needed to transform
the expressions from volume integrals to surface
integrals, etc. These are not very different from
the corresponding manipulations for local optics
and are of limited physical interest. The details
are given in Appendix B.

The result is that after (4. 2) is substituted into
(3. 9), we obtain

2
ky0 = -Z P~ 1+4~(k~, (()) —4m)( (k~, (() )

y=i 0

+ E +Z kp kp y (ko~(o)(, ) Ao (P,)

ing of (4. 4). In (4. 4) the object within the first set
of square brackets satisfies the wave equation at
k2, within the second set of large parentheses at
ko, and within the last satisfies it at k, .

V. DISPERSION EQUATION

The first set of square brackets in (4. 4) contains
terms at k, and k2. Since, in general, Pz0, we
have

I+4ny(k, oo) -4wy(k, (d) k /(k —k()) =0 . (5. 1)

The solutions of this equation are the roots ki and
k2. The same equation evidently determines both,
or in familiar form, the allowed wave vectors
satisfy

(k&/ko) = I+4wy(k&, (()) . (5. 2)

Now if k& solves (5. 2), then for the electric field
associated with the polarization P&, we have

E(k„(d)= y
' (k„(p)P(k, , (d)

4m' Pg(kg& (o) (5. 3)
kg-ko

It is important to realize that each polarization P&
has its own associated electric field, and that to
each k~ [solution of (5. 2)j there is a susceptibility
X(kg ~)

The dispersion (5. 2) is a direct consequence of
the use of the Lorentz-Lorenz local-field expres-
sion. The dispersion (5. 2) is also the result,
which one obtains directly from the well-known
treatment using the Maxwell differential equations
(see Appendix C). Thus the plausibility for
using the Lorentz-Lorenz local-field correction
is the agreement produced between the present in-
tegral equation result, and that of the usual treat-
ment. To make the point clearer (if redundant),
if one leaves the exact local-field correction to be
determined 0 by requiring that the integral-equa-
tion method produces the same dispersion (5. 2) as
the usual differential-equation method, then one
will obtain the Lorentz-Lorenz form. Although
this is an a posteriori argument for the local-field
correction used, a microscopic theory is of course
to be preferred.

We have from (5. 2) and (2. V) or (2. 13) explicitly

A, (P,) = V x V' x Sp(P~)

and

(4. 6) k ' 4gJ
k() C((o) + Bk' (5.4)

The solutions of this equation are given in general
as the roots ki, k2.

and
f'c

S (E")) l dS E"' ~ G, . (4. 8)
an ' an

Now we explore the consequences of the vanish-

1 C((()) 1 f C((d) 16m E
=2 o- ~ka +2 I o+ flka

(5. 5)
Equation (5. 5) determines the two phase velocities
or complex refractive indices
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ns=kx/ko~ na=kp/kp (5. 6)

for the two propagating transverse waves (polari-
tons). In the region close to e =no, the solutions
k& and kp of (5. 5) differ appreciably from the so-
lutions for the uncoupled exciton and photon fields.
The form (5. 5) has been used in various computa-
tions. For large ~, (5. 5) can be approximately
solved by expanding the radical, since in the sec-
ond term

(16vE/Bkp) -
oo 0 .

Hence in this domain ~ » &p, the roots are

(5. 7)

or
ng Ep, no —C-((u)/Bkp

.,-k. /k, .
(5. s)

In writing (5. 8) recall the definition of k, as given
in (2. 14), or the equivalent statement [Eq. (2. 23),
where k', = —C(&o)/Bj. It is also useful at times to
define a complex wave number by

y= k,/kp,

so that for ~ » &oo, y is a root of (5. 5).

VI. EXTINCTION THEOREM FOR POLARITONS

(5. 8)

The second set of large parentheses in (4. 4) con-
tains terms propagating at kp. Setting it equal to
zero

-( ) Ao(P, ) Ap(Pp)+ 2 2+ 2 2=0. (6 1)

Thus, the incident wave is extinguished by an
electric field composed of the sum of two fields.
The sources of the latter are just the polariton
polarizations. This is the generalization of the
usual extinction theorem of local optics.

