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A microscopic theory of impurity-assisted tunneling is constructed in which the current-
carrying (extended) eigenstates of the average one-electron potential in a tunnel junction are
utilized as the basis functions which are mixed by the Hamiltonian associated with the pres-
ence of a static or dynamic impurity anywhere in the system. In such a system, the one-
electron propagator and its concomitant current across the junction can be calculated at zero
bias by standard techniques for manipulating temperature Green's functions. The presence
of a finite bias across the junction is incorporated into the theory via the principle of rigid
occupancy; i. e. , the equilibrium occupation of the (current-carrying) many-body eigenstates
of the system is taken to be unaffected by the presence of the bias. Therefore the rigid-oc-
cupancy hypothesis relates the nonequilibrium current flow to the equilibrium (zero-bias)
properties of the junction system. Thus, we obtain a theory of nonequilibrium current flow
which is not based on linear-response theory. This hypothesis isincorporatedintothe Matsu-
bara perturbation theory by treating the chemical potentials of the left- and right-hand elec-
trodes as separate Lagrangian mulitpliers determined after the completion of all Matsubara
sums to be related by p~ =p~ —eV. Therefore, for purposes of constructing and solving Dy-
son's equations for the renormalized one-electron propagators, the theory reduces to the con-
ventional equilibrium theory defined using distorted-wave (i. e. , non-plane-wave) states. The
perturbation theory is shown to yield the conventional one-electron-theory results for the
case of a static impurity potential in the barrier. Hesonant elastic tunneling through impurity
states of energy E„near the zero-bias Fermi energy 5 causes conductance minima (maxima)
for E„(0)) C [E„(0)& K]. The transfer-Hamiltonian results are recovered by expanding the
transmission probability.

I. INTRODUCTION

The transfer-Hamiltonian theory ' of current
Qow in a tunnel junction originally was developed
to explain observations of the superconducting ener-
gy gap and bulk density of states in normal-metal-
oxide-superconductor tunnel junc tions. It pro-
vided the theoretical framework within which
Josephson made his prediction that phase coher-
ence exists between two weakly coupled supercon-
ductors. One of the most recent successful appli-
cations of the transfer Hamiltonian has been the
interpretation of cusps occurring in the conduc-
tance measured in metal-oxide-homopolar semi-
conductor junctions (e. g. , heavily doped In-SiOz-
Si junctions~'~) in terms of "self-energy effects" e 9

due to the interactions of electrons and holes with
optical phonons in the bulk semiconductor electrode.

Regardless of its successes the original momen-
tum-representation version of the transfer-Hamil-
tonian (TH) theory exhibits certain conceptual weak-
nesses and seems incapable of describing certain
recent experiments. '~~ It is formulated by con-
sidering a tunnel junction to consist of two isolated
electrodes, between which electrons are inter-
changed by matrix elements which form the "trans-
fer Hamiltonian. " The tunneling current is evaluat-
ed by a linear-response analysis in which the trans-

fer Hamiltonian is treated as an "external" source.
There are several difficulties with this procedure.
First, the set of basis functions used in construct-
ing the linear-response analysis is overcomplete,
since these basis functions are direct products of
the basis functions of the two isolated electrodes, ~~

each of which individually forms a complete set.
Second, the TH theory is formulated so that the oc-
cupation numbers of electrons in its many-body
eigenstates are those of the isolated-electrodes
system. ~9 Consequently, the linear-response
analysis is restricted to a first-order-perturba-
tion-theory treatment of the electron transfer
probability from one electrode to the other. A
related difficulty with the linear-response analysis
is that the diagrammatic expansion of both the
elastic and inelastic contributions to the current
in the TH theory contains only diagrams which
represent the transfer of an electron from one of
the electrodes to the other. Thus, the predicted
current does not include contributions from "reQec-
tion" diagrams, which describe processes in which
an electron localized. in one of the electrodes is re-
Qected back into the same electrode after inter-
acting in the barrier. Such processes contribute
to the total current. They are important when, for
example, an electron interacts with a loial mode~9

near one of the electrode-barrier interfaces. Also,
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the TH theory does not describe processes in which
the electrons in both electrodes interact with the
same (nonlocal) boson elementary-excitation field. ~9

A final difficulty with the linear-response analy-
sis results from the asymmetric fashion in which
it treats electrode and barrier effects. Each of
the electrodes is described by a Hamiltonian which
contains dynamic interactions of electrons localized
in that electrode with, e. g. , bulk phonons. Bar-
rier effects, on the other hand, are described sole-
ly through potential matrix elements which couple
electrons in both electrodes. Thus, the energies
of electrons in the electrodes are renormalized by
the interactions with bulk phonons, and the electron
dispersion relations are reflected in the conduc-
tance as self-energy effects. The matrix elements
for the transfer of electrons from one electrode
to the other, however, are insensitive to the re-
normalization of the tunneling electrons' energies
by many-body interactions. Another consequence
of the description of barrier effects solely by trans-
fer matrix elements is the resulting inability of
the linear-response treatment to describe pro-
cesses which involve real intermediate states»'
in the barrier. In the case of elastic processes,
for example, the current is evaluated to first order
in the barrier transmission coefficient IS»2 ) and,
therefore, is inaccurate in the case of resonant
elastic-tunneling processes, ' for which IS»l -1.

The conceptual difficulties noted above are di-
rectly related to the fact that the TH theory has
proven incapable of describing certain recent ex-
periments. For example, observations of light-
sensitive conductance characteristics in GaAs tun-
nel diodes, »o doping-dependent reverse-bias pho-
non line shapes in the conductance measured in a
variety of semiconductor junctions, and im-
purity-band effects in metal-insulator-semiconduc-
tor junctions" suggest that resonant impurity-as-
sisted processes in the barrier are important tun-
neling mechanisms. Other (related) experimental
effects whose description has eluded analysis via
the TH are the observations of light-sensitive sub-
harmonic structure in the current in Josephson
junctions, »4 real intermediate-state tunneling cur-
rent»'»6 in metal-insulator-metal junctions in
which small metal par ticles are embedded in the
oxide, and resonant field emission ~'» due to ad-
atoms in metal-vacuum systems.

As one might expect, these fairly well-recog-
nized difficulties with the original formulations '

of the TH theory have motivated several workers
to attempt to correct them. We classify these at-
tempts into three broad categories: improved ver-
sions of the TH theory, collision theories, and
Green's-function theories.

The most recent improved version of the TH
theory is that of Appelbaum and Brinkman. ' They

attempted to remedy part of the asymmetry be-
tween the description of "barrier" and "electrode"
effects by constructing a coordinate representation
(Green's-function version) of the TH theory. In
their discussion, they formally include the pos-
sibility of assisted tunneling through barrier ex-
citations. Their result takes the form of a con-
volution of the product of the two spectral func-
tions of the isolated electrodes with a transfer
matrix element which depends upon both energy
and momentum. Therefore, their results retain
the form expected for elastic tunneling and, con-
sequently, still exhibit the difficulties associated
with overcomplete sets (i.e. , the possibility of
overcounting) and linear-response theory (i.e. ,
the restriction to first-order perturbation theory).

The only serious attempt to construct a many-
electron collision theory is that of Davis. A sim-
pler version, in which no explicit provision is made
for the many-body (i.e. , exclusion-principle-im-
posed) aspects of the theory has been given by
Adler et al. ~ However, Davis's calculation is al-
gebraically quite complicated. It is valid only at
zero temperature and restricted to a particular
model (a vibrating 5-function impurity). No account
is given of resonant-tunneling phenomena which we
believe dominate the impurity-assisted inelastic
processes he considered. As will be discussed
in a following paper, ' the theory developed in this
paper, when applied to his model, predicts results
similar but not identical to his.

Turning to the Green's-function theories, the
first was that of Zawadowski~6 which led to results
identical to Appelbaum and Brinkman's coordinate-
representation version of the TH theory. The
second, which is conceptually more closely related
to our analysis than any of the others, was that of
Davis. 9 By deriving a form for the current anal-
ogous to that of the TH theory, "he was able to
show that an electron tunnels with the total re-
normalized energy and not the bare energy. ~ Most
recently, Caroli et al. have proposed a non-
equilibrium Green's-function theory based on a
cellular model in which the hopping matrix element
connecting one part of the junction to the next is
small. This theory differs substantially from its
predecessors. It has not yet been explored in
enough depth to recognize any new consequences
which it might have and to examine their experi-
mental realization.

