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We present calculations of the high-temperature time-dependent two-spin correlation func-
tions in impure one-dimensional Heisenberg chains. The dynamics is assumed to be dominated
by diffusion, which is obtained as the continuous time limit of a random walk of spin along the
chain. The correlations are calculated in the presence of finite concentrations of both nonmag-
netic and strongly spin-lattice-coupled impurities. Application is made to the determination of
position-dependent (relative to an impurity) NMR linewidths in the presence of hyperfine or
electron-nuclear dipole interactions. In the case of spin-lattice-coupled impurities and for
short enough chains, the NMR line shape is found to be Lorentzian with a width significantly
less than that found in pure chains. The width is found to depend approximately linearly on dis-
tance from the nearest impurity. In the case of nonmagnetic impurities, the line shape is found
to be Lorentzian in the wings but Gaussian near the center. No narrowing of the resonance is
found above that for the pure chain, and the position dependence is such as to increase the width
near an impurity.

I. INTRODUCTION

Early interest in magnetic linear chains was
primarily associated with the vastly greater sim-
plicity of analysis possible as compared with the
corresponding three-dimensional systems. ' Exact
calculations were of particular importance in ana-
lyzing general features of magnetic behavior as
well as in providing tests of approximate methods
used both in three and in lower dimensions. How-
ever, with the discovery of a growing number of
real materials whose magnetic behavior is gov-
erned by one -dimensional exchange Hamiltonians,
attention has focused on describing both the ther-
modynamic and dynamic properties of these phys-

ical systems. In many of them the exchange is
very nearly isotropic. The thermodynamics of
such Heisenberg linear chains has been studied'
(for spin —,') for chains of finite length, by numer-
ical techniques which exactly diagonalize the
Hamiltonian. Conver gence with increasing length
suggests reasonable extrapolations for infinite
chains. Similar calculations have been carried
out for the dynamical properties.

It was recognized that crystal imperfections
could lead to the existence of finite chains in the
physical systems studied experimentally, but cal-
culational time limitations made studies of chains
longer than 11 spins prohibitive, whereas indica-
tions' are that lengths of the order of 30-50 or
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more spins are playing an important role in sys-
tems of current experimental interest. More gen-
erally, impurities with magnetic properties very
different from those of the host will strongly affect
spin dynamics —particularly local behavior near
the impurities. With this in mind we consider here
an approximate calculation of spin dynamics in
Heisenberg linear chains with impurities at arbi-
trary separations. We concentrate on two inter-
esting limiting cases —the nonmagnetic impurity
and the magnetic impurity strongly (spin-orbit)
coupled to the lattice, which modifies spin correla-
tions by rapidly dissipating spin information which
reaches it. In both cases the system is effectively
broken up into noncommunicating finite chains.

As a model we have chosen a description of ex-
change dynamics by a hopping process, or random
walk, of spin excitations along the chain. This
picture has been very successful in describing the
behavior of (Frenkel) triplet excitons in alternating
Heisenberg linear chains in crystals of aromatic
organic molecules. ' More recently, a similar
description proved essential to an understanding of
the spin correlations in the linear chain crystal
(CH, )4NMnCl, (TMMC) as observed in the high-
temperature EPR, where experiment and theory
are now in detailed agreement. ' In the in-
finite chain, at times t much greater than the ex-
change time, the hopping picture predicts t be-
havior for correlation functions, characteristic of
any diffusion process. The consequent v low-
frequency divergence of the frequency Fourier
transform of the correlation functions is suggested
by the numerical analysis for finite chains and, not
surprisingly, it is found in analytic approximations
based on reasonable assumed forms of the gener-
alized diffusivity. This t ' behavior is the domi-
nant feature of the high-temperature spin dynamics,
but at lower temperatures development of short-
range order is exhibited in the formation of rela-
tively long-lived "sloppy spin waves, " seen both in
neutron-scattering experiments and in finite-chain
calculations. " Our model is clearly inappropriate
when these correlations become important; it is
applicable only to systems at temperatures well
above the effective exchange energy. In the organic
crystals, where this energy is itself strongly tem-
perature dependent, the model may well be appro-
priate over the whole experimental temperature
range.

We are interested here especially in local spin
correlations and their dependence on the distance of
the spins involved from impurities. Magnetic-res-
onance experiments probe such correlations, al-
though somewhat indirectly. The relaxation function

which describes the decay of a spatially uniform

nonequilibrium magnetization M„, is by the fluc-
tuation-dissipation theorem essentially the time
Fourier transform of the resonance line shape
(for rf field in the x direction). In turn, the equa-
tion of motion of y(t) in the interaction representa-
tion, where the perturbation H is the line-broaden-
ing mechanism (e. g. , dipolar or hyperfine inter-
actions), relates it to an equilibrium correlation
function ((f) ~([IVI,(t), H'(t) ][M„, H']):

0'(f)= exp[-4'& 1 d~(t —~)g(~)]. (1.2)

Here (e ) =
z jo(0) is by definition the second mo-

ment of the resonance line if g(r) is normalized to
&jr(0) = 1. The time dependence of operators in ((v)
is generated by the unperturbed Hamiltonian (with-
out H ). This expression for y(f) is exact if H
represents a Gaussian random process, which
seems to be an adequate approximation for ex-
change -modulated interactions even in one-dimen-
sional systems. The observed line shape gives
p(t), at least at long times, and thereby informa-
tion on ((r).

