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Elastic Constants of Solid Ar, Kr, and Xe: A Monte Carlo Study
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The elastic constants of classical systems of 108 particles arranged (with periodic boundary
conditions) on an fcc lattice and interacting with pairwise-additive forces have been evaluated
to an accuracy of about 2% by a Monte Carlo procedure closely related to that used by Hoover
and his co-workers. For Ar(80'K) and Kr(85 and 115'K) we have used the Bobetic-Barker
pair potentials and also included the corrections for the truncated tail of the pair potential,
quantum effects, and three-body forces. For Ar(80 'K) and Xe(156 'K) we have carried out a
similar calculation for the familiar Lennard-Jones 6:12 potential. Our 6:12 Ar(80 K) elastic
constants agree well with the previous work of Hoover et al. but unfortunately differ only
little from the more realistic Bobetic-Barker Ar(80'K) values. Bulk moduli for both poten-
tials are compatible with the currently available experimental data. Comparison of our Kr
results with experimental data indicates a need for refinement of the Bobetic-Barker Kr po-
tential. The Xe(156'K) results agree very well with the recent Brillouin-scattering work of
Gornall and Stoicheff which is to some extent disappointing because the same 6:12 potential is
in poor agreement with the low-temperature heat capacity.

I. INTRODUCTION

It has already been shown that with presently
available computers it is feasible to use Monte
Carlo methods to calculate the elastic constants of
a classical system of particles interacting with
pairwise-additive forces~'2 to an accuracy of at
least a 2%. Elastic constants calculated in this
fashion have also been compared with those ob-
tained by conventional lattice dynamics and self-
consistent phonon theories. 3 4 Throughout all this
work the pairwise force was taken to be familiar
Lennard-Jones 6:12 potential as applied to solid
rare gases. In the last few years considerable
progress has been made in elucidating the inter-
atomic forces between Ar atoms, especially by
Barker and his co-workers. ' ' It is now known
that the low-temperature heat capacity definitely
rules out the 6:12 potential for solid Ar' and re-
cent spectroscopic' and beam experiments
confirm its failure in the low-density gas. From
all this work it is abundantly clear that the 6:12
potential gives a poor representation of the Ar2-
pair-potential energy and that many-body forces
must contribute in both the liquid and solid states
as well as to the third virial coefficient. At pres-
ent it appears that at least for Ar these many-body
forces can be well approximated by the Axilrod-
Teller-Muto (ATM) three body force. '-~

The purpose of this paper is then to carry out
Monte Carlo calculations of the elastic constants
of solid Ar, Kr, and Xe with the best available
interatomic potentials. Since elastic constants are

the second derivatives of the energy density of the
system with respect to strain they may contain a
larger contribution from many-body effects than
zeroth-order quantities like the energy and specif-
ic heat or first-order quantities like the pressure
and expansivity and might therefore provide the
best test of the ATM approximation to the many-

body effects in the solid.
With laser techniques it is now possible to mea-

sure the elastic constants of rare-gas solids to
about +2%. ' Thus, inprinciple, for a given sol-
id whose pair potential is known we could evaluate
the pair-potential elastic constants to + 2%' com-
parison with experiment would then yield the con-
tribution of many-body forces directly. We shall
see that this approach is as yet still too impre-
cise since pair potentials, except for Ara, are not
known sufficiently well nor are the elastic con-
stants. Thus for Xe there is available a full set
of experimental elastic constants' at 156'K but un-
fortunately no good Xe2 potential t

The outline of our paper is as follows. In Sec.
II we sketch the theory pertinent to our calcula-
tions and discuss briefly the evaluation of quantum

corrections and three-body contributions. A few
details of the method of calculation are given in
Sec. III. The results are given in Secs. IV and V.
For Ar(80 'K) we have used both the 6:12 potential
and the more realistic Bobetic-Barker (BB)poten-
tial; for Kr(85 and 115 'K) we have used the BB
potential'0; and finally for Xe(156'K) we have, of
necessity, used only the 6:12 potential. Antici-
pating our results, we find as did Fisher and
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Watts' that for 80 K, the 6:12 and BB Ar elastic
constants differ by only a few percent. Neither
agrees with the recent experimental value of C»
obtained by stimulated Brillouin scattering. ' The
BB Ar and Kr potentials give values for the pres-
sure that are a little large when allowance is made
for three-body ATM effects. In the case of Ar
this is likely due to an accumulation of systematic
errors in the tail, quantum, and three-body con-
tributions as well as errors in the pair potential. "
Thus, there is no clear evidence for the failure of
the ATM approximation in the pressure calcula-
tion for Ar. In Kr, however, the pressure is too
large to be attributed to errors in evaluation of
the tail, quantum, and ATM three-body contribu-
tions. Thus, either many-body effects other than
the ATM force are present in solid Kr, or the BB
Kr potential needs to be improved, or both. Final-
ly, the 6: 12 potential gives elastic constants in
good agreement with the values obtained by Bril-
louin scattering from solid Xe even though this
potential is known to be a poor pair potential. '3