VII. ADDITIONAL BOUNDARY CONDITIONS

( k'- k'
p . y ) — p]

sG, a ~(, ) ~ Ap(ly) )I
+ @ k2 k2)

Hence the last term in (4. 4) becomes

The last set of square brackets in (4.4) contains
terms propagating at k, . This bracketed expres-
sion can be set equal to zero but may first be
simplified using the extinction theorem (6. 1). Then

A case of considerable physical importance which
has been studied in the literature experimentally
and theoretically' is a plane wave normally incident
from vacuum upon a semi-infinite crystal bounded
by a plane surface Z. In this case, we can produce
two propagating parallel polaritons in the crystal,
whose phase velocity dispersion is given by n, (&o)

and np(&u) of (5. 5). The plane incident wave, the
plane reflected wave, and the two propagating
polariton waves in the crystal comprise the entire
wave field to be determined. By contrast, in local
optics, there is only one propagating polarization
wave, and the incident and reflected wave.

Take the incident plane wave at normal inci-
dence from the vacuum, traveling in direction —~.
The surface Z is the xy plane. The incident elec-
tric field is transverse and is

g($) ( t) E(l (k f) ~) gf(k ' P &t (8 1)
k(f) . E(&) p (s. 2)

For the polarization waves in the medium, take

Pq(x, t)=P~(k), (u)e'~ J' "", j=l, 2 . (8.3)

For (8. 2), and (8.3),
Ik"'I =ko-~/c, Ik, I =~Ho . (s.4)

The surface integrals required in the work are
S o(P&) and 8,(P&) defined in (4. 5) and (4. 8). The
first of these is evaluated in standard works" by
the method of stationary phase (recall ko is real),
and its value is

S o(P, ) =- 2vP~(k, , (u) (ko +0, ) (e"P"/kp) . (8. 5)

The second integral may be evaluated by elementary
methods using complex integration (details are giv-
en in Appendix D). The result is then given an
asymptotic expansion to find

S,(PJ):——2viy;(k~, &u) (k, ~ k&) (e'~"/k, ), (s. 6)

which is the same form as (8. 5), irrespective of
k, being complex, while kp is real. Finally, we re-
quire the vector Ao(5~) defined in (4. 6); but, since
all waves are transverse,

classical electrodynamics, in the integral equation
framework, and the existence of transverse polari-
tons via the constitutive relations Eqs. (2. 4) and
(2. 7). To appreciate the content of (7. 1) as well
as of the remainder of the analysis, we shall
analyze a familiar physical situation in Sec. VIII.

VIII. NORMAL INCIDENCE ON A PLANE SURFACE

S+(Ps) ko

+
k2 kR k2 k2 (7. 1) Xo(P, ) = VxVxS o(P, ) =kp5'o(P, ) . (s. 7)

This expression relates the boundary values of the
polarizations and their normal derivatives on Z in
a very particular fashion. Only the particular
"a.b. c."of (7. 1) are the exact consequences of

In (8. 5) and (8.6) the field point is a point within
the crystal, with coordinates (0, 0, —v)

To find the reflected field, the various integrals
need to be evaluated at a field point outside the
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crystal which as in the standard treatment is
equivalent to reversing signs of A'", k, , and 03.

The results [Eqs. (8.5)-(8.7)] can now be sub-
stituted into (6. 1) and (7. 1). The extinction theo-
rem [Eq. (6. 1)] becomes

E((i (P ~) E( &((k ~) e(ihP&

Hence (8. 8) simplifies to

(8. 9)

(kp (p) = 2(n, + 1)E,( k, , (p) +,'( np-+1 ) Ep(kp, (d ) .
(8. 10)

~e have also used (5.3) and the definition of re-
fractive indices (5. 6). Equation (8. 10) is the ex-
tinction theorem written in terms of the electric
fields.

Turning to (7. 1) we have after substituting (8. 5)-
(8. 7), using (5.3) and the definition (5.9) of a com-

plex refractive index y =-k. /kp,

E,(k»(p) E,(k»(d) (8. 11)
8$ P Sp

This is the additional boundary condition needed to
determine all fields.