The sketch of the literature presented above is
designed to indicate the nature of the difficulties
with the TH theory, the experimental manifesta-
tions of the phenomena whose description is pre-
cluded by these difficulties, and the attempts to
avoid them which have been presented previously
or independently. This is the first in a series of
two papers in which we also develop a new micro-
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scopic theory of tunneling. In the present paper,
we derive the theory and calculate the current for
tunnel junctions which contain static impurities.
In a subsequent paper, ' we derive the current for
barriers containing vibrating impurities and study
the consequences of static impurity potentials
which possess "quasibound" states and which produce
a resonance in the barrier transmission coefficient.
We explore their effects upon both the one-electron
and many-body contributions to the current in that
paper. The fact that using our theory we have
analyzed successfully previously uninterpreted
phenomena in semiconductor tunnel diodes has been
documented elsewhere. +

The physical assumptions from which the theory
presented in this paper is derived differ from those
underlying the transfer-Hamiltonian theory. These
assumptions are: (i) The tunneling electrons are
not in states localized in either electrode, "but
are in doubly degenerate current-carrying eigen-
states of the whole junction, ' one of which car-
ries current from left to right (left incident) and the
other carries current from right to left (right in-
cident); and (ii) the statistics of current flow in
the junction are not determined by transfer of an
electron from a filled state in one electrode to
an empty one in the other, ~9 but are determined
by the occupancies of left-incident and right-in-
cident states, which are separately associated
with the left and right electrodes, respectively.
In this "stationary-state" picture, if both left- and
right-incident states of total energy E are occupied,
there is no net current contribution from these
states because the current from left to right ex-
actly cancels that from right to left. We refer to
this assumption as the "rigid-occupancy hypoth-
esis" (ROH). It results in a model of the tunnel

junction in which the only effect of an imposed
bias (aside from changing the one-electron poten-
tial) is that of rigidly translating the energies of

the eigenstates associated with the left and right
electrodes up and down with respect to each other.
In the absence of many-body interactions, this
picture is precisely the conventional one-electron
stationary- state model. ~9

The ROH is applied via a temperature Green s-
function technique2~ in which the chemical poten-
tials p,~ and p, ~ of the left and right electrodes,
respectively, of a junction with a voltage imposed
across it are replaced by Lagrangian multipliers
&~ and ~~, respectively, whose difference is a
boson index33: X~ —X„=2vm/-iP, in which m is any
(i.e. , positive or negative) integer and P=-1/k~T
(k3 is Boltzmann's constant and T is the tempera-
ture). The current is calculated using intermediate
steps depending only on equilibrium perturbation
theory, after which the Lagrangian multipliers are
analytically continued to their physical values so

that the total current flowing from lef t to right is
associated with pL, , while that from right to left
is associated with p~: &z, - p~ and &~- W~ (i.e. ,
X~ —Xs- eV according to the conventions in Fig. 1).
The value of this procedure is that the diagram
techniques of equilibrium-temperature Green's-
function~ theory can be applied prior to the ana-
lytic continuation of the Lagrangian multipliers (be-
cause it is not necessary to know the occupation
numbers of electrons carrying current either to
the right or to the left in this first step of the cal-
culation). Therefore, the central feature of our
theory is the replacement of the complete non-
equilibrium transport problem with a prescription
for using equilibrium propagators plus an analytic
continuation procedure to evaluate a nonequilibrium
current. The theory is viable because of the spe-
cial feature of a tunnel junction that although cur-
rent does flow, it is sufficiently small that the ex-
ternally imposed voltage drop occurs across the
barrier region of the junction.

We proceed by specifying some preliminary re-
sults about the basis functions in Sec. II. Then
in Sec. III, we develop a many-body theory of tun-
neling in which the currents are calculated in equi-
librium, after which the bias is imposed via the
ROH by making the analytic continuation X~ —X~
-eV. The theory developed in Sec. III is applied
to a simple &-function model of static impurities in
Sec. IV. In that section it is shown that the per-
turbation theory developed in Sec. III produces the
correct expression for the one-electron current in
the presence of static impurities. The applications

K
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FIG. 1. Schematic typical tunneling junction illustrating
the conventions used. The average barrier potential is
denoted by V(x) (0~@~b) and all energies are measured
from the bottom of the left conduction band. The bottom
of the right conduction band is V& ——&~ —eV —CR. Positive
or forward bias is defined by raising the Fermi level of
the left electrode relative to that of the right.
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of the theory to describe vibrating impurities35 and
experimental data+ are given elsewhere.

A. Definition and General Properties of Extended-Basis
Functions

According to the assumption that the electrons
are in extended states of the whole junction, we
construct such states as the solutions of the Schro-
dinger equation for the whole junction. We con-
sider, as our one-electron Hamiltonian, a model
consisting of electrodes which can be described by
the effective-mass approximation separated by
a barrier such as that shown in Fig. l. In this
model, which is convenient, even if there is some
question~ as to its validity, the Schrodinger equa-
tion of the eigenstates corresponding to the total
energy E is specified by

a,(-.) x(E,.) =Ex(E,.) . (2. la)

The one-electron Hamiltonian ho is defined by

II. EXTENDED BASIS FUNCTIONS

Two fundamental physical assumptions underlie
the tunneling theory which is developed in this
paper. The first of these is that the electrons in a
biased tunnel junction are in states of the whole
junction, rather than localized in either electrode.
The second assumption is that a tunnel junction
across which a voltage has been imposed is a steady-
state system. The mathematical formulation of
the first of these assumptions is given in this sec-
tion.

(eo)x S -f&))() x& 0

&(' [CiU, (x)+CI,U (x)], 0& x & b

(~ /~ )T/2S e 4(x-)& &

(2. 2)

kR—= ( 2m~E/ a) —k„,
q~—= [2m R(E —V&)/a ] k((,

(
d , +V(x)+ —)() U(Ã)=0, 0 @& k

B dx 2mB

~, -=ak/m, (2. Sa)

vR-=aq/mR (2. 3b)

(2.4)
In the above equations, A« is a normalization con-
stant and U, (x) are decaying (growing) solutions
of Eq. (2.4) ~ [for instance, the U, (x) are parabolic
cylinder functions for Schottky barriers, Airy
functions for trapezoidal barriers, and exponen-
tials for square barriers]. "

The function g~(E, k„, x) defined by Eq. (2. 2) is
an extended-basis function (EBF) which carries
current from left to right (left incident). Similarly,
we define an EBF which carries current from
right to left (right incident) for E & 0 and V, & 0:

AEa
R|( Et l(z x) (2' )g/2

direction parallel to the planar junction are nor-
malized to (2&/)35(k„—k'„).

For E & 0 and V~ & 0, the g and X are doubly de-
generate. ~~ We choose the linearly independent
set of solutions defined in the following equations':

AE~
&)&z(E)k(() x)-

(2 ~ )g/g

—(a'/2m, )v',

a,(r) -=—(a'/2m, )v'+ V(x),

—(KR/2mR)V + V&,

x&0

0 & x & b (2. 1b)

x&b .

(&g& )«'S e-"" x&0

x [C'„U.(x)+C„U (x)], 0&x&b (2. 5)

[ -&q(-a& S (, (~ )»], b&x
Equations (2. 1b) are derived from the assump-

tion that the effective masses are isotropic in the
left (m~) and right (m„) electrodes and in the bar-
rier (mR) region. The barrier potential is repre-
sented by V(x) and, from Fig. 1,

V~-= L'L, —eV- Cg. (2. 1c)

The quantities fr, and C~ are the Fermi degenera-
cies of the left and right electrodes, respectively.
We adopt the conventions, indicated in Fig. 1, that
energy is measured from the bottom of the band in
the left-hand electrode, and e V& 0 (forward bias)
when the left Fermi level is raised with respect
to the right.

Under the assumption of specular tunneling, ~

the eigenstates are specified by

X(E, r) = t(E, k,„x)e"- '-=X(E,k„,.), (2. ld)

in which k„and p are the components of k (total
momentum) and r (position), respectively, in the
plane of the junction. The traveling waves in the

In the case that 0&E& V&, we obtain the wave func-
tion in this case by letting ik -k in Eqs. (2. 5) (pR
does not carry current for 0&E & V~). Thus, the
set f/~, $R) is complete for all E & V, . In accor-
dance with the effective-mass approximation, the
wave functions are obtained by imposing the match-
ing conditions~~ that g, and 4('/m(x) (i = L, R) be con-
tinuous across the left-electrode-barrier and bar-
rier —right-electrode interfaces [m (x) represents
the effective mass in the different regions of the
junction, and g' denotes the derivative of &(t)].