II. THEORY

of this free energy. ' Upon differentiating the ex-
pression for E with respect to a particular Lagran-
gian strain g ~ we obtain the stress tensor C z as

BI' Bln V B U2 2yC, = =-NIT + +vA3+5 Ag .
B leg 7 Bgeg Brea

(5)

Here the first and second terms are the "kinetic"
and "Born" contributions while the three-body and

quantum contributions are given by

(q=3 or Q) . (6)

The isothermal elastic constants are given by the
equation

B2
PCT

BlegB~(rv r

BReg BAT BReg B~rv

Formal expressions for the elastic constant for
a system whose potential energy U is due solely
to pairwise forces have been derived previously in

a form suitable to Monte Carlo calculations. '
Here, however, we need to generalize these some-
what to include both three-body and quantum ef-
fects. Our starting point is the Wigner-Kirkwood~o

expansion for E, the Helmholtz energy of a sys-
tem whose potential energy we write as

U= U~+vUS=- Z u(kl)+ Z u(klm) .
I &r &m=1

We assume that v U3 is a small correction to Ua,
for example, the ATM force. '

If we neglect terms of order v, vS and h we
obtain"

F = 3Nk T in' + k T ln(N! )

—kTln f f e "ad7, d7„

+v(U, )+n'(U, ); (3)
here

!=(2v@'p/m)'", p=l/kT,
and ( ) implies a canonical averaging over the
classical system with only tzvo-body forces.'

(X)= f fe "aXd~, d~ /

f fe '2d.~( d7„-. (3)

The quantum correction is given by

Uo=(p/12m) Z v', u(ij) . (4)

The isothermal elastic constants are now ob-
tained by taking the appropriate strain derivatives

Here the third term is the main two-body fluctua-
tion contribution and

B~U,
D, = ' +fluctuation terms (c = 3 or Q) .

BReg Ble~
(8)

The fluctuation terms that arise in A3, D3, A~,
and D@, particularly the three-body terms involve
possibly slowly convergent sums over triangles and

will be time consuming to evaluate, we shall there-
fore assume that they can be replaced by their
static values, i. e. ,

BU,

B~eg static

8 U,
D, = ' (a=3 or q) .

B~eg B~e& static

Here ( )„„„denotes the value when all the par-
ticles are at their equilibrium lattice sites. This
approximation which at first sight might seem
poor is in fact adequate both because these terms
contribute sufficiently little to the elastic constants
and because the approximations are really not too
bad I We test the equivalent approximations for the
pressure and energy in Appendix A, and hence we

believe this partially substantiates this claim. De-
tailed expressions for the energy Z= (apF/sp) and

the pressure p= —(BF/BV) are also given in Ap-
pendix A.

We shall not reduce Eqs. ('l) and (9) to their
explicit dependence on u(kl) and u(klm), since these
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equations can be found in the literature. In par-
ticular, the two-body isothermal elastic constants
and their quantum corrections (Do) can be found in
Ref. 2, and D3 can be evaluated trivially from
Ref. 22.

Adiabatic elastic constants can be obtained from
the isothermal ones by a thermodynamic correc-
tion

()„=C ()
—P()„=y T(Cv/~~&ag&v~ ) (10)

We follow the standard Metropolis eg gl.
Monte Carlo procedure starting with 108 particles
arranged on an fcc lattice with periodic boundary
conditions. Briefly, one allows all particle moves
that lower the potential energy U3 but only a frac-
tion e 3~ of those moves which increase the en-
ergy by hU&. To obtain results for a hypothetical
perfect crystal each particle is further constrained
to stay closer to its own lattice site than any other.
We rejected the first 50 000 moves in any run ad-
justing the acceptance rate to be about one-third.
The two-body potential u(kl) is truncated at a dis-
tance equal to one-half the edge of our basic cube
or equivalently about fourth neighbors on the fcc
lattice. The corrections to the various thermo-
dynamic quantities due to the use of a truncated
potential are discussed in Appendix C. For Ar
and Kr the pair potential was taken to be that of
Bobetic and Barker, '

where y= (V/Cv)(d)))/dT)v is the thermodynamic
Gruneisen constant. The statistical derivation of
Eq. (10) for a classical system with two-body
forces has been given by Hoover et at'. who failed
to distinguish between the quantum correction to
adiabatic and isothermal constants. We shall de-
fer discussion of this point until Appendix B. Fi-
nally, we recall that for a cubic crystal there are
only three independent elastic constants which using
the Voigt notation are written C&f p C)3, and C44.

III. OUTLINE OF THE CALCULATIONS AND CHOICE OF
POTENTIALS

ues of Leonard":

vA, = 73.2X10 erg cm,
v ~ = 220. 4&&10 erg cm

The justification for using these potentials is the
impressive fit of many properties of the solid,
liquid, and gas phases.

