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To facilitate calculation of the effects of electron-electron interaction in insulators, a di-
electric model is developed analogous to one used by Overhauser to discuss correlation in
metals. In this model the dynamical many-electron problem is replaced by a field-theoretic
problem in which an electron interacts with a "plasmon" field representing the valence-charge
distribution. For small wave vector q the plasmon dispersion ur{q) approaches the bulk plas-
ma frequency; at large q, &u(q) Sqt/2m, corresponding to single-particle excitations. To
determine the electron-plasmon coupling Poisson's equation and the sum rule on oscillator
strength are employed. Calculated self-energies of an electron (or hole) due to correlation
are large, typically 3 Ry, though substantially reduced by recoil effects if the electron mass
is small. Exchange effects lead to further reduction. The crucial importance of short-range
(large-q) dielectric behavior is emphasized.

I. INTRODUCTION

Recent papers have explored the importance of
correlation effects on the electronic structure of
insulating solids. It has become clear that these
effects are large and should be taken into account
when interpretations of optical spectra, etc. , are
attempted. For example, in the case of solid Ar
correlation lowers the band gap by 2. 5 eV, ac-
cording to calculations by Lipari and Fowler. ~

This reduction yields an energy gap within 5% of
experiment. The latter analysis was based on the
"Coulomb-hole-plus-screened-exchange" (COHSEX)
approximation introduced by Hedin and used by
Brinkman and Goodman3 to discuss exchange and
correlation in semiconductors. Omitting the en-
ergy dependence of dielectric screening and local-
field corrections, the self-energy operator derived
in Ref. 3 contains (i) core exchange, (ii) valence
exchange [screened by c(q, 0), the static dielectric
function], and (iii) the electrostatic self-energy
of an infinitely massive point charge.

An earlier model of correlation effects, due to
Toyozawa, replaces the valence-charge distri-
bution by a dispersionless exciton field, coupled
to a test electron by a Frohlich-type interaction
representing the macroscopic polarization field.
The electron-exciton coupling was chosen by the
requirement that a test charge be screened by the

static dielectric constant at large distances. No
requirement was imposed on the short-range be-
havior. Haken and Schottky used the Toyozawa
model to write an effective electron-hole inter-
action including the effects of screening within in-
termediate-coupling theory. Elec tron and hole
self-energies contained in this theory, when com-
puted in a "static approximation, " agree closely
with the classical Mott-Littleton results, which
predict band-gap reductions of several electron
volts in large-gap insulators. 6

A third approach based upon the detailed dielec-
tric response of an insulator is proposed. In this
model the valence-electron system is simulated
by a single field, as in Ref. 4; however, the col-
lective excitation resembles more closely a plas-
mon than an exciton. The dispersion &u(q) of this
field is defined by the zeroes of the longitudinal
dielectric function e(q, u&). For small q these are
plasmon-type modes, suitably modified by the
crystal potential; for large q we have single-par-
ticle excitations, &u(q) =hq s/2m. Moreover the
electron-plasmon interaction V~ is more compli-
cated than q

t (Frohlich interaction) and reflects
(a) the detailed q dependence of the dielectric re-
sponse and (b) the longitudinal sum rule7 on oscil-
lator strength. The model is analogous to that of
Overhauser who investigated electron correlation
in metals. Here, as in Ref. 8, it is asserted that
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the several important physical constraints under-
lying our model strengthen the reliability of con-
clusions derived from it. Section II begins with a
derivation of the electron-plasmon interaction.
The self-energy calculation, based on Penn's ran-
dom-phase-approximation (RPA) dielectric func-
tion for a model semiconductor, which appears
to work well for insulators, is outlined in Sec.
III. Finally, a summary and discussion of the re-
sults is presented, for self-energies of electrons
and holes in fcc alkali halides.