Finally, the reflected field is given as

E'"'(kp, (p) = ——,'(n, —1) E,(k, , (d) ——,'(np —1)Ep(kp, (d) .
(8. 12)

Clearly (8. 10)—(8. 12) suffice to determine all the
needed fields in terms of the single incident field. ~~'

Consequently, the ref lectivity of a semi-infinite
crystal can be computed as a function of frequency,
once the parameters of the susceptibility are giv-
en. Also, the work can be generalized to the
lamella geometry' which has been used to discuss
experiments on ref lectivity in some II-VI com-
pounds. These generalizations, detailed numeri-
cal calculations, and comparison with the experi-
ment will be reported elsewhere. '

IX. DISCUSSION AND CONCLUSION

The theory of crystal optics including spatial
dispersion, for example, polaritons has been in-
tensively discussed in recent years. ' A consider-
able literature exists on various aspects of wave
propagation, reflection, and related matters, al-
though serious theoretical questions remain even
in matters of central importance. In particular,
controversy exists concerning the proper additional
boundary conditions to be used in order to com-
pletely specify all the fields. "' '

One simple type of boundary condition has been

E"'(r, (d) =, P~ P, (k, , (p) (kp+k, )

2mko '"0'"
kgPp(k2, (p) (kp+kp)

k
. (8. 8)

2 0 0

But in our geometry (8. 1) is

much used, apparently first due to Pekar. ' This
"a.b. c."prescribes that the total polarization due to
the additional waves (polaritons) must vanish at
the crystal surface Z. In our notation this re-
quires

5,(x,y, 0) +P2(x, y, 0) = 0, (9.1)

where (x, y, 0) is the coordinate of any point on the
surface Z. In order to compare this boundary con-
dition with the "a.b. c." of our theory [Eq. (8. 11)],
we must rewrite the latter. Our boundary condi-
tion (8. 11) becomes, after using (5.3),

P, (k, , (p) P, (k, , (p)
)

(n, —y) (n', —1) (n, —y) (n,'—1)

to be compared with (9. 1) in Fourier transform

P, (k, , (p)+Pp(ka, (p) =0 .

Now (9.2) and (9.3) will be equal if

(n, —y) (n, —1)= (n2 —y) (n2 —1) .

(9.3)

(9.4)

In general, condition (9.4) is not satisfied. The
refractive indices n, and n2 are dispersive, and as
(9.4) can be regarded as an implicit equation for the
frequency, it does not appear possible to solve
(9.4). However, a general statement can be made
of a very approximate nature far from resonance,
i. e. , for ~ » vp. Then taking the background di-
electric constant 6'0 1, one may have n, -1, n~- z.
In this limit, (9.2) approaches (9.3).

Since, as will be shown elsewhere, s the present
"a.b. c."gives results in at least as good agreement
with experiment (albeit using different material
parameters such as 1"), as other boundary condi-
tions, the appeal to experimental agreement does
not appear decisive. In fact the values of material
parameters (particularly the damping constant I')
used with the present 'a. b. c."appear inbetter agree-
ment with independent measurements, than those
values required for other theories. ' However, still
more measurements of ref lectivity in dif fe rent crys-
tals and the material parameters of the crystals (such
as: damping constant I", oscillator strength eo,
effective mass m~, and frequency (dp) are required.

The present analysis can be generalized to in-
clude multiple resonances, and tensorial (aniso-
tropic) effects. The propagation of longitudinal
waves can be studied also. But here we have re-
stricted ourselves to the simplest cases which il-
lustrate the new results.

We conclude by pointing out that the analysis

pres-

entedd here is rigorous. The only inputs needed are:
(i) the integral equation formulation of optics based
upon the polarization picture of the medium [Eq.
(3.1)]; (ii) the Lorentz- Lorenz local-field expression
(3. 7), assumed to apply to the polarization and lo-
cal field produced by polaritons; and (iii) the constitu-
tive equations (2.4) and (2. 7). Granting these, the
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rest of the analysis proceeds straightforwardly,
and in particular without the need to assume, or
guess additional boundary conditions.