Finally, the Lennard-Jones 6:12 potential was
~ also used for Ar and Xe:

(13)

with &/k=119 'K and R,„=3.616 A for Ar and

(./k = 231.1 K and R „=4.446 A for Xe.

IV. RESULTS FOR LENNARD-JONES 6: 12 POTENTIAL
Ar AND Xe

Our results for the Lennard-Jones 6:12 Ar and
Xe potentials are given in Table II where they are
compared with previous theoretical values of
Hoover et al. s [column Ar(3)j. We do not give
a detailed breakdown of the various contributions
since they are virtually identical with previous
work. It should be noted that the correction for
the three-body ATM force is not included in the
results of Table II. In the case of Ar we show the
quantum correction as estimated in Appendix B.

The agreement between the Ar(3) and Ar(2) re
suits indicate that we can achieve an accuracy of
a 2/o in the adiabatic constants with only 200000
configurations. The isothermal quantities are
more slowly convergent because of the relatively
larger contribution made to these by the Quctua-
tion terms. Our findings are thus in complete
agreement with previous work of Holt et al.

The longer Xe run was carried out under a
similar reduced temperature and volume as the
argon runs. We estimate on the basis of previ-
ous calculations that the Xe B value will be

TABLE I. Parameters of Bobetic-Barker potential (see
Ref. 24).

5 2
u(kl)=t' Z A(r —))'e ' "-Z )(q g )

(11)
with v = R» /R „,where R» is the separation of
the atoms j'j and l and R „denotes the minimum of
the potential. The parameters are given in Ta-
ble I.

The triplet potential u(klm) was assumed to have
the ATM' form

u(klm) = v(1+3 cos8, cos8, cos8 )/(R» R, R,„)',
(12)

in which Rai Ra Rt a,nd ge B~ ~ are the
sides and angles of the triangle formed by atoms
k, l and m. For the coefficients v we used the val-

~/k ('K)
R „(&)
0 (A)

Ap

A&

A~

A3
A4
A~
c,
cs
C~p

140.235
3.7630
3.3666
0.29214

—4.41458
—7.70182

-31.9293
—136.026
—151.00

1.11976
0.17155
0.01375

12.5
0.01

197.431
4.0152
3.5944
0.24795

-4.45855
-13.68888
—57.8240

—242. 0919
—337.0

1.07466
0.17145
0.01432

13.5
0.01
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TABLE G. Elastic constants for Lennard-Jones 6:12
potentials.

Ar
Quantum

Substance ~ Ar(3) Ar(2) correction Xe (6)

r*=kr/~
V* = (RNN/Rm~)
E/Nk T
C„/Nk
pV/Nkr
7
C ggv/NkT
C'„V/NkT
C44V/NkT
a'V/NkT
C ggV/NkT
C g2V/Nk T
Bs V/NkT

0.672
1.032

—9.44
2.79

—0.08
2.91

59.5
32.3
42. 6
41.4
83.1
55.9
65.0

0.672
1.032

—9.425
2.61

+0.01
2.89

60.8
35.9
41.4
44. 2
82.4
57.5
65.8

0.672
1.032

+0.09
—0.09
+0.30

0.002
2. 75
1.38
1.38
1.84
1.71
0.37
0.82

0.675
l.028

—9.40
2.74

+0.13
2. 85

63.4
34. 9
43.8
44. 4
85.6
57.1
66.6

The digit in parenthesis after the substance gives the
number of configurations in 100000's.

"See Appendix B.

about 1/o lower because of the temperature differ-
ence and 5% higher because of the density differ-
ence compared with the Ar runs.

When allowance is made for these corrections
we obtain the classical result (8 V/NkT) =42. 6 for
T*-=k T/e = 0. 672, V* =—

(RNN /8, „) = 1.032 to be
compared with 41.4 found by Holt et al.3 It there-
fore appears that our claimed errors of + 2%%uo are
realistic even for isothermal quantities provided
we sample about 500000 configurations.

In Table IG we compare the Lennard-Jones 6:12
values with the available experimental data. In
the case of Ar we made allowance for the quantum
corrections in all the properties while in Xe only
the quantum correction to the pressure is at all
significant, being about +0.02 (Nk T/V). The
6:12 potential pressures are positive for both Ar
and Xe at the observed nearest-neighbor separa-
tions ANN. Our Monte Carlo values should be good
to about 25 bar so that we have here a definite
disagreement with experiment. Since the 6:12 po-
tential parameters were basically fitted to the
zero-temperature crystal properties 8 our Monte
Carlo pressures indicate that the 6:12 solids have
too large a volume expansivity compared with the
real crystals. This confirms the findings of ear-
lier lattice dynamical studies with these poten-
tials. The energy change from zero temperature
is insufficient to provide a stringent test of the
potentials. For Xe, C~ and elastic constant values
all agree well with experiment when due account
is taken of the possible experimental and theoreti-
cal uncertainti. es. It is disappointing to see so
many properties well fitted by the 6:12 potential.
Along with the pressure, the low-temperature heat
capacity'3 seems to be the only property to rule

out this model for the solid! In the case of argon
we have again good agreement between experiment
and the 6:12potential for C~, B, and B but not
for the individual elastic constants. The high val-
ues obtained experimentally for C„perhaps also
confirm the failure of the 6:12 for Ar but in view
of the poor experimental value for the anisotropy
A = 2C«/(C„—C,a), this may not be significant.