The structure of ((7) is simplest for NMR if H
corresponds to a hyperfine or electron-nuclear di-
pole interaction. Then we need calculate only
(8';(t)S*;(0)), where lr; —r&l extends only over the
range of the coupling. Variation in hyperfine or
dipolar energies with distance from an impurity
can separate NMR lines appropriate to spins at dif-
ferent positions relative to impurities, so that the
dynamics of these various spins can be studied ex-
perimentally. These two-spin correlation func-
tions are precisely what the hopping picture is set
up to calculate, and in Secs. II-IV we study them
as functions of impurity parameters and of spin
positions x; and x&, relative to each other and to
the impurities. The applicability of these functions
to the common case in EPR where H arises from
electronic dipolar interactions is less clear, but it
appears' that factorization of the relevant four-spin
into products of two-spin correlation functions may
be a sensible approximation there.

In Sec. II we illustrate our model by calculating
g(w) for the two cases of single nonmagnetic and
strongly spin-lattice-coupled impurities. In Sec.
III we calculate g(T) for finite impurity concentra-
tions and apply these results in Sec. IV to nuclear
magnetic resonance.

II. MODEL

We obtain the dominant physical process of diffu-
sion as the continuous time limit of a random walk.
Thus the essential parameters in the theory are the
hopping probabilities per unit time (proportional to
the exchange coupling, J and J for host and im-
purity, respectively) and, if applicable, the rate
of spin loss to the lattice. Given these, the model
we adopt is exactly soluble.
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A. Single Impurity with Different Exchange

As illustrative of the model we consider just the
case of a single impurity having exchange coupling
J & J situated at the origin of an infinite one-dimen-
sional chain. We characterize the spin of a par-
ticular site as having a set of hopping probabilities
to its nearest neighbors. During the discrete time
interval &t, the spin of site i has the option either
to hop to sites i +1 with the probabilities P;;„or
to remain on site z with the probability P, , = 1
-P;, & -P«,&. In the presence of an impurity
these hopping probabilities are no longer uniform
throughout the chain:

P,~= 0 if j+i, i +1,
P;;.i = P+»(«,.i+ ~;,0)

P;;= 1 —2P —»(25; 0+ 5; i+ 5; g) .
(2. 1)

The limit of a nonmagnetic impurity is obtained
when &P= —P.

Let the random walk begin on the site j and ter-
minate at time n&t on the site i. The walk is then
described by a set of probabilities P(i, j; n) for
n & 0. It is convenient to define the retarded prob-
ability function f;;(n) = P(i, j; n) 6(n), where 6(n) is
a unit step function and 6(0) = 1. These retarded
probability functions are equivalent (within a con-
stant factor) to the correlation functions (S',(t)SJ(0))
x 6(t) in the limit of continuous time. The boundary
condition is f;,(n = 0) = 5;,. This is a consequence
of the fact that in the high-temperature limit all
pair correlations are zero at t = 0 while the auto-
correlations have the common value (S&S&)=3S(S+1).

A system of finite difference equations deter-
mines the behavior for discrete time intervals:

f;;(n) =P;.i„.f;.i„(n-1)+P; i„f; i, ;(n —1)

+(1 Pk. l ~ -Pf l, l)f~J(n -)+5 J5 .o .
(2 2)

Equation (2. 2) may be rewritten as a. differential
equation in the limit of continuous time: We allow

p; i„[f~ i„(&)-f;;(&)]+~;;5(&) . (2. 3)

We define the Fourier transform of f,&(t) as

f(k, k', &u) = J dte'"' Z e" ' "f, (t) . (2.4)
l, j

Separating the spatially homogeneous terms from
the impurity effects we have

[ —i&a+ 2p(1 —cosk)] f(k, k, u) = 5» ~

+ &p [f(i= 1, k, (u)(1 —e '
) + f4= —1, k', ~)

x(1 e'~) -—2f(i= 0, k, &u)(l —cosk)] . (2. 5)

At this point it is convenient to introduce the
Green's functions which describe the pure system
(~p = o):

G(k, u&)= .
2 1

=Z e '"G(s, (u) .1
—ice+ 2p 1-cosk

(2. 6)
For small k and &u, G(k, &u) exhibits chara, cteristic
diffusive behavior: G(k, ~)-i(&u+ipk ) '. The dif-
fusion constant in this limit is easily identified as
p times the square of the lattice constant.

Multiplying Eq. (2.5) through by G(k, &u) and Fou-
rier transforming back to configuration space we
have

f„=G(l j)+ 2
.&p([G—(1+1) —G(l —1)](f~; f, „)—.

+[G(l +1)+G(l —1) —2G(l)] (2fo, g- fy, g
—f g, y)],

(2. 7)
where co is understood to be an argument of all
functions. Equation (2. 7) may be solved within the
manifold l = 0, +1.