Note added in manuscriPt. Subsequent to sub-
mission of this work for publication, there have
been several related publications. A brief paper"
gave the results for the additional boundary condi-
tions which were obtained by use of a different
methods'i3 for solving Eq. (3. 1) of this paper.
The results of Ref. 15 include longitudinal and

transverse modes and are identical to that obtained
by solution of Eq. (3. 9) of this paper. Also Wolf
and co-workers ~ gave results for the mode struc-
ture of the electromagnetic field in a spatially dis-
persive medium and showed, inter alia, that for
the plane-parallel slab and the semi-infinite medi-
um with plane boundary, the electric field can be
expressed as a superposition of plane waves. This
established the validity of the plane-wave ansats
made here, and also in Ref. 5. A treatment of
the extinction theorem in local. optics along the
lines of Ref. 16 has now also appeared, ' but free
from several assumptions regarding continuity of
the vector potentials made in Ref. 16. More re-
cently the electrodynamics of bounded spatially
dispersive media has been reexamined using a
different form for the susceptibility than used in
the present paper and in Refs. 15 and 1'7; this
changes the mode structure of the electromagnetic
field and modifies the "a.b. c."This will be published
separately along with a proposed experiment
which could decide amongst the possibilities. '
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APPENDIX A: FOURIER TRANSFORM OF gk, u)

We write the macroscopic susceptibility as

xo
X( y +)

(2 )3/2 C( ) BP2 1

(2m) ' J e'" 'dk=5(r)' (A2)

the integral of the first term is simply y~5(r} For.
the second term, we have the transform

where y3 is defined in (2. 9) and C(~) in (2. 15). The
Fourier transform of y(k, v) is defined via (2. 3).
Since a definition of the Dirac 5 function can be
taken as
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Now we treat this integral as a complex integral,
closing the contour by a semicircle at infinity.
The denominator can be written as

C+B/3'=B[/3+i(C/B)'/3] [u —i(C/B) / ],
with simple poles at

u =+i(C/B)'" =u,

as defined in (2. 14). But as r & 0, we close the
contour by a semicircle in the upper-half plane.
Hence the integral becomes

E
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e' @A
(2v)'/3(iBr) (u —u, ) (I —~.)

(2vi) F e'""u,
(2 )1/2( B ) 2y Xl +( ) (A3)

In obtaining (A3) we used the fact that k, has a posi-
tive imaginary part, and thus contributes to the
residue in the upper-half plane, while k has a
negative imaginary part; yi is given in {2.11) and

G,(r) in (2. 12). One also easily verifies that with
the normalization chosen, the Fourier inverse
theorem (2. 2) is also satisfied.

APPENDIX B' REDUCTION OF EQ (3.9) TO EQ (4 4) FOR
T WAVES

To reduce (3.9) to (4. 4) we require a number of
intermediate results. The incident wave E'" is
taken to satisfy (4. 1). The trial polarization waves
satisfy (4. 2) and (4. 3), and in addition in the trans-
vel se casey

VXVxP/—- (V)V. P/ —V P/= —V P/ =k/P/

Then using (4. 3) and the equation satisfied by G3
[namely, Eq. (3.5)], we have an integral

e V. ~1r4iiP/(r, (u) S3(P/)
0

— —
p2 p2 +y2 p2

~l 0 j 0

(S2)
where S,(P/) is defined in (4. 5). We obtained (82)
by using Green's theorem. Other integrals of this
form which occur when (4. 2) is substituted in (3.9)
are

4m'(r", ~) S.(P/)
P&(r, ~)G,(r —r )dr

(»)
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with S,(P/) given in (4. 5) by merely substituting
G,(r —r") for Gp(r —r"); and finally,

E
E1$&(~t )G (~t ~tt)d~t

4vE"&(r", ~) S.(E"&)
k2 k2 + k2 k2

with S,(E")defined in (4. 8).
The surface integrals

s,(p,), s,(p,), s.(E"&)

(B4)

each satisfy a wave equation, with the propagation
vector determined by the Green's function. Thus
we have

v Sp (P/) + k Qsp (P/) = 0

v'S. (P, )+k'.S,(P,) = O,

VQS, (E"")+k2S, (E"&)= O .