V. RESULTS FOR BB Ar AND Kr POTENTIALS

We have evaluated elastic constants for Ar
(80 'K) and Kr (85 and 115 'K) using about 500000
configurations and the pair potentials of BB. ' '

The detailed breakdown of the results is given in
Table IV and a confrontation with experiment is in
Table VI. From a comparison of the values for
the fluctuation terms half-way through the Monte
Carlo runs with those at the end we find the fluc-
tuation contribution to C», C» —C», and C44 agree
to better than 3'/0, but that the C» fluctuation only
agrees to about 7%. When due account is taken of
the other contributions we appear to have 1/p ac-
curacy for all elastic constants (even C,») except
C~~ and Br for which we appear to have 4% and 3%,
respectively. We note that C,~ is not directly an
observable quantity and in view of this a reason-
able assessment of an over-all accuracy on the
elastic constants is 2%. C and z are probably
good to 3% and 2%, respectively. Thus, within
our probable errors neither the crystal anisotropy
factor A =2C44/(C» —C,z) nor C» showed a signifi-
cant variation for the three runs with the BBpo-
tentials (see Tables IV and V).

The comparisons with experiment are given in
Table V. If the elastic constant data are all taken
at face value we appear to have poor models for
both solid Ar and Kr. Recent lattice dynamical
calculations ' confirm, in part, the failure of
our model for solid Kr but not for solid Ar. A

comparison of the differential collision cross sec-
tions obtained from the BBpair potentials'~ with
experiment indicated a need to modify these pair
potentials. In the case of Ar this conclusion
was reached independently by Barker, Fisher, and

Watts (BFW) from a study" of liquid Ar. The
BFW Ar, potential is in excellent accord with all
two-body-gas data including the beam measure-
ments. 30 A comparison of solid state properties
predicted by the BB and BFW Arz potentials in-
dicates~ that only the volume expansivity (or
equivalently the pressure) is appreciably (- 5%)
different. The isothermal bulk modulus B and

specific heats C» differ by only about 1'%%uo. Similar
small differences were found both in Monte Carlo
studies of the solid and liquid at or near melting3'

and the isotope effect on vapor pressures. ~ Taken
together all these facts, plus the remarkable
agreement with Gornall and Stoicheff's A = 2. V4
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TABLE III. Comparison of Lennard-Jones 6:12 Monte Carlo results with experiment.

Ar (Bzs = 3.857 A, T = 80 'K)
Theory Expt.

Xe (Rsz =4.487 A., T = 156 'K)
Theory Expt.

E(kJ mole ~)

p (bar)

Cz(J'K ~ mole" ~)

a'(kbar)

C«(kbar)

C (2(kbar)

C44(kbar)

B (kbar)

—6.22

60

22. 5

11.8

23.1

15.3

12.0

17.9

3.1

—6.19+ 0.04~

23 3~1 Pc
22. 7 ~ 0.5'
12.7+ 0.6'

27.0'
28.3 I

13.9'

8.9'

18.3'

1.2

—12.19

50

22. 8

15.0

28. 9

19.3

14.8

22. 5

3.1

—12.07+ 0.20~

wp

24. 8 + 0.6~
21.2+ 1.4f

14.5+ 0.5"

29.8 + 0.5"

19.0+ 0.4'
14.8+ 0.4"

22. 6 + 0.4"
21 3+1 1

2.74+ 0.3"
~Value obtained from the zero-temperature sublimation energy 7.74+ 0.04 kJ mole (G. K. Horton, Ref. 26) minus

(C&dT; C& data from P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc. Phys. Soc. London 78, 1449 (1961).
"Value obtained from zero-temperature sublimation energy 16.03+ 0.20 kJ mole t (Horton (Ref. 26)j minus fo CPT

=3.96 kJ mole ~ [J. V. Trefny and B. Serin, J. Low Temp. Phys. 1, 231 (1969)].
'Value quoted by O. G. Peterson, D. N. Batchelder, and R. O. Simmons t.Phys. Rev. 150, 703 (1966)] derived from

C&of Flubacher et al. (Ref. a).
~Direct measurement of Cz [K. Gamper, J. Low. Temp. Phys. 6, 35 (1972)] and value quoted by Trefny and Serin

(Ref. b).
'Direct measurement of C~: F. Haenssler, K. Gamper, and B. Serin, J. Low Temp. Phys. 3, 23 (1970).
Value obtained from C& of Trefny and Serin using expansivity data of V. G. Manzhelii, V. G. Gravilko, and V. I.