After simplification through the use of a recur-
sion relation for the functions G(s),

-i~G(s) = 5, 0-p[2G(s) —G(s+1) —G(s —1)],
(2. 8)

we find

&t- 0 but n&t- t. Similarly P&& —p„.&t, where p„
is the hopping probability per unit time. Then

sf(;(&) =p;.i„[f«.i, ,(f) —f& g(i) ]

&p [G(i+ 1) —G(i —1)][G(j + 1) —G(j —1)] [G(i+1)+G(i —1) —2G(i)] [G(j + 1) +G(j —1) —2G(j)] &

2 1+&P/P+(&P/P)l&u[G(0)+G (1) ] 1+ &P/P+ (&P/P)iv[G(0) —G (1)]
(2. 9)

Note that f,z(v) is completely symmetric under the
interchange i j. This is indicative of a micro-
reversibility which obtains despite the fact that dif-
fusion is inherently macroirreversible.

Before proceeding further it is worthwhile to de-
rive an explicit expression for G(s) which will be
useful in subsequent calculations. Let us choose
s &0 and define e=e' in Eq. (2.6). Then we have

(2. 10)

G(s) = —(1/p).."Y(..—.) . (2. 11)

G(s) = — . —() dz 8
2&z p „8 —Qz+ 1

where a=—2 —i&a/p and the integration contour is
the unit circle. The poles of the integrand occur
at e, = a [a a (a -4) ~ ]. Since g,z = 1, only one of
these, z„ lies in the unit circle. Then
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We have inserted the absolute value sign around s
since G(s) is an even function of its argument. For
small &u, G(s) exhibits the characteristic ~ '~2

singularity which results in anomalously large
magnetic-resonance linewidths: z, —z - 2(-i~/p)'~'
as &u- 0. Note also that G(s) = g,"G(0), a relation
we shall frequently use.

Returning to Eq. (2. 9) we consider the case of a
nonmagnetic impurity (&p= -p). It is easily veri-
fied that f,&(&u) = 0 unless i and j are on the same
side of the impurity. Hence we specify i, j—1, and
using Eq. (2. 11) simplify Eq. (2. 9) to

f&&(&u) = G(i —j ) + G (i+j —1), i, j ~ 1 . (2. i2)

P;& —-0 if j 4z, &+1,

P];=1-2P-R6] 0,

(2. 13)

where R &0 so that the sum of the hopping probabili-
ties for the impurity is less than unity.

The equation analogous to Eq. (2. 5) is

G '(k, ~) f(k, k, &u) =5» ~ -xf(i =0, k, ur),

(2. i4)
where the rate of spin loss is

Rz= lim —.
~S-0 +t

The counterpart to Eq. (2. 7) is

f;,(&u) = G(i j) -xG(i) fo &(&u) = —G(i —j )—~G(f)G(j)
I+~G(0)

'

(2. iS)
It is particularly instructive to look at the special

case x/p-~. This corresponds to the limit in
which all the spin which reaches the impurity is
absorbed. The parameter r drops out of the prob-
lem entirely and the rate of spin loss is determined
only by how fast spin diffuses to the impurity:

This result shows that the impurity acts like a mir-
ror which reflects the spin when it reaches the end
of the chain. The first term in Eq. (2. 12) repre-
sents the direct propagation of the spin from j to i
without interference by the impurity, while the
second term represents the indirect contribution
due to a "reflection" of the spin caused by the
presence of the impurity. The co divergence
remains essentially unaltered.

B. Single Spin-lattice-Coupled Impurity

The case of a single spin-lattice-coupled impu-
rity may be treated in analogous fashion. For
simplicity we assume that the probability of hopping
to the left or right is the same for the impurity as
for the host atoms, but that there is a loss of spin
to the lattice characterized by the phenomenologi-
cal parameter R. In the case of discrete time in-
tervals this leads to the following probabilities P;&.

lim f,,(~)= 0, ij&0
G(i —j) —G(i +j), ij & 0 .

The minus sign in Eq. (2. 16), in contrast to Eq.
(2. 12), signals the disappearance of the asymptotic
f '~ behavior in f;&(f). That this is the case may
be easily verified since the Fourier transform of
Eq. (2. 6) gives

(2. 16)

G(s, t)=e "'I)„(2pt), (2. 17)

where I~, ~
is a modified Bessel function. Substi-

tuting into Eq. (2. 16) and using the asymptotic ex-
pansion of the Bessel functions we find

~ ~

(44mptj pt
(2. 18)

III. FINITE IMPURITY CONCENTRATIONS

In considering a real physical system one must
deal with finite concentrations of impurities. For
nonmagnetic or strongly spin-orbit-coupled im-
purities, the chain is broken up into dynamically
isolated segments. Under these circumstances
one need consider only a single segment terminated
by two impurities. For simplicity we restrict
ourselves to thi. s case.

A. Spin-Orbit Impurities

If we situate the impurities at sites 0 and m, the
equation analogous to Eq. (2. 15) is

Thus the usual t asymptotic dependence of the
pure chain is replaced by t 3~ for sufficiently large
times. The time scale over which Eq. (2. 18) is
appropriate is clearly determined by the condition

(i+j)'/4pt «1;
i.e. , the time must be large enough so that the
spin would have had significant probability to travel
the distance I i +j I in a pure system.