(B8)

(B6)

(av)

When (82)-(B4) are substituted into (3.9), some
additional manipulations are required. These are

Vx V&(:
~

P/(r (t&) Gp(1' 1' ) dr'

4';2P, (r", (d) V&& V&&S,(I,)
2 2 + 2 2

ky -ko k~ -ko

The last term in (B8) is the vector Ap(P,.) defined
in (4. 6). Now when (B8) is put into (3.9) we find

) Q / C

G,(r"—r) V&& Vx
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P/(r', (d) G()(r' —r) drdr'

4',' 4', (r",~) 4',' S,(P;)
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4.A.(P;) S.(AQ(P/))
(k2 k2) (k2 k2)

+
(k2 k2) (k2 k2) t ( )

with S,(AQ(P/)) given in (4. 7). The result (B9) is
also obtained by using the Green theorem. Again
it is easily verified that

v's, (A, (p, ))+k', s.(A, (p, )) = o . (Blo)

APPENDIX C: WAVE PROPAGATION

For an infinite homogeneous insulator without
currents, we have

1 SD{r, t)
v&&v&&E(r, t) =-~

c et

Now all the intermediate results (Bl)-(Blo) can
be substituted into (3.9), and the expression (2. 21)
can be used to identify y(k, (p). When all terms are
gathered we obtain (4. 4).

The grouping of terms in (4.4) according to the
propagation vectors follows from the wave equa-
tions satisfied by P/, Ap(P&) and S,(P/), S,(E'"),
S,(AQ(P/)): following the intermediate results
(B6)-(av) and (alO).

Taking fields as

E (r, f}= E (k, (d }e 12' '~'

and using (2. 4), we have

k2E(k, (()) —k(k. E(k, (t&)) =kp[1+42'}{(kt((&)]E(k, (d) t

with (kp} =(d/c .But for transverse waves, we
have R E = 0 and

(k/k, )' 1=+4'~(k ~), (Cl)

as in (5. 2).

APPENDIX D: EVALUATION OF AN INTEGRAL S, (P.)

In the coordinate system given in Sec. VIG, the
crystal surface is the xy plane Z. The incident
wave vector k~" has components (0, 0, —kp), and
the wave vector of the propagating polarizations
is (0, 0, —k&). A general vector in plane Z is
r'=(x', y', 0). For a field point inside the crystal,
take r= (0, 0, —r) For.P/(&', t) take (8. 3).

The integral S,(P/) in this coordinate system is

S,(P,) =iP, (k, Q&)

d~ao g~ao

zn+z

dx

with

x k, 1+ —. +k~

(~t2 ~ @
t2 ~ ~2)1/2

{Dl)

g
—

(p2 &2)l /2

and (Dl) becomes

S,(P,)=kw P, (k„(ra)) d(e "*' -k+ ' + )k
r

or in terms of standard exponential integrals, 22 we
have

S,{P,}= 2~2P, (k„~}[2/2, (- zk,~}+(k,r}Z, (-2k„r}

—k e' +"/ k]2

where various arguments are complex. Making
an asymptotic approximation and only keeping the
leading term, we have

S,(P/) = —27/P/{k/t (d) (k, +k/}

Actually (D2) is the same as one would obtain in

Now as k. has a positive imaginary part, the inte-
grand in (Dl) converges as I r I

-~. We can evalu-
ate it in terms of known functions bytwo elementary
transf ormations. I et

x'= p cos8, y'= p sin0,
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the usual method, ~~ but since A, is complex the
present discussion seems more apt.

For S,(P, ) we ca i replace k, in (D2) by k, .

For points outside the crystal [field points
(0, 0, t')] replace wave vectors by their negatives,
as in the usual treatment. '
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