Kuchner, Phys. Status Solidi 34, K55 (1969).
77.7'K value: A. O. Urvas, D. L. Losee, and R. O. Simmons, J. Phys. Chem. Solids 28, 2269 (1967).

"C. A. Swenson and M. S. Anderson, in Therma/ Expansion Symposium, Coming, Nero York, 1971; and edited by
M. E. Graham and H. E. Hagy, in AIP Conference Proceedings, Vol. III, edited by H. C. Wolf (AIP, New York,
1972), p. 108. J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24, 1405 (1963).

G. J. Keeler and D. N. Batchelder, J. Phys. C 3, 510 (1970).
~77'K value: H. Meixner, P. Leiderer, and E. Luscher Qef. 19).
"W. S. Gornall and B. P. Stoicheff, Phys. Rev. B4, 4518 (1971).
P. A. Bezuglyi, L. M. Tarasenko, and O. I. Baryshevskii, Fiz. Tverd. Tela 13, 2393 (1971) ISov. Phys. Solid

State 13, 2003 (1972)).

+ 0.30 for xenon, suggest to us that for solid Kr
and Ar further experimental studies of the elastic
constants would be worthwhile. However, we
should admit the possibility, discussed in the In-
troduction, that the elastic constants, unlike the
other thermodynamic properties, contain a con-
tribution from nonadditive exchange forces33 or
that our use of an asymptotic triple dipole form
[Eq. (12)j is not adequate.

In Table VI we compare the temperature depen-
dence of elastic constants of the BB Ar potential
with those of the 6:12 potential. Although we see
that the difference between the two potentials are
considerably reduced as we go to high tempera-
tures, the BBpotential results appear to be sys-
tematically higher than the 6:12 values. Meixner
ef af."have measured C,', and find 40. 2, 35.9,
and 28. 4 kbar for 0, 40, and 77'K, respectively.
The agreement at low temperatures with the BB
potential is not too bad. However, the high-tem-

perature disagreement is not understood but might
possibly be related to zero-sound effects (see
Table VI).

Finally, in an attempt to look for systematic
errors due to the tail correction approximation
[see Appendix C, Eq. (CS)] we carried out a
200000 configuration run for Ar at 80'K using the
BBpotential for a periodic 108-particle system
rather than the effective 54-particle systems used
in our other studies. Table VII gives the 108-
particle elastic constants which can be compared
with the 600000 configuration run given in Tables
IV and V. Table VGI makes this comparison ex-
plicitly for selected quantities. Bearing in mind
that the errors in the 20000 configuration run are
likely to be twice those of the longer run we have
excellent agreement for all quantities, except the
pressure and the energy. For the full 108-particle
systems the tail correction to the pressure and
energy is reduced by 50%. Thus a possible 10%
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error in the tail correction would manifest itself
in a systematic difference of 15 bar between the
two runs. From a comparison of results in Table
VIII, it appears that we do have a possible syste-
matic error in our Table V values for the energy
and pressure due to the tail correction. This
point could be clarified by a careful study of the
pressure and energy in a periodic systems of, say,
256 particles. For the present it seems that,
roughly, the value for the energy in Table V needs
to be corrected by —10 Jmole ' and the pressure
by —20 bar. Moreover, from Appendix A a further
systematic error in the energy and pressure arises
due to an approximation for E~, E3, G~, and G, .
The latter errors give corrections ' to the values
in Table V of, respectively, +24 Jmole ', —15 J

mole ', —lV bar, —11 bar. Taken together it
seexns that the systematic errors in the energy all
cancel and that the value in Table V is likely cor-
rect, while for the pressure the Table V value is
likely systematically high by + 50 bar. Even al-
lowing for the large systematic error, the BBpo-
tential still gives p )0 or, equivalently, a volume
expansion that is too big. This finding is in agree-
ment with recent lattice dynamical studies using
the BB argon potential. Furthermore, recent cal-
culations, both Monte Carlo ' and lattice dynami-
cal, indicate that at 80 K the BFW potential gives
pressures about 20 bar lower than the BBpoten-
tial. In view of all the above remarks the BFW po-
tential should thus give an excellent fit to the vol-
ume exyansivity, as indeed seems to be the ease. '

TABLE IV. Elastic Constants for BB, Ar, and Kr potentials.