The basic approximation made in Eq. (2. 16) was
the assumption i xG(0) I » 1 in the denominator of
Eq. (2. 15), which may still be justified for finite
x/p. For small &u we have I G(0) I= z (p&u) '~, and
Eq. (2. 16) will be a good approximation for all
frequencies &u «x /p. For a resonance experiment
the central line shape is determined by the spectral
density of spin fluctuations out to frequencies only
of the order of the linewidth. [The corresponding
times t in Eq. (1.2) are greater than or of the or-
der of the inverse linewidth. j For such frequencies
it is not unrealistic to suggest ~ «r /p for real
materials. For example, the single-ion spin-lat-
tice relaxation rate of Co in KMnF, at room tem-
perature has been found to be of the same order
of magnitude as p, a few times 10' sec ', at least
several orders of magnitude larger than typical
linewidths. It may be more difficult to find a sys-
tem for which x is really large compared to p.
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f„(]d). = G(i j-) —x [G(i)fo &(v)+G(m —i)f J(+)]

r ]'[G(i)+G{m —i)][c(j)+G(m -j)]
1+r[c(0) + G(m) ]

]G (i) —G (m —i) ]]G (j) -a (m -j)]
)I+r[c(o) —G(m)]

(3.1)
As m-~ this reduces simply to Eq. (2. 15). In
the limit of large r/p (see the concluding remarks
of Sec. II) we get

[G(i) +G(m —i)][G(j) +G(m —j)]
2[c(0)+G(m)]

[G(i) —G(m —i)][c(j)—G(~ -j)]
2[c(())—G (m)]

(3. 2)
To determine the magnetic-resonance line shape
we need the Fourier transform f;,(i). We obtain
this directly by rewriting Eq. (3. 2) in a form which
explicitly exhibits its simple pole structure in the
&u plane. Using Eq. (2. 11) and the fact that z, z =1,
we have

(&) + ( )
(

e-If Jl m--I]-y] tn f g-m -f-g)O
8+ —8

(3.3)
for I& (i, j)&m —1. From the definitions of z, it
is clear that, except for those of G(0), the numer-
ator has no singularities as a function of ~. Note
in particular that the bracketed expression in Eq.
(3. 3) has no square-root branch cuts. The poles
of f,~(&) occur at z, = exp (nzi/m), n= 1, 2, . . ., 2m
Equation (3. 3) may be manipulated into the form

m ]]-g ] m- ]i-J I m-] J m f j-)f 8+ 8-

f (i)- I
'"""'cos[q( -j)]-2Pt (1-cos q )

= e 'I]; ~] (2pt);.„(4zpt) "'
B. Nonmagnetic Impurities

(3. 6)

The general solution for two impurities charac-
terized simply by a different hopping rate 4P is
rather complicated and not very enlightening.
Thus we consider the limit ~P = -P appropriate to
nonmagnetic impurities. The equation analogous
to Eq. (3.1) is

'EN n1rxg ——+ 2 1 —cos . . (3.4)
n=0 m

Thus the only singularities of fo(~) are simple
poles at &u = —2ip[1 —cos (nz/m)], and the Fourier
transform f;;(f) may be evaluated by the method of
residues:

m

( a ~ 'P -PPt(i-cos(nfr/m)j
gg'Lt J m n=].

nm n 7t'

cos 8 —j —cos — t +j . 3. 5m m

The decay is given by a finite sum of exponentials,
and is thus more rapid than the power law charac-
teristic of the pure chain.

To recover the pure-chain results we first trans-
form the origin of our coordinates to the center
of the chain and then take the limit as m-~, so
that the sum over n becomes an integral over wave
vector q:

P [G(i) —G(i —1) —G(m —i)+ G(m —i —1)][G(j)—G(j —I) —G(m —j)+ G(m —j —I)]f],(~) = G(i —j) —
2,. [G(0) -G( -I)]

[G(i) —G(i —I) + G(m —i ) —G(m —i - I )][6(j) —G(j —1) + G(m —j) —G(m —j —1)]
[G(o) —G( —1)]

where 1 & (i, j)c m —1. Equation (3. 7) may be cast
into a form analogous to Eq. (3.3) in the spin-
orbit case:

z;-'G(O)

e-1-It-j I m-l-l], 9] m-]-5 -m f-j~ lo -n)X(g, +z

The singularities in & of Eq. (3.8) are again sim-
ple poles so that the Fourier transform is readily
found to be

m~g

(
i 1 1 w Bpt cons ns/](m-1)]]-— + m- j n=g

I

where we have explicitly separated out the constant
term due to the &=Opole.

Physically this term is damped by interactions
not included in an isotropic exchange, or hopping,
model. However, although it should be damped,
it is not spurious. It implies

1im (S](t) Sq(0))g {S))(S)) = 0 (3.10)

a factorization usually taken for granted. Such a
decoupling is valid here only to order N for a
chain of N spins. The term arises as a consequence
of the fact that the Heisenberg Hamiltonian con-
serves S'-=g", ~S', , the total spin of the system.
Thus

x cos i-j +cos i+j —1, 3 9
m —l m —1 (S'(i)S](0)) = (S'(o)S;(o)&= 3 S(S+1), (3. 11)
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and the constant term in (SJ(t) Sf(0)), averaged over
all j, is S(S+ I)/3N. Equation (3.9) is consistent
with this average value since f;;(t= 0) has been
normalized to unity.