II. ELECTRON-PLASMON INTERACTION

or
»(q, «(q))= 0

«o@) «o gR
(2)

The unknown function b~ is determined from the
requirement that Eq. (1) reduces to the "known"
static dielectric function e»-=&(q, o) as q-0. Thus,

and
&",= «o/(»» —1)

«'(q) = «,'»»/(»» —1)

(3)

(4)

For an insulator, a~ is real; then &~ and the dis-
persion «(q) are also real. To ensure that the
Kramers-Kronig dispersion relations1~ are satis-
fied «must be replaced in (1) by «+i&', where &'

is a positive infinitesimal. Then the imaginary
part of Eq. (1) is, for «& 0,

» o(q, «) = o v(«o/~») &(« —&»)

which satisfies the sum rule13

1' "d««eo(q, «) =-,'v«o (8)

According to Eq. (5), the single-particle excita-
tions of the model insulator have energy S~~. In
particular, as q-0 (the optical wavelength of a
typical interband transition is much longer than a
lattice parameter) the transverse and longitudinal
dielectric functions are identical, ' and absorption
of light takes place in the discrete line

« = +o = «~/(& o (7)
where &0 is the macroscopic dielectric constant
&(0, 0). Thus &o may be identified as an average
interband energy in the insulator. Further, from

Suppose that the longitudinal dielectric function
for an insulator can be represented as

» (q, «) = 1 —«o'/(«o —&.; ) (1)

where «~ = (4vNe /m)'~ is the free-electron-gas
plasma frequency for N electrons per unit volume;
umklapp response (local-field corrections~~) is not
considered here, though it may be important in
quantitative calculations. Collective excitations
of the valence-charge system occur for frequency
«(q) and wave vector q which satisfy

Eq. (2) as q-o,
Qo=«(0)= («o+&o)' '

= «, [&g(»o —1)j'~' (8)

is the long-wavelength bulk-plasmon frequency;
the effect of the crystal potential on Q~ is com-
pletely contained in ~o in our model. ' Note that
while the exciton energy is always less than 540,
the dispersion given by Eq. (2) is always greater
than 40, and greater than ~~. Reference is made
to modes for which»(q, «) = 0 as plasmons, fol-
lowing Ref. 8, though for large q compared with
the Fermi wave vector it would be more accurate
to speak of single-particle excitations of frequency
«(q) =hq'/2m.

The electron-plasmon interaction is now derived;
the discussion closely follows that of Ref. 8. We
begin with Poisson's equation for wave vector q,

—q 'y» = —4ve'p», (9)

where p; is the Fourier transform of the valence-
electron density,

=Z e"'"
&=1

(io)

and the corresponding electrostatic potential en-
ergy of an electron at r is

y»e'»' = (4ve'/q') p»e'»'

Here and in the following discussion the volume of
the crystal is set equal to unity. In the usual
way '

p~ is regarded as a field variable in a quan-
tum theory, and is written in terms of creation
and destruction operators a~ and a~ for the plasmon

a
field as

p» = r»(a- + a» )
t (12)

To determine y~, and hence the electron-plasmon
vertex V~, it is sufficient to invoke the sum rule '

Z„Z„,
~

&n~ p»~O) ~'=~'q'/2m, (14)

where E„o is the transition energy separating the
ground state 10) of the valence electrons and the
excited state In). In the model developed here a
single "plasmon" mode exhausts the sum rule for
a given wave vector q. That is, since the one-
plasmon excited state In) =

I 1») has the matrix ele-
ment y~ with the ground state, and all other matrix
elements vanish, Eq. (14) is simply

5«» r»o= NS'qo/2m
/

where the y~ are real coefficients, to be determined
Then the electron-plasmon interaction may be
written

H, =K» V»(a»e +a;e )
f( ~ P

V» = (4ve'/qo) r»
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Thus, in Eq. (13),

~2 1/ 2 2~e2 I/2 1 1/4

V-' = Vg+Ug= (1-Eg)Vg

E~= (4ve /q ) f~
(18)

Since the effect of exchange and correlation is to
lower Coulomb interaction energies, I'~ & 0. For
example, the Kohn-Sham potential, equal to two-
thirds of the oscillatoxy component of the Slater
exchange, leads to

&g= (e k~/3m')(4mea/qa) ~= (q/2k~)a (19)

whe~e k~ = (3»)~~ . This relation is not expected
to be valid for q near k+.