When we let A~ =AH= I, one can derive

(WI'&(E k(() I
&I'/(E' k()&= blab(E E') (i i) =(L E)"

(2. 6)
Since any two of the functions (g/, &(t)~l„gR, ()~R]

(((/" is the complex conjugate of &(t)) are linearly in-
dependent, 33 we can define Wronskians for E& 0:

W, &,(E,k„,x)=—[&I),'(E, k„, x) g)&(E, k„,x)
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—y, (Z, k„x)y,'(Z, k,„x)], (2. V)

is constant throughout the junction, where the sub-
script i indicates that 8',~ is evaluated in region i
(1eft, barrier, or right region).

B. Single-Particle Propagator

Turning next to the evaluation of the (three-di-
mensional) Green's function, we first note that the
equations for the basis states can be written

[k,(r)-Z]X,(Z, k„, r)=0, i=(L, R) (2. 9)

where y, is specified by Eqs. (2. 1)-(2.5).
Since the set of functions (gz, , gs) is complete,

we can define a one-electron Green's function
~p

G (
' ) Z )i((z' "'r )('.j E'k"'r, (2. 10)

&& ~ &it
Z

in which the symbol E& is the label for both the
total energy of a state and the direction in which it
carries current. The summation conventions are
specified by

"d k„
( oo + oo

Z "z, Z- dE+ dZ-=Z +Z (2. 11)
0

for fixed k„.
The advanced and retarded Green s functions

G" and G, respectively, are given by

G o (r, r', z) =- lim Go(r, r', z + i 5),
ew 0+

Go (r, r', z) = lim Go(r, r', z —i &).
6» Q+

(2. 12)

We can Fourier analyze Go'"(r, r', z) according
to Eq. (2. 1), since we assume k„conservation,
and derive

GB,A( ) Q II( (
~ (t(-P' &GB,A( k )

(2. 13a)

Gsl&I i k i-g A(zik((ix)4T(zikl(i x )
g z —Eg kz&

i= (L, R) . (2. 13b)

The quantity Go'"(x, x', k„,z) satisfies

[ko(x) —z]GO '"(x,x', k„,z) = —&(x —x'), (2. 14)

where ho(x) is given by

where (a, I() = (L, R) and a subscript a~ denotes g'.
From the continuity of g'/m(x) throughout the junc-
tion, we see that the quantity

W (E, k„, x)/m(x)=-W (E,k„)/m (2. 6)

( I d k
2 + -- —k„,

2mL, dx 2m I
x&0

I' d' I '
k ( )

— —

z + — kz((+ V(x), 0 ~ x-~ |(
0 mg x ma

k2 d2 k2
2+ k+ V), x&b .2m„dxz 2ms

(2. 15)
A more useful form for the Green's function is

derived by solving the differential equation [Eq.
(2. 14)] directly to give, ~s for E& 0,

28'~

GQ(xi x ik((i Z)
W (Z k )/

x [e(x —x')q, (Z, k„,x)y„(Z, k„, x )

The extended-basis functions, which reflect the
assumption that tunneling electrons are in states
of the whole junction, are specified in Sec. G.
In this section, using the assumption that a tunnel
junction across which a low voltage is imposed is a
steady-state system, we construct a description of the
statistical properties of the junction, through the
use of the temperature-Green's-function formal-
ism.

We first derive an expression for the current as
a functional of a perturbation theory of the tempera-
ture Green's function. ~ A prescription is given
for the evaluation of the current via perturbation
theory. This prescription is applied to the cal-
culation of the current in a junction consisting of
noninteracting fermions. We show that, in this
analytically solvable case, the calculated current
is identical to the result of the conventional one-
electron tunneling theory' in both an, average-bar-
rier model and a model in which a static impurity
potential is treated by use of our perturbation
theory.

In accordance with the assumption that a tunnel
junction is a steady-state system, we construct
a theory in which, by definition, we neglect changes
in the Fermi distribution function due to nonequi-
librium effects, and assume that the statistics for
electrons carrying current to either the right or
left is determined by the equilibrium occupation of
either the left or right electrode, respectively.

+ e(x' —x)g „(Z,k„,x)g (E, k„, x') ],
(2. 16)

and Go = (Go) . In Eq. (2. 16) we choose the bound-
ary conditions that the outgoing waves are $1(gs)
for x-+~ (x- —~). The quantity e is the unit
step function [i.e. , e(lxl)=1, e(- Ix!)=0, and
e(o) = —,'].

III. EXTENDED-BASIS-FUNCTION THEORY FOR
CURRENT
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We refer to this assumption as the rigid-occupancy
hypothesis (ROH). The ROH is the hypothesis basic
to the one-electron tunneling theory, ' and gives
the lowest-order contribubon to the current ex-
panded as a functional of the distribution function.

The total Hamiltonian is given by

x =x,(t)+x„„(t), (3. la)

where the operators are defined in the Heisenberg
representation:

s(t) efxtse &xt- (3. lb)

In the occupation-number formalism, we write

'Ko(t) -=if,'M(t) +K,„(t),

,„(t)= Q bye(t) bg, (t)(h(ug, + ~).
g, X

(3. 2a)

(3. 2b)

+oo
l

E n& n's&=E
I
E n»nn& (3.5a)

X» is the Hamiltonian of a gas of bosons (e.g. ,
phonons) of momenta p and polarization & (bl~ de-
stroys a phonon momentum p and polarization X).
3Cpp is the Hamiltonian of a gas of elec trons in
states y;(i = L, R) of the type defined in Eqs. (2. 5):

Moo(t)= 2 C((E, k„, t)C((E, k„, t)E( i =(L,R).
(3.3)

The quantities C,(C,') are the annihilation (creation)
operators for the electrons.

The interaction Hamiltonian $Cf g may consist of
either electron-electron, electron-phonon, or
elastic electron-impurity interactions (or some
combination thereof). In this paper we study the
last case, for which the interaction Hamiltonian
assumes the form

'K(,g(t) = 5 C ((E,k„, t)C)(E', k, '„ t)
Eg, E~,k~„k(~

x f d'r g (E, k„, r) Vz(r —R)gq(E', k,'„r),
(3. 4)

where V, is the static impurity potential and R is
the impurity's equilibrium position. Only simple
"schematic" models of the impurity potentials are
considered in this and subsequent papers.

The discrete Fock representation which provides
the basis for the Hamiltonians in Eqs. (3.3) and
(3.4) is constructed from the continuum states de-
fined in Eqs. (2. 2)-(2. 5) in the usual manner by
subdividing (E„k„)space (i. e. , phase space) into
unit cells and by letting each one-electron state
in the Fock representation correspond to a unit
cell in phase space. 3~ The continuum limit is re-
trieved, at the end of the calculation, by letting
the volumes of these unit cells approach zero.

The Fock states, which are eigenstates of the
electron Hamiltonian Xoo given in Eq. (3.3), satis-
fy the following equations:

Nz, i E,n~, nR&=nzi, E,nl„nn&,

nL

in) -=iE., n...n„.),

(3.51)

(S. 5c)

(3.5d)

in which & is an index which distinguishes between
different eigenstates of &py and Nl, and Ng are
operators which measure the occupation numbers
nl, and n~ of electrons in left- and right-incident
EBF, respectively. The number operator Ã mea-
sures the total number of electrons in the system,
and in our basis can be decomposed according to

N =Noz+Nzo (3.6a}

N is a cons tant of motion and is independent of the
representation in which it is expressed. In the
occupation-number formalism,

Z N~)(E, k„),
E]yk(( (3.6b)

N~&(E, k„)—= C~(E, k„)C,(E, k„), i = L or R

Therefore, N~q(E, k„) is the operator which mea-
sures the number of electrons (0 or 1) in the state
(E„k„).