The correlations we have calculated for pure
Heisenberg exchange are damped by an exponential
factor e "' due to dipolar interactions, spin-lattice
coupling, anisotropic exchange, and interchain
coupling. Neglecting variations of these effects
along the chain, we can estimate their contribu-
tions to the damping rate g by standard perturba-
tion theory:

IMI-'/z, (3.12)

where M is a matrix element characteristic of
the interaction and J ~ is a measure of the density
of final states.

IV. APPLICATION TO NUCLEAR MAGNETIC RESONANCE

One of the most interesting features of the two-
spin correlations which have been calculated is
their dependence on position in the chain. The
most sensitive probe of such position dependence
is an NMB experiment, since resonances on dif-
ferent sites relative to impurities may be well
resolved. Thus we turn our attention to an analy-
sis of NMR line shapes.

In Eq. (1.2) we have given the standard rela-
tion between the relaxation function p(t), which
is the Fourier transform of the resonance line
shape, and the equilibrium correlation function
g(t). If the dominant source of line broadening
is a hyperfine or electron-nuclear dipole inter-
action, H =g A, ~~I,'S~&, where i, j label lattice
sites and n, P Cartesian coordinates, then g(t)
~g A)~A»~(S', (t)S~(0)) e '""o'. We have explicit-
ly extracted the Zeeman time dependence in the
final factor e '~"o', where M = 0, + 1 is the ap-
propriate magnetic quantum number. The re-
maining time dependence in S&(t) is governed by
the isotropic exchange Hamiltonian, which allows
us to write all the correlation functions in the
same form. The two-spin correlation functions
in the sum are precisely those we have approxi-
mated by f»(t) in Secs. I-III. To calculate the
line shape, we require products of terms of the
form

y, (~„M, t)

-=exp[ —(d', f «(t-&) &S((&)S~(0)) & '"""], (4 1)

where ~ is a measure of the perturbation strength.
For purposes of later comparison we first con-

sider the ideal infinite chain. There the anoma-
lously large linewidths result from the extremely
slow decay of the secular terms (M= 0) in the
relaxation function. For nuclei of magnetic ions
we need only i=j in Eq. (4. 1) and

p( ((&q, M = 0, t) —= (((((((t)

CO
= exp — ~ dx(y —x) e "Io(x), (4. 2)

I(( Q

where we have taken the value of g(x) from Eq.
(2. 17) and y -=2pt. The integral in the exponential
can be evaluated exactly, ' with the result

(t) e (/3& -p 2(4 0&) 4 o )S~~
(4. 3)

n7((i j) nv(i+ j) —(e "~' —1)cos —cos
n=1 m m xn

(4. 6)
and p»(t) is the product of a simple exponential
term and a correction factor due to the finite up-
per limit in the integral (4. 1). At small times this

where I'0 -=~, l4&~/9' I'~' is a measure of the line-
width.

The standard exchange-narrowing theory assumes
that the correlation g(r) decays rapidly enough so
that for times larger than p '(-J ') the integral in
Eq. (4. 1) may be extended to infinity with little re-
sultant error. The simple exponential decay of
p;, (t) then implies a Lorentzian line shape. In
the present case, however, such an extension is
not permissible because of the slow ( r'~2)-de-
cay of g(7'). This results in the anomalous t'~2

exponent of Eq. (4. 3). We also point out that the
three-dimensional exchange-narrowed linewidth
is of order ('p(&~/P), whereas the narrowing factor
in one dimension is seen to be only (&~ /P)' ';
NMR lines are much broader in one dimension.

Now consider a chain terminated by spin-lattice-
coupled impurities. Then f„(t) is given by Eq.
(3. 5), and the secular contribution to the relaxa-
tion function is

g2 m-1

pe(e) = exp (- ' r (et+ e*"'—()),
n=1

cos[n7((i - j)/m] —cos[nv(i+ j)/m]X
2

Xn

(4. 4)
where x„=-2P[1—cos(nv/m) j. It is convenient to
extract from the exponent the term linear in g and
to examine the circumstances under which this
term is dominant. Bather than do the sums over
n in Eq. (4. 4) explicitly we note that only the linear
time dependence remains if the integral over r in
Eq. (4. 1) is extended to infinity, Hence to cal-
culate the coefficient of t in Eq. (4. 4) we need only
evaluate the Fourier transform f&&(('=0), which
from Eq. (3.3) is

f,, (~ = 0) = (I/4pm) [2m(l t+ j I

—
I
i-j I) - 4ijj.

(4. 5)
Then Eq. (4. 4) becomes

2

y;, (t) = exp —( ~f„(( = 0) t—
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The most stringent condition arises for n = 1.
Then near the center of the chain the difference of
cosines is approximately 2, 1- cos(m/I) =-,'(v/m),
and a condition on chain length which permits the
neglect of the correction terms isI «P v /2K'. (4. 8)

For the reasonable ratio ~~/P -A/J- 10 2, when

& corresponds to a contact hyperfine interaction,
the length is thus restricted to m «1QO. If this
condition is satisfied, the line profile can be ex-
pected to be predominantly Lorentzian. For trans-
ferred hyperfine or dipolar interactions ~~/p will
be much smaller and the restriction on chain length
correspondingly less severe.