Since evaluation of electron and hole self-en-
ergies below involves consideration of large wave
vectors we adopt an approach due to Hubbard, ~~

who noted that at large momentum transfers ex-
change contributions to a given diagram (for the
self-energy, say) cancel one-half the direct con-
tributions. In other words, the dominant effect at .

large q is the interaction of antiparallel spins, in
consequence of the Pauli principle. Thus Eq. (18)
is replaced by'

(V&)'= (1 —G&)V&, (20)

where Gg=-,'qm/(q + k, + kf) and k, =(2/v)k~. As
q-0, V~- V~, whilefor large q/k~, (V~) -—', Vg,
as desired. Note that for small q, Eq. (20) is
equivalent to Eq. (18), if we make the identifica-
tion

S,=-,'G, - [I+(2/~)'j '(q/2k, )2,

which closely approximates Eq. (19).
III. SELF-ENERGY

(21)

Consider an electron (or hole) in a parabolic
band (extended-zone scheme) with effective mass
m~, interacting with the valence electrons ac-
cording to Eq. (13). Although this model problem
omits the nonparabolic character of real energy
bands, it is sufficient to demonstrate the useful-

(18)
which depends only upon the valence-electron den-
sity and the static dielectric function.

Note that V~, derived from Poisson's equation,
contains only the electrostatic interaction due to

p~,
' this is appropriate if the electron is a test

charge. However, for real electrons we must add
an exchange and correlation potential. If the latter
is local and proportional to the density~6 it may be
written

U~ = —f~ p~ = —(4me /q ) ~
f& V&

and the electron-plasmon vertex is replaced by

ness of the model electron-plasmon interaction in

correlating important physical quantities and di-
electric behavior. In future work I hope to apply
Eq. (13) to other problems in insulators, including
collective effects in optical spectra, and the
screened electron-hole interaction. Here it is shown

that presently accepted theories (RPA) of dielec-
tric response lead to large reductions of the one-
electron energy gap, of the order of —,

' Ry in fcc
alkali halides. The conclusion that band gaps are
substantially reduced by polarization effects has
already been stated in the literature, ' '6 although

past estimates for insulators have relied upon
classical calculations and a somewhat arbitrary
cutoff in momentum space; an exception is found

in Ref. 1, for Ar. In the approach used here no

cutoff is introduced except that arising naturally
out of the specific dielectric response of the solid,
and the importance of electronic recoil is demon-
strated explicitly.

From second-order perturbation theory the self-
energy of an electron of mass rn* and wave vector
k, interacting with the plasmon field according to
Eqs. (13) and (20), is given by

—V;(1 —G;)
/e

As in effective-mass theory~ it is assumed that
the wave function 4„-=e "' 4'0. Note that Eq. (22)
differs from Eq. (40) of Ref. 8 for the correlation
energy in metals. A second term is present in the

latter, corresponding to "vacuum-fluctuation" pro-
cesses blocked by the Pauli principle. For intra-
band scattering this term is absent in insulators,
since the relevant band is either full or empty.
Intexband scattering is ignored in this model, a
universal practice in polaron-type theories. In-

deed, within effective-mass theory, interband ma-
trix elements of the density operator e'~' are zero
because of the orthogonality of different Bloch func-
tions at k= 0; the intraband matrix element is unity.