The electron many-body Hamiltonian in Eq. (3. 3)
can be written, in the absence of interactions, in
a time-independent form

Xpo —Xpg + KpR (S.Va)

Ko(= Z E(N)(E, k„), i=L or R. (3.7b)
Z],p7))

In the Schrodinger representation, the density
operator~5 p(t), which contains the statistical prop-
erties of a many-body system, obeys the equation

tbsp(t)
( ( )) (3.8)

where X is the Hamiltonian of the system. In the
unperturbed system, characterized by Hamiltonian
Ko~, a time-independent solution of Eqs. (3.8) is
given by the density operator

p(t) = p = e8& "&~or, + ~&~% & ~xoo
p e (S.8)

which is in the same form as the density operator
of a gas of two different independent species of
particles (P=—I/kaT, ks is Boltzmann's constant,
and T is the temperature). Thus, in the absence
of interactions, the electrons inleft- and right-in-
cident states are statistically independent. In this
case, which represents the unperturbed system,
the electron system can be considered as a com-
posite gas of electrons consisting of two statistical-
ly independent subsystems of electrons in left-
and right-incident states with chemical potentials
~& and p&, respectively. According to the energy
conventions of Fig. 1, p&=K& and p&= fL, -eV.
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In the case that the Hamiltonian includes many-
body interactions, such as the electron-phonon
interaction, we cannot diagonalize the Hamiltonian
as in Eqs. (3. 7). Thus, we find neither operators
Nz„Ns, in the form of Eqs. (3. 6) which commute
with the Hamiltonian, nor the density operator
which describes the nonequilibrium system of a
tunnel junction with a bias imposed. Finding the
appropriate number operators for the general non-
equilibrium system (here a tunnel junction) is the

central unsolved problem of transport theory. .The
transfer Hamiltonian theory deals with this prob-
lem by applying linear-response theory to the de-
coupled-electrodes system. The density operator
of this system involves the number operators
which measure the number of electrons in the iso-
lated electrodes.

Our proposed method for solving this nonequilib-
rium problem is an essentially heuristic analytic
continuation method. ROH states that the currents
which flow separately from left to right and from
right to left in a tunnel junction are the same in
the cases when the junction is in equilibrium and
when the junction is biased (i.e. , only the one elec-
tron potential used in the definitions of the EBF
changes in these two cases). However, the net
current is different in these two situations; i. e. ,
the separate left and right currents cancel exactly
in equilibrium, but they do not cancel when a volt-
age is imposed. Therefore, if we could compute
the many-body wave functions of the system, this
model would permit us to evaluate nonequilibrium
currents using equilibrium methods. In effect,
this procedure is the one we follow using the Green's
function theory.

The ROH is our model for the statistics in a tun-
nel junction. From it, we can derive conditions
which the expression we derive for the current
must satisfy. These conditions are as follows:
(i) Since the ROH model describes a steady-state
system, the current does not depend upon time.
(ii) The perturbation-theory techniques of the tem-
perature-Green's-function method, ~which describes
the junction in equilibrium, also must describe the
junction when it is biased. In particular, the
perturbation-theory analysis of the one-electron
current for static perturbation potentials must
agree with the results of the usual analysis in
which the exact one-electron basis states are used
a Priori in evaluating the current. (iii) The statis-
tics of current flow to the right (left) are deter-
mined by the statistics of the isolated left (right)
electrode with chemical potential pl, (p,„).

In order to derive the ROH perturbation theory,
we introduce the imaginary-time Heisenberg pic-
ture. We develop the algebra in detail to display
the differences from the equilibrium theory. An

operator in the imaginary-time Heisenberg repre-

( ) expo+ xpT v( )
IpT Ov 3cpT (3.11)

where 0 &v & p. The transformationfrom the imag-
inary-time Heisenberg picture of Eqs. (3.10) to
the interaction picture is indicated by

X T XpYS( ) (S. 12a)

where 3C =$Cp+X„„and Kp is given in Eqs. (3. 2)
and (3.3). Therefore,

&(v) =S '(v) 8(v) S(v) (S. 12b)

A tunnel junction in equilibrium is described by
the grand canonical density operator

-8(x-wN) e-8(xp-gN)S(p)
Ps& T [e-()( P )]))(Tr[e-()(xp-))s)S(p)] (3' 1 )

The expression for p„ in terms of the unperturbed
equilibrium density matrix andS(P) is central to the
treatment of an equilibrium system in the tempera-
ture-Green's-functionperturbation theory. ~ From
the ROH, we assume that the current flowing in a
biased junction also can be described using a tem-
perature- Green's-function formalism. Thus,
using Eq. (3. 9), we define a density operator p
which satisfies the following equations:

8(Rial + x&))) ) -()x/ p(p) (S. 14a)

e8(xgNg +) sNR)e-Bxp/0 0
0

Tr(eB(KIN( + x&N& )e-()I:)0

(S. 14b)

(3. 14c)

The quantities N~, Ns are defined in Eqs. (3.6)
and ~&, ~& are Lagrangian multipliers which are
to be determined from the requirements of the
ROH [i.e. , (i) and (iii)].

We next introduce the temperature Green's func-
tion in the imaginary-time Heisenberg representa-
tion

g(r, r', v, v') =——TgpT, [g(r, v)(1) (r', v' )]}

in which (j) and g are fermion field operators and
T, is the ~ ordering operator. The "temperature
current" is defined by

(2s + 1)ehi-J(r, v)=——,, (&,—&„.)()(r, r', v, v') Iv.2m(& & T'=T+

= Tr[p).,(r, v)]/g, , (3. 16a)

where & is the spin and the current operator is
given by

sentation is

c)(v)-=e 'ee ', s (v)-=e '8 e

where 0 & v ~ p and 'K is the total many-body Hamil-
tonian. An operator in the interaction picture is
defined by
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—g'(r, y) Vg(r, v)] . (3. 16b)

The arrows on the gradient indicate the operand of
differentiation and m(x) is the effective mass at
the point where the current is evaluated [i.e. , m(x)
is not to be construed as a continuous differentiable
function of x].

From the ROH, a tunnel junction which is biased
is a steady-state system (i. e. , the first require-
ment). The current, therefore must be indepen-
dent of the time when it is measured, so that, from
Eq. (3. 16a), we require

g(r, r', 7, r')= g(r, r', 7 —v') . (3. 15b)

In the Appendix, we prove that g is translationally
invariant in v if &&=&z —&z, = 2m'/ —iP (m is an
integer) .

From Eq. (3.6a), we can write

~N~~+ X„Non = X~N+ h&Ns ——X~- &&Nl, , (3. 17a)

hA, = A.&
—A, &= Pm, (3. 17b)

in which v is a boson Matubara index, v„—= 2m@/
—tp, and m is any integer. The temperature cur-
rent can be written

J(r, y)= (1/s)Tr([e "&]e ""~"j„(r,0)j

= (I/s)Tr{[e ~ " ~]e & j„(r,0)].
(3. 17c)

We have used the 7 translational invariance of g to
write Eq. (3. 1Vc). The form of J above is analo-
gous to the equilibrium average of the current oper-
ator except for the exponentional factors in square
brackets. The boson indices in these factors ap-
pear also in the linear-response analysis of the
TH theory. " In that theory, the difference in
chemical potentials e V is treated as a boson index
v until all Matsubara sums have been performed.
At the end of this calculation the boson index p

is analytically continued to the physical voltage,
i. e. , v - eV+i6, &-0'.

Because e "~=1, it is not necessary to know the
exact form of Nz, and Non in Eqs. (3.17) in order
to calculate X. It is sufficient to know only tha, t
N~~ and Nn are the operators which measure the
occupation numbers of left- and right-incident EBF
in some representation of many-body states of the
type defined in Eqs. (3. 5). Thus, J is independent
of the particular representation in which the number
operators are diagonal.

It is evident from Eq. (S. 1V) that we have lost in-
formation about the nonequilibrium statistics by
making &&= v . By using the ROH model, however,
we assume that the statistics of current flow are
associated with the directions of current flow (i.e. ,

the third condition). Consequently, these statistics
are determined by associating the current which
flows from left to right (right to left) with p~ (pn),
the chemical potential of the left (right) electrode.

Ihe fact that &I, =&&+v, which is equivalent to
time translational invariance, results in imagi-
nary-time boundary conditions (from the Appendix,
theorem 2), which are identical to the usual equi-
librium imaginary-time boundary conditions of
Kadanoff and Baym. Thus, we can use all of the
temperature- Green s-function diagram techniques
for equilibrium systems when we evaluate g. We
then calculate J, and get j, the physical current,
by letting ~~- pl. , &&- p, & at the end of the calcu-
lation. (Inother words, &z —Xl, = v~- gn —pz, = —eV.
According to the conventions of Fig. 1, pl, = fr,
and p R= kg —eV.)