NkT
VCg~

NkT
VC44

NkT
VD
NkT

cv
Nk NkT

PV
NkT

Kr (RNN =4.071 A, T = 85 'K)

Kinetic
Born
Fluctuation
Tails
Quantum

Two-body
totals

Three-body (ATM)

Two- plus
three-body totals

2. 00
165.2

—61.6
7 % 7
2.0

99.9

17.2

117.2

90.9
—36.8

2 ~

1.0

53.0

10.7

63.7

1.00
90.S

—24. 5
2% 1
1.0

66. 3

3.5

69.8

26. 3

25. 5

25. 5

1.50

1.30

—0.06

2. 74

2. 74

1.50
—15.36

—0.74
+0.06

—14.54

1.17

-13.37

1.00
20 71

—1.48
0. 22

—2. 97

3.52

0.55

Kr(RNN ——4. 125 A, T =115'K)

Lattice
Born
Fluctuation
Tails
Quantum

Two-body
totals

Three-body (ATM)

Two- plus
three-body totals

2. 00
113.4

—58. 2
—5.2

0.7

52. 8

11.3

64. 1

61.4
31~ 2

—1.5
0.3

29.0

7.0

36.3

1.00
61.4

—24. 1
—1.5

0.3

37.0

2.3

39.7

22. 2

—0.4

21.8

21.8

1.50

l.12

—0.02

2. 60

2. 60

1.50
—10.70

—0.50
0.02

—9.68

0.77

—8.91

1.00
—1.91

—1.01
0.09

—1.83

2. 31

0.48

A r(RNN = 8.857 A, T = 80 'K)

Kinetic
Born
Fluctuation
Tails
Quantum

Two-body
totals

Three-body (A TM)

Two- plus
three-body totals

2.00
118.1

—57.4
—5.6

3, 1

60.1

9.9

70.0

63.8
32 ~ 3

—1.6
1.6

31.6

6.1

37.7

1.00
63.8

—23.4
—1.6

1.6

41.5

2. 0

43. 5

23. 2

1y 3

21.9

21.9

1.50

1.21

—0.09

2.62

2.62

1.50
—11.03

—0.54
+0.09

—0.98

0.67

—9.31

1.00
—2.00

—1.09
+0.34

—1.75

2. 02

0.27
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TABLE V. Comparison of Ar and Kr Monte Carlo results for BB potentials with experiment.

Ar(Rss =3.857 A, T =80'K)
Theory Expt. ~

Kr (RNN ——4.071 A, T = 85 'K)
Theory Expt.

Kr (Rsm = 4.125 L, T = 115 'K)
Theory Expt.

E(kJ mole ')

p (bar) 72+ 12" 135+ 12" 154 + 15~

-6.19' P. P1 -6.]9y P. P4 -9 45' P 03~ -9.42~P 03+ -8.52' 0.02~ -8.47' 0 P3&

Cy(J deg"' mole ') 21.8 + 0.7
23.3+ 1.0
22. 7 + 0.7 22. 8 +0.7 21.6+ 0.7

22. 5~

22. 9'
a'(kbar)

CS

C(g
S

C44

13.2 + 0.4

25. 0 + 0.5

16.2+ 0.3
11.8+ 0.3

19.1+ 0.4

2. 70+ 0.15

12.7+ 0.6

27. 0
28.3

8.9

18.3

20. 1 + 0.6

35.1+0.7

22. 0 + 0.4
17.2 + 0.4

26.4+ 0.5

2.61 + 0.15

19.2'

38.Ox

16.6

16.3'

25.1+1.1'
24. 8+ 1.2"

1.6'

14.6+ 0.5

27. 5+ 0.6

18.6+ 0.4
12.7+ 0.3

21.6+ 0.4

2. 86+ 0.15

13 3'

29.9

10.7'

11.9'

20.1+ 1.1~
19.4*1.0"

1.3'

'The source of data for Ar is the same as in Table III.
This is the statistical error on Born and energy terms and takes no account of possible error in the quantum three-

body or tail corrections. From Appendices A and B we estimate the systematic error due to quantum and three-body
effects as+27, +29, and+20 bar, respectively, for Ar(80'K), Kr(85'K), and Kr (115'K). The tail correction is dis-
cussed in Appendix C.

Value obtained from zero-temperature sublimation energy 11.16+ 0.03 kJ mole [G. K. Horton (Ref. 26)] minus

jC&dT; C& data from R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc. Phys. Soo. London 78, 1462 (1861).
dD. L. Losee and R. O. Simmons, Phys. Rev. 172, 945 (1966).
~P. Korpiun and H. J. Coufal, Phys. Status Solidi 6, 187 0.971).
P. Korpiun, A. Burmeister, and E. Luscher, Phys. Letters 37A, 184 (1971).
D. S. Kupperman and R. O. Simmons, J. Phys. C 4, L5 (1971).

"P. A. Bezuglyi, L. M. Tarasenko, and O. I. Baryshevskii, Solid State Phys. 13, 2392 (1971).

It is clear that for calculating values of the Monte
Carlo pressure near zero with any reasonable ac-
curacy, considerable care must be exercised in
correcting the raw Monte Carlo ensemble aver-
ages. However, for the purpose of this paper,
namely evaluation of elastic constants by Monte
Carlo methods, we appear to have adequate meth-
ods for evaluating the various correction terms.