In practice one hopes to isolate the resonances
of nuclei near an impurity. In that case even the
condition (4. 8) is unnecessarily restrictive. If
i and j are close to an impurity, even for m large,
one can show by transforming the sum in Eq. (4. 6)
to an integral that the ratio of the correction term
to the leading term is -(Pt) '~~. This is negligible
for all times of interest as anticipated on physical
grounds. Thus a Lorentzian line shape is to be
universally expected for resonance near an im-
purity.

To summarize, under the conditions on m, i,
and j outlined above, the correction terms in Eq.
(4. 6) have a negligible effect so that p, &(i) decays
as a pure exponential

p&&(f) =e (4. 9)
where

I'(g ——((dp /4pm)(2m[ i+j
l

—2ml i —jl —4ij) . (4. 10)
I

G (0)&2m-2

correction term ensures that the exponent in Eq.
(4. 6) is quadratic in t .However, at times greater
than the inverse l.inewidth, the correction may be
neglected for sufficientl. y short chains. This will
certainly be true if the sum of decaying exponen-
tials in Eq. (4.6) damps in a time significantly
shorter than y, &(t) itself. In an infinite pure chain
the relaxation of the exponentials becomes increas-
ingly slow at small wave vectors so that the simple
exponential decay of y, &(t) is never realized. But
if the chain is short enough, the lower limit on al-
lowed wave vectors makes the relaxation sufficient-
ly rapid for the simple exponential form to be a
good appr oximation.

From Eq. (4.4) we see that only the linear term
in t will be important if for all n we have

&~ cos[nm(i —j)/m J
— cos[n v(i +j)/m]

m +n

For the case of resonance on the nucleus of a
magnetic ion only the autocorrelation functions

y;;(i) are required. From Eq. (4. 10) the line-
width I';;= &~~i(m —i)/pm is then strongly depen-
dent on position in the chain, increasing linearly
withdistance from the nearest impurity if i«m.

Resonance widths near an impurity are also sig-
nificantly smaller than those in a pure chain. The
ratio of the impure to pure linewidths is

r„3(m)'~'~, "' i(m —i)
I o 2P m

(4. 11)

= ((e~ /mP)[m(4i+ 1)- (2i+ 1)'] . (4. 12)

If i/m«1, I' again has a linear dependence ondis-
tance from the nearest impurity. As before, the
linewidths near an impurity are strongly narrowed,
by perhaps 2-3 orders of magnitude, when com-
pared to the pure case.

For a chain terminated with nonmagnetic im-
purities one can show that under any conditions
the calculated NMH linewidths must be greater
than those in a pure system. This is perhaps
physically obvious since only a finite number of
lattice sites are available on which to distribute
spin information. Mathematically such an asser-
tion is equivalent to proving that f;&(i) & G(i —j, f)
for all t, since then the integral in the exponent of
the relaxation function [Eq. (4. 1)]is always greater
than its counterpart in the pure case. We rewrite
Eq. (3.8) in the form

Again taking ~~ /P = 10 . we have I'„/I'0 =0. 13
i(m —i)/m. Thus, for example, the nearest neigh-
bor to an impurity should have a width approxi-
tely 8 times smaller than that characteristic of
the pure chain. For larger i, when the ratio (4. 11)
becomes of order unity, our approximation fails
and the correction terms in (4. 6) are no longer
negligible. At this point the line shape also be-
gins to look more like the pure case. In fact, the
condition I'«/I'0«1 restricts the chain length ap-
proximately as does Eq. (4. 8).

For the case of resonance on the nucleus of a
nonmagnetic ion (transferred hyperfine or dipolar
interaction) both the auto and pair relaxation func-
tions are required to compute the line shape. If
we take the simplest possible case where the nu-
cleus is coupled with equal strength &~ to two
magnetic ions on sites i and i+ 1, the Lorenzian
linewidth is

~ = I";&+ ~&+~, )+i+ 2I'&, ~.i

= G (i+j—1)+ g [G(2"(~ —1)
l

' -j
l ) + G(2"(~ 1)+

l

' j l
) +G (2n (m —1) —

l
i +j —1 l)

n=1
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+»."(2n(m- 1)+ ~i+~ -1~)j, (4. 13)

where we have expanded (1 —z,"~) ' as ageometric
series since z, always lies within the unit circle.
A Fourier transform of Eq. (4. 13) in ~ then im-
mediately proves the assertion, since the G(s, f)
are positive definite probabilities for all time.
Note further that this result is also independent
of the extra damping due to dipolar or other in-
teractions, since these would simply lead to multi-
plication of the Fourier transform of Eq. (4. 13) by

an over-all exponential factor.
The relaxation functions for the chain terminated

by nonmagnetic impurities may be analyzed in the
same manner as the spin-lattice case, but with
the proviso that care be taken with the pole of f »(»~)

near ~ = 0. Explicitly including the damping of the
spin correlations due to perturbations such as di-
polar interactions, we find for the secular contribu-
tion to the relaxation function

r' con[no((-j)/(m —()]+ cos[nc(&+j —()/(m —1)[—S„c.[( )«.„„&,
))exp

(n+s. '

where y„=2P[1 —cos(n»»/m —1)]. Here )7 is the
additional rate of damping which is to be estimated
from Eq. (3.12). When this rate of damping is
small, approximately the same restriction on
chain length as found for the spin-lattice case [ Eq.
(4. 8)] applies, if the correction terms (other than
n=0) in Eq. (4. 14) are to be dropped. However, in
contrast to the case of spin-lattice-coupled impuri-
ties, spin information tends to be dissipated more
slowly near the chain ends, and the most severe
limitations on length occur there.