Let us next examine the 7-representation con-
tinuity equation for the current:

i 8
e (2s + I )@

—n(r, 7') + V j ~(r, v) = 0,
where

n(r, ~) g'(r=,-r)g(r, ~),

(3. 18a)

(S. 18b)

(3. 18c)

Thus, from Eqs. (3. 16) and (3.18), we have

0 J(r, ~)=0, (S. 19a)

or the x component of the temperature current is
position independent in a tunnel junction which is
translationally invariant in the plane parallel to the
junction. Equation (3. 19a) is merely a mathemati-
cal consequences of the fact that, in steady state, the
density is independent of the time at which it is
evaluated. The current and density operators
j„(r,t) and n(r, t), respectively, defined in the real-
time Heisenberg representation of Eq. (S. 1b), obey
the continuity equation

e(2s+I, )—n(r, t)+V j,y(r, t) =0. (S. 19b)

J(r, r) = Tr[e" &"~' ~"n'e j,y(r, 7)/s], (3. 20a)

The ROH states that a tunnel junction is a steady-
state system, even if it is biased. We, thus, ex-
pect that the thermal average of the density,
Q(r, t)), which is measured at (r, t), is independent
of time. Therefore, the measured current j(r, t)
= (j„(r,t)), also must obey Eq. (3. 19a). Conse-
quently, any analytic continuation of the Lagrangian
multipliers which relates the "temperature" current
in Eq. (3. 1V) to the "physical" current in a biased
junction must preserve the vanishing of the diver-
gence of the current.

In order to relate the temperature current to the
physical current j, let us write
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X~- X~+ v (s. 2ob) ln

From the time translationally invariant form of

g (derived as theorem 1 in the Appendix) and Eq.
(3.16a), it is clear that X(r, 7) = J(r, 0). Therefore,
the prescription for relating J and j is stated as
follows: (i) calculate g with Xs= p~+ v„, (ii) evalu-
ate J with this g, and (iii) let &z, - pz, (for states
carrying current to the right, which are associated
with Nio) and &e- V.„(for states carrying current
to the left, associated with N~& at the end of the
calculation, so that Eq. (3.19a) applies after ana-
lytically continuing &~ and ~&. From the previous dis-
cussion, &L, and ~„are defined to within a boson
index. For convenience, we set ~L, = p& and ana-
lytically continue the variable v, i. e. , v -0
(-eV) for states carrying current to the right (left).

We next derive the perturbation-theory expres-
sion for the temperature current. From Eqs.
(3.15a) and (3.14), we can write the temperature
Green's function in the form~~

g(r, r', 7 —v') = —(T,[S(P))1)(r, 7')$ (r, Y)])o, (3. 21)

where the subscript 0 indicates an average over
po, the unperturbed density matrix. Before ex-
amining the equation of motion of g, let us consider
Q, the unperturbed temperature Green's function
(i.e. , X) ) 0), in the o' representation of Eqs.
(S. 5) (eigenstates of 1C~O, Ng and Nzo),

go(r, r', r r') -=-- Tr)poT, [g(r, r)g (r', v')p . (S.22)

In the & representation,

4(r, 7)=- + C)(E k)) &)X&(& k)) r)

where (X)) (i = I, R) is the set of extended ortho-
normal one-electron basis functions from which
the o. representation is constructed. Thus, from
theorems 1 and 2 in the Appendix, gp can be written
in the formss

g (- p ) lp -~. p X)(&, k)), r) Xf(&, k)), r')
gn E~ ~k Zn

go(r, r', v)= . ~[ dze "f(z)
W2 C

+ X,(&,k„, r) X ) (E, k„, r')
g-E]

= ~ f(& )e "'X (&,k „r)X'(&, k „r'),
Bg ~k11

(3. 2%a}

(3. 2Vb)f(E )
—(1+ e))(zj ) ))-g

and & = pq+ v [i.e. , v„ is a boson index and Eq.
(3.27b) is written to indicate that f is defined to
within a boson index vj. The temperature cur-
rent, evaluated using Eq. (3.27a) is given by

mixe Ef kl

x q e(E, k gi) elk„~ Po-5')
~

(S. 28)

and we have used Eq. (2. 13b), for E,~ 0.
current in the transverse plane vanishes because
of translational invariance in that plane (k„and
—k„contributions cancel). Thus, normal to the
junction

)(7177
p

(S.25}
by converting it into a contour integral as shown
in Fig. 2, ~9 where C is the (counterclockwise) con-
tour of integration:

go(r, r', 7' —r')= -Qe '&' ''Go(r, r', z„),
~n

z„-=v(2n+1)/(-iP)+ x .

(3.24a)

(S. 24b)
)(

p ~CONTOUR
c

We define the quantity X by X=- p, ~+ v, so that z„
is defined to within a boson index v . The quantity
Gp is defined by

INZ =0

X&(E,k„, r) Xf (E, k„, r')
(3.25)

)( 517T

p

)( 517T

which is the expression for the one-electron Green's
function in Eq. (2. 10).

The unperturbed case provides a good example
of use of the prescription whichfollows Eqs. (S.20).
We shall, therefore, trace through the algebra.
Using Eq. (S. 24a), we perform the Matsubara sum

)( 71'
p

FIG. 2. Counterclockwise contour used in converting
the Matsubara sum in Eq. {3.26) into the contour integral
in Eq. {3.27a).
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+ f d'r~ 1,d st.f d'r, f,dr& g~(r, r', 7 —r&)

FIG. 3. Schematic Dyson's equation with generalized
self-energy.

Zo= ——', [(2s+1)ehi] Z f(Z;) W;p(E, k„)/mj .
(3. 29)

In writing Eq. (3. 29), we have used the fact that
W';, +/m; is a constant throughout the junction, so
that, for the extended-basis functions of Eqs.
(2. 2)-(2. 5),

&is, *(E,ki)
z Sia(»k)

I

=-
.

' "
~

m;
(3.30)

The physical current jo is derived from Jo by letting
v, -0 for current flowing to the right and v, ——e V
for current flowing to the left, so that

jo- e dE ff (E) f(E -e+V)]

dk S„(Z k) I' (3»a)

The quantity ~S~z ~ is the barrier transmission
probability' and

(eB(E g~ & I)-1- (3. 31b)

The current given in Eq. (3. 31a) is precisely that
predicted by the conventional one-electron tunneling
theory. ~~

In order to derive the Dyson" s equation for the
Green's function, we examine the equations of mo-
tion of the temperature Green's function g

+I'a, lr)) g(r, r', v —~') = —ll(r —r )ll(F r')'-
—(1",g'Ie„, (g), q(r, y)]tj"(r', 7'))) . (3.32)

Xg(1~ r~ T~ 1g)g(rp r 7p T ) (S.34)

G(z„)=
fo d7'e'~'g (y),

9(&)=—Z e '~'G(z„) .P,„
The self-energy Z involves intermediate-state

sums over boson indices in the case of the elec-
tron-phonon interaction. ~

Since A& and X~ differ by a boson index, accord-
ing to Eq. (3.16), the perturbation expression in
Eq. (3.34) is precisely that obtained using the
equilibrium temperature -Green's -function meth-
od. ' In order to extend our analysis to the non-
equilibrium system of a tunnel junction across
which a bias is imposed, we must specify a pre-
scription which allows us both to analytically con-
tinue the Lagrangian multipliers in Eq. (3.1V) and
to impose the correct spatial boundary conditions
for current flow.

The prescription consists of the following set of
instructions: (i) The cuts of the functions go, Z,
and Q appearing in Eq. (3.35a) occur in the same
order as the r arguments: That is, as we proceed
from left to right (from P to F') in Eq. (3. 35a), the
cuts of the associated functions move up in the up-
per-half of the complex z plane, as illustrated in
Fig. 4. Using this ordering, Eq. (3.35a) becomes

(S.35b)

(3.35c)

RlGHT ji

The imaginary-time boundary conditions of theor-
em 2 of the Appendix allow us to Fourier transform
Eq. (3. 34) to give the "energy" representation
of Dyson's equation:

G(» r ~ ) = Go(r, r, 8„)+ f d ra f d r) Go(r, r~, g )

'~('i ra s.) G(rm, r', ~.), (S. 35a)

(3. 33)

The commutator on the right-hand side of Eq.
(3.32) depends on the specific form of the inter-

actionn.