VI. SUMMARY

We have carried out high-temperature calcula-
tions of the elastic constants of solid Ar and Kr
using "realistic" pair potentials. In the case of
Ar, in contrast to the zero temperature values,

these differ only a little from Lennard-Jones 6:12.
Neither potential gives results close to existing
experimental data. For Kr our results are also
in poor agreement with experiment due in part, at
least, to the pair potential used.
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APPENDIX A: EVALUATION OF FLUCTUATION TERMS

E =~a NkT+ (U, )+5 Eo+&Es,

PV=NQT+ (Pa)+)I Go+vGs .
(Al)

(A2)

The detailed expressions for F, G, E3, and G3

are given in Ref. 11 and can also be obtained from
Eqs. (AS)-(A6) given below along with the supple-
mentary definitions Pz =3U3 and

—P 8 pPo= Zr R() Vqu(ij) .
( j

An independent Monte Carlo study of solid argon
by Barker and Kleine~ obtained values for the fluc-
tuation terms occurring in Eqs. (Al) and (A2).
%e use these values to compare with the approxi-
mation equivalent to Eq. (9) of Sec. II. Thus, we

examine the following four approximations:

In this appendix we examine the approximation
equivalent to Eq. (9) of Sec. II for the energy Z and

pressure p. From Eq. (2) we obtain, in the nota-
tion of Sec. II,
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2(+o)ggggjg 2(~o ) p(( I2~ o) (+2 ) (~Q )) t

0.090-0.158 —0.032,

(~s). . .=
& ~g ) - p(& ~ &8 &

-
& ~ & ( Us ))

0.672- 0.718 —0.028,
(&,)...„.= (I', ) - p((~,I' ) - (~,) (&,)),
0.341-0.465 —0. 187,

(+ ) (+s) p((+2IS) (+2) (Us))
(AG)

2. 016-2.153-0.179 .
Beneath each equation we give the numerical values
of (U/NOT) and (PV/NkT) appropriate to the BBpo-
tential for solid Ar(R»=3. 85V A, T=80'K). The

I

values on the left-hand side are identicaI with those
to be found in Table IV while those on the right-
hand side are from Ref. 31. We see that the ap-
proximation for the three-body terms is good to
2/p or 3% while the quantum corrections are about

25% in error. If the equivalent approximation to
Eq. (8) incurs the same error, then by inspection
of Table V we find the total effect on the elastic
constants will be less than 1%.

Before going on to duscuss the evaluation of the
quantum corrections to the elastic constants we
make some further comments on the fluctuation
terms occurring in Eq. (8) of Sec. II. In detail
we have (with the abbreviation q

—=q ~, p = q„)

TABLE VI. Comparison of elastic constants for the
Lennard-Jones 6:12 and BB Ar Potentials.

T('K) 40 80

The fluctuation terms that occur above are time
consuming to evaluate using the full Monte Carlo
run. Moreover, terms similar to the p' coeffi-
cient in (AV) occur in C~, and an attempt to evalu-

r BU3
3

2

~~n8~%v' static
(A8)

I

ate the latter was made by Barker and Klein. s'

It proved impossible, within statistical accuracy,
to distinguish the P terms from zero even after
sampling a 1300-configurations subchain of the
main Monte Carlo run. With this in mind we found
it expedient to assume

C~~ {kbar)

C (g {kbar)

BB
LJ6 12

BB
LJ612

23.0
20. 7~

36.4"
32.3 '

19.5'

25.O'
23.1'
16.2
15.3'

The values for Da can then be obtained directly
from Ref. 22. We make no distinction between

D,' or D,'.
APPENDIX B: QUANTUM CORRECTIONS

C44(kbar)

S~ {kbar)

BB
LJ 6:12

BB
LJ 6:12

22. 8

29.2
26. 2d

19.O"
17.8'
26.2"
23.S'

11.8
12.O

19.1 c

17.9'
aJ. A. Barker, M. L. Klein and M. V. Bobetic {Ref.

8).
"Zero-sound values derived for BB potential from the

slopes of phonon dispersion curves calculated by M. L.
Klein, J. A. Barker, and T. R. Koehler [Phys. Rev. B
4, 1983 {1971))who employed conventional perturbation
theory with a quasiharmonic basis which should be ade-
quate for 40 'K. At 77 'K the zero-sound constants were
Cff 28. 2, C)2 —-17.0, and C44-13.5 kbar. An equivalent
calculation for the LJ 6:12 potential at 80 'K gave Ci&
= 27. 6 and C44 =14.1 kbar. These high-temperature
zero-sound constants are subject to systematic uncer-
tainty because of the known inadequacy of perturbation
theory at high temperatures.

'This work.
~T. H. K. Barron and M. L. Klein, Proc. Phys. Soc.

London 85, 533 {1965).
A. C. Holt, W. G. Hoover, S. G. Gray, and D. R.

Shortie {Ref. 3).