Several applications of this equation suggest
themselves, including (i) band-gap renormaliza-
tion (k= 0) and (ii) the renormalization of the band

mass m*; the latter effect, much less important
than electron-phonon mass enhancement, will not

be considered here. To establish the energy scale
we may omit the recoil terms in Eq. (22). This
gives the self-energy of an infinitely massive
charge,

Z( )= —Q&(2ve /q )(1 —1/eg)(1 —G~)

The factor (1 —G~), from Eq. (20), contains the
exchange effect. Now it is clear that in RPA

1 for large q- v= w/ro, where ro is the radius
of the appropriate valence shell. Converting the
summation to an integral, we have l Z(~ ) ~- ear/v
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= e k~/m for alkali halides. The electron-plasmon
coupling constant is defined as the ratio of this
energy to the free-electron plasmon energy

~ = e k~/mh~~ = 0. 17m, (24)

~ (q = 0) = I + (~,/&, )',
a (q- ~)- 1+ (2m&~/hq )

In these limits the plasmon dispersion is

&(q = 0) = ((o~ + &,)' = n~

~(q- ~)-hq'/2m

(26)

(27)

Thus Penn's model yields the bulk-plasma fre-
quency at long wavelengths and gives the correct
single-particle excitation energy h q /2m at large
q compared with (2mho/h) . It appears that Eq.

TABLE I. Important parameters for fcc alkali halides.
The self-energy of an infinitely massive point charge is
of order ~I~& in RPA.

LiF
NaF
KF
RbF

LiC1
NaC1
KC1
RbCl

LiBr
NaBr
KBr
RbBr

LiI
NaI
KI
RbI

~, (a. u. )

1.63
1.87
2. 17
2. 30

2. 08
2. 28
2. 56
2. 67

2. 24
2. 43
2. 69
2. 80

2.43
2. 62
2. 86
2. 97

S~& (Hy)

1.66
1.37
1.09
0.99

1, 16
1.01
0. 84
0. 78

1.03
0.90
0.79
0.73

0.90
0, 81
0. 70
0.67

1.92 0.28
1.74 0.32
1.85 0.37
1.93 0.39

2. 75 0.35
2.25 0.39
2. 13 0.44
2. 19 0.45

3.16 0.38
2. 62 0.41
2. 33 0.46
2. 33 0. 48

3.80 0.41
2. 91 0, 45
2.69 0.49
2.63 0.50

n@cop (Ry)

0.46
0.44
0.40
0.39

0.41
0.39
0.37
0.35

0.39
0.37
0.36
0.35

0.37
0.36
0.34
0.33

where r, = (0. 521k+ ao) is the average interelec-
tronic spacing in units of the Bohr radius ao, r,
is about 2 in alkali halides. Thus & is about 3 and
lZ(~)l is about 5 eV. Some importantparameters
for fcc alkali halides are given in Table I.

To compute Eq. (22) quantitatively we must
specify e~,' then to(q) follows from Eq. (4). It has
been amply demonstrated that Penn's dielectric
function for an isotropic two-band semiconductor
is a good approximation to the RPA dielectric
function of an insulator. ' An interpolation for-
mula suggested by Penn is

a~= 1+ &~(&,+Kq'/2m) ~ (25)

where b, o= E,/F~~2 and F= 1. The energy gap is
denoted by E~, and ~0 is the average interband
energy defined in Eq. (16). Equation (25) has two
important limits:

(25) is the simplest interpolation formula which
yields the correct dielectric response in both lim-
its. However, it is necessary to modify &(q) in the
region Iq/k~ I- 1 to include the effects of exchange
not contained in RPA. Again following Hubbard
we replace Penn's E~ by

&&=1+(1—G&)&u~(4, +hq/2m) 3 . (28)
Now

q(q- ~)- I+-', (2m'~/hq )

and ~(q- ~) is too large by a factor of H. None-

Eq, (28) is regarded as superior to Eq.
(25) for self-energy calculations since the region
~q ~

&& (2mb, g@)~~3 makes an insignificant contri-
bution to Eq. (22). The preference is slight, how-

ever, since G~ is only about 0. 20 even at Iq I
= v.

As a result, the exchange corrections contained in

Eqs. (20) and (28) modify (reduce) calculated self-
energies by at most 20% and are not included be-
low in the numerical work, which is intended pri-
marily to demonstrate the scale of self-energies
implied by Penn's model.