For the terms n 0 0 in Eq. (4. 14) we see that »i

may be neglected if q «y„. If the damping arises
principally from anisotropic exchange we have
from Eq. (3. 12) that

q = (m/z)'z, (4. 15)

where ~/Z is the percentage anisotropy. Thus
even an anisotropy of 3/o yields q = 10 Z. Similarly,
for dipolar damping,

t

fine coupling strength (d»,/J=10 and estimating
(IMI/O)'=10 ' we have

r»/[8„& 10 (4. 18)

Under these conditions the n =0 term in Eq. (4. 14)
gives rise to a Gaussian time dependence indepen-
dent of q and

(f) e- [n» &s r»»») (4. 19)

where»)» = ~~2/2(m —1) and I';& may be identified as
the constant term in the expansion of Eq. (3.8)
about v =0:

r„=[~',/4p(m —1)][(m —1 —
I i —~ I

)'

+(m —Ii+q I
)'+-',-m(m —2) —(m-1)']. (4. 20)

When (d~/4 is very small or )7 is quite large so
that )7/p»»» 1 [c.f. Eq. (4. 17)], conventional ex-
change-narrowing theory becomes applicable. The
relaxation function is then pure Lorentzian having
a width

»1 = (P,
' /a'Z)'Z (4. 18) P»=(d», f e f»»(7') dT =(dpf»» ((s» =i') . (4. 21)

o n (lMI
'& '(z )'" (4. 17)

where M is a matrix element characteristic of the
perturbation Hamiltonian which we have estimated
in Eqs. (4. 15) and (4. 16). For an assumed hyper-

where p, ~ is the Bohr magneton and a is the separa-
tion between magnetic lattice sites. For the con-

0
servative estimates, a = 3 A and J = 5 'K, we have
g= 10 J. The damping due to spin-lattice coupling
is similarly expected to be very small. Kith these
estimates it is not difficult to show that in fact g
«y„ in Eq. (4. 14), for all n O 0 when the chain is
short enough so that Eq. (4. 8) is satisfied.

In the term with n =0, the relevant comparison
is the size of q compared with the decay rate P»»
of (»);&(f) itself. Since we have already shown that

P» '1'0

Here f &(»(dirl) is the correlation function calculat-
ed from the isotropic exchange Hamiltonian only
[Eq. (3.9)].

For resonance on a magnetic ion at site i when
)7 is negligible Eq. (4. 19) is applicable with

r„=[~',/4p(m-1)] [(m- 2i)'+-', m(m —2)] . (4. 22)

In contrast to the chain terminated by spin-lattice-
coupled impurities, this function has no pronounced
position dependence for small i. It is also clear
that the width of the resonance is greatest in the
vicinity of an impurity and smallest near the chain
center. Equation (4. 19) predicts the line profile
to be Gaussian near the center and Lorentzian in
the wings.

For the case of resonance on a nonmagnetic ion
between two spin sites the analysis and results are
similar. There is again no strong dependence of
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the resonance width on distance from an impurity
other than through a purely geometrical effect.
For a nucleus next to an impurity only one nearest
neighbor plays a role in the relaxation, and the
resonance is significantly narrowed.

We close this section by exploring the experi-
mental observability of these effects. Although

impurity NMR lines have been studied in some
detail in three-dimensional systems, linewidths
in one-dimensional materials with similar physi-
cal parameters (exchange strengths, spins, lattice
constants) are characteristically much larger, as
we have previously pointed out. This is a con-
sequence of the relative importance of small wave
vectors in one dimension and the associated en-
hanced strength of the spectral weight of spin fluc-
tuations at low frequencies, which control the NMR
linewidth.

We compare the main NMR linewidth (for nuclei
far from an impurity} with the resonance frequency
shift near an impurity. As an estimate of the
shifts to be expected we consider the simple exam-
ple of a nonmagnetic impurity and a nucleus between
the impurity and its nearest neighbor. Character-
izing the nucleus-electron interaction, as above,
by a strength su~ we estimate the resonance shift
by «u =&a~(S;). Then the ratio of the shift h~ to
the pure linewidth ro [see Eq. (4. 3)] is

(9 v)l /3(f /~ )1 /8(Se) (4. aS)

which is typically of order unity for polarizations
of a few percent, readily obtained even at the high
temperatures for which our theory is valid.

A more favorable case is found with spin-lattice-
coupled impurities. For sufficiently high impurity
concentrations we have seen that the main resonance
may be considerably narrower than I'(), and line-
widths near the impurities are smaller still [see
Eq. (4. 11)]. The shifts may still be of the order
of &u~ (S;), due to the different spin magnitude of
the impurity, for example. We now compare ~~
with an average linewidth for the chain of rn atoms
as determined from Eq. (4. 12):

a(u/r, „=3Q /(u,')(S') /2m. (4. 24)

For m = 20 and (p/&u~) =103, this suggests that the
lines will be resolved if (S') & 10 . There will be
a smaller shift for the nuclei at other positions
along the chain, since the altered molecular field
of the impurity will lead to a variation in (S;) along
the chain. The effect is, of course, largest at the
neighbor of the impurity, where the correction to
the local susceptibility is of order T„/T, if T„ is
the mean-field NOel temperature. The EPR experi-
ments on one-dimensional systems imply that the
high-temperature limit for spin dynamics is real-
ized at least by T = 5T„. At this temperature the
ratio (4. 24}, for a nucleus between the first and

second neighbors to an impurity, is reduced by a
factor of order TN/T=0. 2, and this additional line
should still be resolved for (S')& 0. 05. For typical
values of T~ of a few tens of degrees, standard
laboratory fields should then be sufficient.