The quantum corrections to the isothermal elas-
tic constants given by D~ can be obtained from Eq.
(AV) with the substitution 3- Q. In view of the re-
marks made at end of Appendix A we assume (as
did Hoover et al. ) that

8 Ug

~Roge%v stat ic
(Bl)

(B2)

Detailed expressions can be obtained from the
formula in Barron and Klein and are omitted for

This can be shown to be equivalent to the first
quantum correction to the quasiharmonic elastic
constants. The latter have been examined in de-
tail by Barron and Kleins '~ (see Sec. VI Ref. 3V).
In the quasiharmonic approximation we can obtain
also ~~, the quantum corrections to the adiabatic-
isothermal correction [Eq. (10)j, which proves to
be non-negligible (see Table V, for example).
Thus, we have

Dc=Dc+&c .S T
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TABLE VII. Elastic constants for Ar BB potential O08 particles).

Kinetic
Born
Fluctuation
Tails
Quantum

VC((
NkT

2.00
114.9

—56.1
—3.5

3.1

62. 8
—31.4
—0.8

1.6

1.00
62. 8

—21.4
—0.8

1.6

Ar(RNN=3. 857 A, 7=80'K)
VC gg VC4g V4
NkT NkT NkT

Cy
Nk

l.50

—0.09

1.50
11~ 27

—0.36
+0.09

pV
NkT

1.00
—2. 57

—0.71
+0.34

Two-body totals

Three-body totals

Two- plus
three-body totals

60.4

9.9

70.3

32.2

6.1

38.3

43. 2

2. 0

45. 2

20. 6 2. 52

2. 52

—10.04

0.67

—9.37

—1 94

2.02

+0.06

brevity. We note only that the quantum correction
of order /P to Griineisen's constant y= (V/C~)
x (dp/d T)„ is small. ~'

APPENDIX C: CORRECTIONS FOR TRUNCATION OF THE
PAIR POTENTIAL

Generally we have to evaluate ensemble aver-
ages of the following form:

(X)=f f e '~3Xd~, . dv„/

f f e "ad7, ~ ~ dv„. (Cl)
In our Monte Carlo calculations we have trun-

cated our pair potential at a distance 8 ~, with
8 ~ chosen to be one-halfthe cube edgeof our 3.08-
particle system. This is equivalent to a trunca-
tion at fourth neighbors in the fcc lattice and ef-
fectively means that each particle interacts only
with the 54 that are enclosed by the sphere of radi-
us R ~. Our results must, therefore, be cor-
rected for the effects of neglecting the interactions
between particles whose separation is greater than
R ~. To do this we rewrite Eq. (Cl) in an alter-
native form. We begin by partitioning the poten-
tial energy

where
a

(X ) = f ' f e ~X dTg'''ding/

DUOf f e ~d&q d&z . (C7)

Quantities such as (X )0 are just those that are
readily evaluated by our computer program, name-
ly, ensemble averages of truncated quantities with
respect to a truncated potential. The remaining
terms in Eq. (C6) are still impossible to evaluate
as they stand because they involve summations
over too many particles. We shall, therefore,
assume that Uz and X' canbe evaluated by summa-
tion over a static lattice. In this case U becomes
a constant, independent of configuration, and the
fluctuation term in (C6) vanishes. Hence, we have

(x) = (x'), + (x')„.„,,
where ( )„„„denotes the value for a fcc static
la,ttice.

This approximation is likely to be excellent as
long as the quantity (X') makes a relatively small
contribution to the total. By inspection of Table

U —Uo+, Ut&&&
2 2 2

where

U,'= Z' ~(kl),
0&l

~~i —'~max

(c2)

(cs)
TABLE VIII. Comparison of 108-particle results with

54-particle results for BB argon potential at 80'K.

108

Ua=U~™1=5u(kl), Rpg&R ~ (c4)

Similarly, we partition the quantity X being en-
semble averaged. Thus, we have

X=X +X (C6)

We now assume that the truncation error repre-
sents a small correction and perform a Taylor-
series expansion of Eq. (Cl) to first order in the
tail corrections yielding

(x) = (x )0+ (x' )0 —p((Up'x)0 —(Ue')0 (x)Q), (C6)

E(kJ mole ~)

p(bar)
Cz (J mole"~ K" )
C'„(kb-)
C (p(kbar)
g~ (kbar)
C44(kbar)
C~)((kbar)
C'„0 bar)
a'g bar)
A

7

—6.23
16+24
21.0
19.1
10.4
13.3
12.3
24. 7
16.0
18.9
2.83
2.89

-6.19 + 0.1
72k 12

21.8+ 0.7
19.0+ 0.4
10.3+ 0, 2
13.2+ 0.4
11.8+ 0.3
25. 0 + 0.5
16.2+ 0.3
19.1 + 0.4
2.70 ~0.15
2.93+0.05
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V we see that only in the case of the pressure p
does this tail correction give an appreciable effect
and only here because we are near zero pressure
and have a cancelation among several terms.
Thus, if Eg. (C8) is in error by l0/q, the pressure

will incur a systematic error of about 30 bar, but
all other quantities will be essentially unaffected.

In summary, it is to be understood that all equa-
tions occurring in the text that contain quantities
such as (X) are given explicitly by Eq. (C8).
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