Before presenting the results the close connec-
tion of the simple model developed here and the
orthogonalized-plane-wave formulation due to
Brinkman and Goodman should be pointed out.
The latter authors include exchange and correla-
tion within the random-phase approximation for the
self-energy operator. Omitting the energy depen-
dence and nondiagonal terms (local-field correc-
tions~~) in the dielectric response, they derive the
self- energy operator

M(k, k+K) = P,„(k,k+K)+ Y,'„„(k,k+K)

+E „(5(g—( k~ P~k+K)), (29)

where ik) and Ik + K) are plane-wave states and
the first two term~ are the core-exchange and the
valence-exchange operators; the latter is screened
by the static dielectric function. The core pro-
jection operator I', ensures that the valence and
conduction states are orthogonal to the core states,
K is a reciprocal-lattice vector, and

Zos = —Qg (2me'/q') (1 —1/~ g) (80)

is the "Coulomb-hole" energy. This agrees with
Eq. (28), the self-energy of an infinitely massive
charge, except that the exchange correction (1 —G~)
is missing. Note also that in the approach of the
present paper it would not be appropriate to screen
the valence exchange, since plasmon-fluctuation
effects are assumed to reside wholly in Eq. (22).
To compute an energy gap in this scheme one
would (a) solve the one-electron Hartree-Fock
problem and (b) calculate the self-energy, Eq.
(22), for the electron and hole. Thus, while Eq.
(29) is derived from the "Coulomb-hole-plus-
screened-exchange" (COHSEX) approximationdue
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to Hedin, ~ in the theory given here all the dynamical
interaction effects reside in the correlation en-
ergy, Eq. (22); reference is made here to the lat-
ter approach as the "exchange and correlation
model" (ECM). COHSEX and ECM differ chiefly
in the way exchange and correlation is divided
among the various terms representing the quasi-
particle energy. It has already been demonstrated
by Overhauser, in the case of simple metals,
that COHSEX and ECM are equivalent within second-
order perturbation theory. In practice it is prob-
ably simpler to employ the ECM, since band cal-
culations based on some form of unscreened ex-
change have already been carried out for a wide
class of insulators. Note also that electronic-re-
coil effects are not included in Eq. (30), which was
obtained by neglecting the energy dependence of
e(q, (u).

Here it may be assumed that band gaps including
the effect of unscreened exchange are known and
the correlation energy from Eq. (22) can be com-
puted, omitting the factor (1 —G') which is near
unity. The dimensionless parameters

5=a/(u, =(zo —1) '~a, q=m/m, * (31)

07-
0,5

0.6-

0.5-

04-

0.3-

z.o
3,0

5.0

/o. o

0.2-

0, 1-

Ne
0 I

I,O

LiF NoCI Nor Ncrl
I I I I

2.0 3,0

LIl
I

4.0
Ag8r

CO

FIG. 1. Phase-space integral l(6, g) defined by Eq.
(32); aside from the factor -2~& /vr this is the self-en-
ergy of an electron with effective mass m*=p ~m. The
average interband energy is Imp =61&, and 6 = (~p 1) '

are introduced, where m is the free-electron mass.
From Eqs. (22) and (25) for k=0 the result is

—Z = (2/')(u"' I(&, n), (32)

I(6, q)=j, d [1x(+& +)x']'~'([1+(&+x')']"'+x'g}'

in atomic units, where x =kg/2m"'. To show the
dependence of the self-energy on eo and m* I(5, g)
was computed; the results are given in Fig. 1.
Note that the self-energy increases with &0 but de-
creases with g. Thus, as expected, electronic
recoil sharply reduces IZ I. The case g = 0 (m*

TABLE II. RPA self-energies, in rydbergs, of an

electron (m*= 3m) and a hole (m*= ~) in fcc alkali halides.
The energy gap at k = 0 i.s renormalized by the energy I