The elastic electron-impurity interaction gives,
from Eqs. (3. 4),

k„(~),4(r, ~) 1 = —&&(r —R)4(r, ~)

order of
spatial
arguments
in Dyson s
equa t ion.

y/

t')

order of
cuts in

complex z
plane.

Im(z) =KS =-
Im(z) =JS —,
Im (z)=IS —-

Re(z) =O

I

I

I

I

Im(z) =0

The static 6-function impurity is treated in Sec.
IV.

Writing Eq. (S.32) as an integral equation in the
interaction picture, we have Dyson's equation in
(r, r) space, which is represented schematically
in Fig. 3. The Z in the diagram is a generalized
self-energy whose form depends on the particular
interaction. Consequently, Dyson's equation cor-
responding to Eq. (3.32) is

g(r, r', r —v') = go(r, r', 7 —7')

S =0+
I

K&J&I
FIG. 4. Schematic illustration of the relation between

the order of the cuts in the complex g plane and the
spatial arguments in Dffson's equation. This cut ordering
is used in order to preserve the correct spatial boundary
conditions for the current in the prescription following
Eqs. (S.35).
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G(r, r ', g„-iK6)=GO(r, r', e„-iK5)
+fd x, f d raGo(r, r„z„—ii6)

xZ(r„r2, z„-IZ5)G(ra, r', a„-iK5), (3.36a)

I&J &K, and 5 = O'. The cuts of the functions with-
in Z also are ordered according to this prescrip-
tion. %'e show, in Sec. IV, that this ordering
satisfies the spatial boundary conditions for elec-
tron-static-impurity scattering.

(ii) Perform the Matsubara sum as in Eq.
(3. 27a) with the above prescription.

(iii) Calculate the temperature current in Eq.
(3. 16a) before analytically continuing the Lagrangian
multipliers Aq and Aa (i.e. , before letting v„

—eV):

J=- j@e 28+1 (V„—V„.)b(r, r', 7 —~') ~,

(3.36b)
The position independence of the temperature cur-
rent is required by Eq. (3.19a). This position in-
dependence must be preserved in the analytic con-
tinuation.

(iv) Analytically continue Xz, and X„by taking
v -0 for states carrying current to the right,
i.e. , terms involving

from the discontinuities in G() or Z across the re-
spective cuts, and v - —eV for terms involving

~R~~II

in the cut discontinuities.
Instructions (i)-(iv) are applied to the calculation

of the current in a junction with static impurities
in Sec. IV. The results [i.e. , Eq. (4. 10a)] are
shown to agree with those of the one-electron tun-
neling theory. '

A further justification of the ROH method results
from studying the relation between the temperature
and real-time Green's functions for a system of
noninteracting quasiparticles. ' In other words,
we can examine the consequences of the assump-
tion that the many-body Hamiltonian of a tunnel
junction (including interactions) of Eq. (3. la) can
be diagonalized in the form of the Hamiltonian of
a gas of current-carrying noninteracting quasi-
particles whose energies have been renormalized
by the interaction. In this model, we can con-
struct the exact many-particle states which cor-
respond to the single-particle EBF, without re-
course to perturbation theory. The Lehmann rep-
resentations of the exact nonequilibrium real-
time and temperature Green's functions calculated
with these many-particle states can be related
with the preceding perturbation-theory prescrip-
tion. This prescription permits us to decom-

An examination of the consequences of the elec-
tron-static-impurity interaction is interesting for
several reasons. First, the theory presented in
Sec. III can be applied to analyze the tunneling
characteristics due to this interaction, and the
results obtained can be compared to those of the
conventional versions of one electron-tunneling
theory'9; second, the mechanism of resonant
elastic tunneling "' ' can be described within the
framework of the static 5-function-impurity model.
Finally, our model of resonant elastic tunneling
can describe zero-bias anomalies in the conduc-
tance which are observed in many types of junc-
tions.

A. Calculation of the Current

Let us examine the model in which we have N
static impurities per unit area whose potentials
are V~(r -R„), where R„ is the equilibrium posi-
tion of the ion at the site labeled by n. For sim-
plicity, we choose the model potential

Vz(r —R„)= V05(x -d)5(p —p„), (4. 1)

which describes the localized electronic potential
of the ion at R„=i d+ p„(i is the unit vector in the
x direction and p„ is the component of the impuri-
ty's position in the plane of the junction). Further-
more, let the ions be periodically arranged in a
plane parallel to the junction located at x=d.

Substituting Eq. (4. 1) into Eqs. (3.32) and (3.33)
and employing (3. 35) yields the following equation:

G(r, r', e„)=GO(r, r', e„)+Z„VoGo(r, R„, z )

xG(R„, r', ~ ), (4. 2a)

pose the Lehmann representation of the exact tem-
perature Green's function into a sum of two terms
associated with left- and right-current-carrying
states in analogy with our decomposition of the
free-particle Green's function in Eqs. (3. 27)-
(3.31). In all other theories of tunneling, 8'~ ex-
cept those of Davis, 7' this association is made on
the basis of defining an "unperturbed" Hamiltonian
describing two noninteracting electrodes. In such
theories, the tunneling current is calculated by
treating the transfer of electrons between elec-
trodes by some variant of linear-response theory.
Therefore, the analytic continuation procedure
presented above is the central new feature of our
theory which permits the association of separate
"electrode" chemical potentials with the compo-
nents of current flowing to the left and right in a
biased tunnel junction without the need for treating
the interaction between these components via
linear -response theory.

IV. APPLICATION TO STATIC IMPURITIES: 5-POTENTIAL
MODEL



2400 DUKE, KLEIMAN, AND STAKE LON

z„-=(2m+ 1)p/(-iP)+ ~, (4. 2b)

~o=-&~o ~ (4. 3b)

from Eq. (3.24b), and X = p, «;+ v„as in Eq.
(3. 24b), so that z is defined to within a boson in-
dex.

Since we assume k, conservation throughout the
junction, we can Fourier analyze G, in accordance
with Eqs. (2. 13), and neglect umkiapp scattering
from the planar array of impurities to give

G(x, x', k„, z~)= Gp(x, x', k„, z„)

+U G (x, d, k„, z )G(d, x, k z )

According to our prescription, we must order
the cuts of the quantities appearing in Eq. (4. 3a)
along the imaginary z axis in increasing order
from left to right as illustrated in Fig. 4. Equa-
tion (4. 3a) admits the solution

G(x, x', k„, z„-iZ5)=G,(x, x', k„, z„-iK5)
UpGp(x, d, k„, z„—i Ib)Gp(d, x ', %„, z iE—5)

1 —UpGo(d, d, «„, z„i-&5)
(4.4)

where I& J&K, 5= 0 .
We find Q (7 —r ') by performing the Matsubara

sum in Eq. (3.35c), where the contour C is given
in Fig. 2:

8(x, x', k„, y)= — . dgf(z)e" (2iIm[Gp(x, x', k„, z)]+Up(2i[C«(A, A, x, x', k„, z)
a

-C, (A, E, x', x, k„, z)]+Co(R, A, x, x', k„, z) —Cg(A, R, x', x, k„, z)]), (4. 5a)

Im[Gp(x, d, k„, z)]G"p(d, x', k„, z) (4. 5b)

G', (x, d, k„, z)G", (d, x', «„, g)
(4. 5c)

Vfe have used the fact that Go
" is symmetric under

interchange of its spatial arguments in writing
Eqs. (4.5) in the compact notation above. The

quantity f(z) is the distribution function defined in

Eq. (3. 27b). The discontinuity in Gp across its
cut is given by

Im[G', (x, x', k„, z)]

-=(I/2i)[G,"(x, x', k,„z)-G",(x, x', «„, z)]

~& q«(E, «„, x)q&"(E, k,„x')5(z -E«),
g

(4.5)
which i = (L, 8). We have used Eq. (2. 13) and
is the unperturbed wave function for the junction

indicated in Fig. 1. Inserting Eq. (4.5) into (4. 5)
and performing the integral over g prior to the
sum over E, gives our final expression for g:

g(», x, k„, ~) =Z f(E,)e «'[A(E„-k,„x, x') - Uoz(E„k„, x, x')], i= (L, f~)
g]

(4.7a)

A(E«, k„, x, x')=—g, (E, k„, x)g«(E, k„, x'),

E(E„k„,x, x')—= jBi(E„k„,x, x')+ «( «, ll, x', x)+Up[ g(E«, k„, x, x')+Bg(E„k„, x', x)

(4.7b)

-B,(E„k„,x, x')]j[~1—UG (d, d, «„, E«)~] ', (4.7c)

B«(E«~ «ii~ x~ x ) =A(E««ii x d)Go(d, x', kn E«) &

(4. 7d)

Bo(E«, ««~ xi x') =B«(E«, k„, x, -x')Gp(d, d, «,~, E«),
(4. 7e)

Bo(E« ~ «s x x ) ~B«(E«& «ii &
d x')Go(x d, «B E«).