V. CONCLUSION

The simple hopping model for the high-tempera-
ture spin dynamics of a linear chain has, as an-
ticipated, demonstrated important modifications
in local spin dynamics due to impurities. Although
these will be manifested in such bulk properties
as the susceptibility y(q, ~), we have concentrated
on the interesting variations in local behavior near
an impurity which might be observed in nuclear-
resonance experiments, as discussed in Sec. IV.
We have studied two-spin correlation functions,
which may determine the resonance line shape
through relaxation functions of the form (4. 1). The
e ' «) dependence of the relaxation function char-
acteristic of the pure chain is a direct consequence
of the long time persistence (-t '/ ) of spin cor-
relations associated with diffusion in one dimen-
sion. When the diffusion is inhibited, as by appro-
priate impurities, one expects a return to the sim-
ple exponential form e ' of standard exchange-
narrowed systems, correspondirg to a Lorentzian
resonance line shape. In fact, for a nucleus close
to a strongly spin-lattice-coupled impurity (where
spin information is lost readily to the lattice rather
than continuing to diffuse along the chain), we find
this is precisely what occurs. Furthermore, if
the separation between impurities is sufficiently
small [see Eq. (4.8)], then the exponential decay
is found for all positions along the chain. The de-
pendence of the decay rate F&& on the positions i
and j of the two spins is given by Eq. (4. 11); the
magnetic nucleus linewidth I"« increases linearly
with distance from the nearest impurity. The
smallest linewidth, associated with the neighbor
to an impurity, may be typically one to three orders
of magnitude smaller than the linewidth appropriate
to the pure chain, depending on the source of the
line broadening.

It has been shown that nonmagnetic impurities
always lead to broader NMR linewidths than those
found for the pure chain. Physically the impurities
prevent loss of spin information from finite chain
segments, decay of the spin correlation functions
occurs more slowly, and the relaxation function

y, /(t) is damped more rapidly The decay .of the
uniform (q=0) spin density on the segment must
be treated separately, and it contributes a Gaussian
factor to the otherwise exponential relaxation func-
tion [see Eq. (4. 19)]. The restriction on the length
of the segment for this description to be valid is
approximately the same as for the spin-lattice-
coupled impurities.
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Finally, we have investigated the probable ob-
servability of these effects. We have found that, if
NMR can be seen in the pure chain, it is likely that
lines due to first and perhaps second neighbors to
an impurity can be isolated from the main resonance
and observed, using reasonable magnetic fields.

The most favorable circumstances are associated
with (i} strongly spin-lattice-coupled impurities at
relatively high concentrations, (ii} resonant nuclei
of nonmagnetic atoms, and (iii) the weakest possible
broadening mechanism (e.g. , electron-nuclear di-
pole interactions).
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A calculation of the phonon sideband associated with the E~—4A2+ transition of a Cr ' ion at
a cubic site in MgO is presented. The short-range coupling model used and the method of cal-
culation follow closely those used in a previous calculation of the sidebands for MgO: V2' and
MgO: Ni ~ Satisfactory agreement with experiment is obtained by assuming that only displace-
ments of the impurity ion and its nearest neighbors are coupled to the electronic transition.
Differences between the coupling for the Cr ' ion and that for the divalent ions are discussed as
is the validity of the assumption of short-range coupling.

I. INTRODUCTION

There has been considerable experimental in-
terest in tbe fluorescence spectrum of Cr' in MgQ.
A useful review of work done up to 1962 has been
given by Schawlow. ' The spectrum consists of a
sharp line at 14 319 cm ' (the 8 line) accompanied
by weaker satellite sharp lines (tbe N lines) at low-
er energies and an attendant phonon sideband. The
intensities of the satellite lines are found to depend
strongly on the method of preparation in a way
which Schawlow et al. have shown to be consistent
with the satellites arising from local charge-com-
pensation effects. The symmetries of the com-
plexes formed when Cr' substitutes for a Mg

' lattice
ion have been established by electron spin resonance

(ESR) experiments. ~ 4 The most abundant pattern
in the ESR spectrum is isotropic and consistent
with the Cr" ion being at a site of cubic symmetry.
From Zeeman-splitting experiments on the R line,
Sugano et al. ' have established that the electronic
transition is magnetic dipole from a E excited
state to the 'A2, ground state. By examining a
range of crystals prepared in different ways to give
different intensities of the 8 and N lines, Imbuscha
has identified the part of the sideband which is due
to the R line, that is the part which accompanies
electronic transitions in Cr' at cubic sites. This
experimental sideband is reproduced as the con-
tinuous line in Fig. 1(a) and is in good agreement
with results published by Glass and Searle. 7

Recently, Sangster and McCombie' (this paper