~bole+ ~ electron

LiF
NaF
KF
RbF

LiCl
Na.C1
Kcl
Rbcl

LiBr
NaBr
KBr
RbBr

LiI
NaI
KI
RbI

Ep

1~ 92
1 ~ 74
1 ~ 85
1 ~ 93

2 ~ 75
2. 25
2 ~ 13
2 ~ 19

3.16
2 ~ 62
2. 33
2 ~ 33

3 ~ 80
2 ~ 91
2 ~ 69
2 ~ 63

l thol, l

0.39
0.32
0, 31
0.30

0.43
0 ~ 35
0 ~ 31
0.30

0 ~ 43
0.37
0 ~ 32
0.31

0.44
0.37
0.33
0.32

l ~elect~nl

0.25
0.21
0 ~ 20
0 ~ 20

0.27
0. 22
0. 20
0. 19

0 ~ 27
0 ~ 23
0.20
0 ~ 20

0.27
0 ~ 23
0.21
0 ~ 20

0.64
0, 53
0 51
0.50

0.70
0.57
0, 51
0.49

0.70
0 ~ 60
0.52
0. 51

0 ~ 71
0 ~ 60
0. 54
0.52

=") is appropriate to a heavy hole, while q = 3
(m~ = —,m) describes a typical conduction-band elec-
tron. Table II contains the results for the self-
energy. To obtain the band-gap reduction in this
model, one adds the electron and hole contribu-
tions together. Thus, the Penn-model dielectric
function leads to renormalizations of about —,

' Ry
in fcc alkali halides. This is of the order of the

energy gap itself, which suggests that the RPA
seriously overestimates dielectric response at
large q (at small q the Penn model yields the known

co). In addition it may be necessary to include
nondiagonal response, a difficult proposition.

IV. SUMMARY AND DISCUSSION

A simple model of electronic correlation in in-
sulators has been developed which requires as in-
put the static dielectric function a~. The dimen-
sionless parameters in the theory are r„5, and

g; however, the crucial parameter is w, the scale
of dielectric dispersion in q space. Indeed, the
self-energy of an infinitely massive point charge
is of order e v. Thus, it is of major importance
to extend present (RPA) theories of dielectric re-
sponse to include exchange effects and, especial-
ly, short-range correlations. The RPA leads to
&- m/ro, where ro is the appropriate valence-shell
radius, and resulting self-energies are about 3 Ry.
It is emphasized that previous estimates of band-
gap renormalization in insulators relied on a poorly
justified cutoff &= m/a, where 2a is the lattice
parameter. The electronic-polaron theory, ~

though adequately handling long-range correlation
effects, is not suited to the calculation of self-en-
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ergies, which involve large q. Indeed, there is
no explicit cutoff in the theory and if the "exciton"
is dispersionless the self-energy diverges. It is
obvious that a cutoff of order w/a must be intro-
duced; however, a microscopic calculation is re-
quired to determine its precise value. In partic-
ular if we choose w= v/ro, the self-energies in
Ref. 6 are enhanced by the factor a/ro = 8. This
demonstrates the necessity of incorporating the
correct dielectric behavior in the calculation. The
results given in Table II, are accurate insofar as
the Penn dielectric function properly treats short-
range dielectric response; however, the RPA is
usually considered deficient in this respect. The
exchange correction introduced in Eq. (28) is an
attempt to improve c~, this leads to a reduction
of the self-energy of about 20% for the case m*
= ~, and 10% if m* = 0. Sm [recoil diminishes the
weight of high-q contributions in Eq. (22)].

In rare-gas solids it appears that the Penn model,
like a dielectric function developed by the present
author, overestimates the RPA response in the
large-q region. ' In this case the characteristic

cutoff (2mho/K)~ —= v~ in these models is too large,
and computed self-energies in Ar are also too
large. The basic flaw in the two-band models
seems to be the absence of orthogonalization terms,
which cut off the response at z= m/so& x~ for rare-
gas crystals. In case of fcc alkali halides &~= v/
ro and the orthogonality corrections are much less
important. However, short-range correlation not
contained in RPA is probably crucial. Quantita-
tive calculations of the self-energy of an electron
or hole in an insulator must await the development
of a better dielectric function. In the meantime
it is possible to cor'relate dielectric behavior and
various electronic properties of insulating solids,
using the model electron-plasmon interaction de-
veloped in this paper.
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