(4. 7f)

When ere apply

equi(2s+ 1) d
2m (x) dx

d I
8X j x'=x

v' v+

individually to the terms with i =I. (or i =8) in Eqs.
(4. 7), we obtain position-independent currents
[the quantity m(x) indicates the effective mass in

the region of the junction where the current is
evaluated, and is not a continuous differentiable
function of x] . We obtain a particularly simple
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from Eq. (4. 9) by letting X- pz (ps) for the L(R)
terms according to our prescription [i.e. , v„- 0
(- e V) for L(R) terms]. Thus,

dE[f (E)-f (E+eV)]
h

0

d k„ lsqo(E, k„) I

(2w)' 11 — oGo (d, d, k„, E) I' '

E~

0

e
U(X)

Xo~,
I

0
I d

1I
I

III
b

I

I

Xb

-V
I

form if we use Eq. (2. 16) to show that, for E) 0
(suppressing % „arguments),

t~i(E, d)Go(» d, E)=fr, (E x)Go(d d E)

gs(E, d)Go(x, d, E)=g„(E, x)Go(d, d, E), x- —~
(4. 8)

(g (E, d)Go(d, x', E)=gf (E, x')Go(d, d, E), x'

gg (E, d)Go(d, x', E)=gg (E, x')Go(d, d, E),

g ~ 00

The temperature current is, from Eqs. (3. 16a),

equi(V„—V„,) g(r, r', ~ —T')
2m x r= r'

+ ehi(v„- v„,)2m (x)

&& Q 9 (x, x', %„, 0 )e'" "' '
~

-; . (4. 9a)

Inserting Eqs. (4. 7) and (4. 8) into (4. 9a) and per-
forming some algebraic manipulations yields

2s+1 d dJ= —eSi
2m(x) dx d|.")

FIG. 5. (a) Schematic metal-oxide-semiconductor (M-
0-S) junction with an attractive impurity potential, U(x)
= Uo (x -d), so that the impurity potential is completely
localized at g =d. Tz, (T~) is the probability for trans-
mission of an electron from the impurity site to the left
(right) electrode. In the drawing, Tz =Tz, so that the
impurity potential is resonant. (b) The same junction
as in (a), except that the conventions of the WEB approxi-
mation in Sec. IV B are illustrated.

fi(E) = (1+e"-' "")'. (4. 10b)

Real intermediate states in tunneling processes
can produce zero-bias anomalies in the conduc-
tance. ' '"' ' It is interesting, therefore, to ex-
amine the effect of resonant-impurity potentials
upon the tunneling characteristics. Since the
resonant-barrier-penetration probabilities for dif-
ferent barrier and impurity potentials are Lorentz-
ian in form, we calculate the resonant transmis-
sion coefficient for a general barrier potential in
the WKB approximation, in which we describe the
static impurity potential by a Dirac 6 function.
The WKB treatment is valid for either high or thick
barriers. This approximation permits us to study
the general features of resonant-elastic-tunneling
line shapes.

A typical barrier containing a resonant impurity
is illustrated in Fig. 5. For such a barrier, the
WKB barrier-penetration probability is calculated
by writing the current-carrying WKB wave function
gw„s as in Eq. (2. 2), and by applying the following
matching conditions for a static 6-function potential
Uo5(x —d) in the barrier:

lim [kwKs(d+ o) —(wKs(d —e)]= 0, (4. 1la)
e wp

2m Up
1&m [(wKs(d+ &) —(wKs(d —&)] =

o gwKs(d) .
6~0

(4. 11b)
The resulting WKB transmission coefficient is

given by

/s»(E, t'„) f'=- is»(E, ) f'

In deriving Eqs. (4. 10), we have used the wave-
function definitions in Eq. (2. 2)—(2. 5) and the sum-
mation convention in Eq. (2. 11). The expression
in Eq. (4. 10a) is the one-electron current for the
average barrier shown in Fig. 5. Equations (4. 10)
agree exactly with the predictions of the ordinary
one-electron theory. '

B. Some Features of Resonant-Impurity-Assisted Tunneling

f(E)g& (E, &ii x)0»* (E &~~i "')
s, f, I 1 —UoGo(d d Rn E) I

(4. 9b)
The current due to the L, (R) terms is evaluated at
x-~ (x- —~) inEq. (4. 9b). Thephysicalcurrent j,
which flows when a bias is imposed, is derived

2
0 2 +D

~Slo(E ) I (K K )o ps

K, (2m [V(d) -=E,]/n'P"—,

Ko = —m Uo/N

(4. 12a)

(4. 12b)

(4. 12c)
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~WKB 4 T
+

T L R

(4. 12d)
(4. 12e)

The wave numbers q and 0 are def ined in Eq s.
(2. 3), and we have made the effective mass con-
stant throughout the junction.

The quantities TL and TR are, respectively, the
tunneling probabilities from the impurity site to
left and right electrodes, as illustrated in Fig. 5.
The transmission coefficient in Eq. (4. 12a) is reso-
nant when the width I'wKB is minimum, which, in
turn, requires that

-2JL T —e-2JR
R

2m 1/2

, [V(x)-E,]
xo

p XQ 1/2
[V(~) —&,]

off

E, —= E —h k„/2m,

V(xp) = V(x p) = Eg .

(4. 13a)

(4. 13b)

(4. 13c)

(4. 13d)

(4. 13e)

~WK B —p'5(K -K ) . (4. 14b)

The current is evaluated by a straightforward
substitution of Eqs. (4. 14) into Eq. (4. 10a):

(4. 15a)

The ordinary one-electron current without reso-
nant effects at zero temperature is given by'9

~ E
dz dE, IsP»(E, ) I',

CJ -+V ~ E

E =-min(0, —V~) . (4. 15c)

The resonant contribution to the zero-tempera-
ture current is given in the following equation

Pg

dE ' is,',(E„)i'e(z„-E„)e(E-E„),
WKB8

The quantities xo and x, are the classical turning
points. ' In deriving Eqs. (4. 12) and (4. 13), we
have made the effective mass constant throughout
the junction for simplicity.

Equation (4. 12a) can be separated into resonant
and nonresonant terms

K 2K —K —F
D p + WKB

(4. 14a)
In order to simplify the calculation, let us note

that, for a sharp resonance (i. e. , r„„e«Kp),

state energy of a 6-function well with respect to
the top of the barrier.

Neglecting the voltage dependence of the term
K'pIS'„I'/r„„, in Eq. (4. 15d) (which is slowly vary-
in= compared with the step function terms), we
can derive the resonant conductance

G„(eV) —= " —= G„[(R+1)e(pl,—eV-E„)dj„

KG' =- -' ' is'„(z„)i'
~ ~WKB

—Re(&I. —E„)], (4. 16a)

(4. 16b)

Op

G„(eV) = (
I
- I~G„P,

4&0,R+1

eV& max

dE„dV(d)

d(e V) d(e V)

From the conventions in Fig. 5, 0&R & —1.
In Eq. (4. 16a), we have identified the right (left)

electrode with a metal (semiconductor), so that
E„=0 in Eqs. (4. 15b)-(4. 1M).

Equations (4. 16) are true in the WKB approxi-
mation. In a more general treatment of resonant
impurities in junction barriers (i. e. , the square
barrier, ' for instance), the barrier-penetration
probability is Lorentzian in form and the expres-
sion for the resonant conductance in the case of a
sharp resonance [i.e. , Eq. (4. 14b)] is identical in
form to Eq. (4. 16a). In the general case, however,
Eq. (4. 16c) is only approximately satisfied. This
approximation is adequate for ISy2~ «1, however,
so that we confine our discussion to junctions which
have either high or thick barriers.

If the average barrier potential in an experiment
is given, we can deduce the resonant impurity posi-
tion from the value of R which fits the experimental
results. In most cases, however, this potential
is not known. We treat R, therefore, as an inde-
pendent parameter which gives the variation with
voltage of the average barrier potential at the posi-
tion of the impurity. Consequently, we write

Er=ED+Re V, Oo R & —1 (4. 17)
where Eo is the position of the resonance energy
at zero bias with respect to the bottom of the left- elec-
trode's band (i. e. , the semiconductor in a metal-semi-
conductor contact). The total conductance is

G (e V) = G p(e V)+ G„(eV), (4. 18a)

Gp(e V) =dj p/d(e V)-, (4. 18b)

(R+ 1)G„, e V & min A+1

E„=V(d) —hPK2p/2m .
(4. 15d)

(4. 15e)

The WKB resonance energy E„ is the bound-

GD g&O,R+1 '

(4. 18c)
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(a)

Fo&~L
-I

R =—
2

eV&0 eV &0

(b)
Eo&(L

-I
R =—

2

eV &0 eV&0

FIG. 6. Resonant-elastic conductance of Eqs. (4.18)
illustrated for R -=dE„/d(eV) =-~ (i.e. , E„ is the reso-
nance energy). Ep is the resonance energy at zero bias
(i.e. , E„=Ep+ReV) and 4= gz -Ep in the conventions of
Fig. 1. In (a), Ep&gz, and in (b), Ep&gz. Therefore, the
resonant channel opens in (a) lcloses in (b)] when l eVl
&2(b, l. The schematic tunnel junctions in the figure illus-
trate the switch concept. The black dot represents the
resonance energy and the cross hatching indicates the
range of energies for which resonant tunneling can occur.
This convention is also used in Fig. 7.

(a} (b) G
~o'&L
F|=Q

energy at zero bias E, is above (below) the Fermi
level so that b, & 0 (h &0), resonant-elastic tunneling
(RET) does not (does) occur at zero bias. In par-
ticular, when R = —2, E„moves equally in forward
and reverse biases, so that the structure in the
conductance near zero bias is symmetric with re-
spect to zero bias. In this case, the conductance
appears to have a minimum centered at zero
bias when 6&0, because the (RET) channel opens
only when E„passes below either of the electrode
Fermi levels. The threshold for this process is
at leVI = —24. When 6&0, the zero-bias anomaly
takes the form of a conductance maximum, because
the RET channel closes partially when E„passes
above either of the electrode Fermi levels. The
threshold here is at leVl = 24. These results are
illustrated in Fig. 6.

In the case that R = —1 (i. e. , the resonance ener-
gy moves with the right Fermi level), the contri-
butions to the conductance from RET occur only
when E„&f~, since we have neglected the voltage
dependence of the barrier penetration factor in
Eq. (4. 15d). Therefore, the resonant elastic
channel is open when eV & 6 and closed when eV & 6
for all h. By an analogous argument for R = 0
(i.e. , the resonance energy moves with the left
Fermi level), RET occurs only when E„&t'~ —eV.
Thus, the BET contribution to the conductance ap-
pears for eV & 6 for 6 positive and negative. These
conclusions are illustrated in Fig. 7.

l~l eV& 0
eV& 0 lQ[ eV&Q

Eo (4. 18d)

The thresholds in Eq. (4. 18c) appear as zero-
bias anomalies in the conductance. In Figs. 6 and
7, we illustrate schematically the zero-bias anom-
alies (ZBA) which occur in resonant elastic tun-
neling for R= —&, and R=0, —1, respectively. We
can understand these structures by examining Eq.
(4. 15d): The step function indicates that current
flows in the resonant elastic channel when either
g z, &E„&rz-e V (forward , bias, in the conventions of
Fig. 1) or g~-eV E„&g~&(reverse bias). This
threshold behavior is a reflection of a "switch"
effect: The resonance is an extra tunneling channel
through the barrier, since lS» l'=1, when E, =E„,
from Eqs. (4. 12) and (4. 18). Therefore, tunneling
electrons with total energy E &E„are always able
to tunnel through the resonance. When one of the
Fermi levels is above the resonance, the resonant
elastic channel is opened. Thus, if the resonance

G ~L' Eo
R =-I o

R =0

eV 0 l~~ eV&0
I

eV& 0 I&I eV &0

FIG. 7. Resonant-elastic conductance of Eqs. (4.18).
In (a) and (c), R=-1 (i.e. , the resonance energy moves
with the right Fermi level). The resonant elastic chan-
nel opens when either Fermi level passes above the
resonance energy. In (a) and (c), the resonant elastic
channel is open only in forward bias, while in (b) and (d),
it is open only in reverse bias.
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A more realistic treatment of the voltage depen-
dent barrier penetration factor in Eq. (4. 15d) and
the finite resonance width in Eq. (4. 12a) changes
the details of the current characteristics, but the
qualitative features of our conclusions remain
true.

%e conclude this section with a brief discussion
of the experiments of Zeller and Giaever, who
observe resonant (or two-step) tunneling through
real (or localized) intermediate states. "'~ Their
system consists of small metal (Sn) particles em-
bedded in the oxide of an Al-insulator-Al junction.
Although our model of resonant tunneling makes
no explicit provision for multiple-electron occupa-
tion of quasibound impurity states and the con-
comitant electron-electron Coulomb repulsion, it
can be relateds to the (semiclassical) capacitor
model of Zeller hand Giaever. ' The key to this
relation is the fact that both models involve con-
tinuous ranges of energies for which two-step tun-
neling is allowed as well as threshold energies for
the two-step processes. In the capacitor model,
the one-electron eigenvalue spectrum of a metal
particle is assumed to be continuous so that tun-
neling electrons which "hop" on or off a particle
have a continuous range of energies for which this
hopping is allowed. '~ In addition, in order for
two-step tunneling to occur, the battery must sup-
ply enough energy (i.e. , the activation energy) for
the charge on a metal particle to change by e. The
ROH model of tunneling through resonant static &-

function-impurity potentials also exhibits a contin-
uous spectrum of total energy F. for which resonant
tmmeling is allowed. The k, integral in Eq.
(4. 10a), which produces the step functions in Eg.
(4. 15d), is a phase-space integral which results
in a "band" of eigenvalues E (i.e. , there is a con-
tinuous spectrum of F. & 8„ for which resonant tun-
neling occurs, so that E„ is a threshold) Avera. g-
ing over the activation energies in both models pro-
duces identical conductance line shapes. 3~

C. Comparison with Transfer-Hamiltonian Theory

V(0),

V„(x)-=V(x),
x&0

0&x&5 (4. 19c)

k, (x)q„(x)= E(k)y„(x),

k„(x)q,„(x)= E(q)y„(x) .
(4. 20a)

(4. 20b)

The indices 4 and q are the wave numbers defined
in Eqs. (2. 8) for total energy E and k„.

In the TH method, we are instructed to use per-
turbation theory to expand the eigenstates of k(x)
with fixed k„:

x):Pate (x) -~ ". ' ' . 0.*,(x)
(q„* I EV, Ik, )

ORIGINAL
PROBLEM

V(x)

V(o)

V(b)

V, =~L-ev-gR

VL(x) ~I

V(b)

LEFT
PROBLEM V(o)

pl, —eV-f~, 5&x.
The quantity V(x) in Egs. (4. 19) is the exact

barrier potential in Eq. (2. 15), so that V, (x)
= V„(x)= V(x), when 0& x& b. The left, right, and
original electrode potentials are illustrated in
Fig. 8. According to the TH theory, ' we must first
calculate the nondegenerate eigenfunctions g, and

g, of the approximate Hamiltonians k, and k„, re-
spectively, and then use perturbation theory to ex-
pand the current-carrying eigenfunctions of the
exact Hamiltonian k(x) in Eg. (2. 15) in terms of
P, and P„(which correspond to the localized elec-
trode standing wave functions' ). The eigenfunc-
tions of the Hamiltonians in Eqs. (4. 19) are de-
fined by

In order to derive the transfer-Hamiltonian
(TH) expression' for the current with our method,
we apply the method of "left" and "right" effective
Hamiltonians introduced by Bardeen. ' These Ham-
iltonians, which are denoted by subscripts l and z,
respectively, are defined in the case of a constant
effective mass and k„conservation in the following
equations:

I d Ikg(x):
2 dp+2 kI+ Vg(x) 1 = (l Y) (4 19a)

RIGHT
PROBLEM

V(o)

V„(X) I

V(b)

VI =
g1 -ev-gR

0, x&0

V, (x)=- V(x), o~x&b

V(b), x& b

(4. 19b)
FIG. 8. Schematic illustration of the original and "left"

and "right" effective potentials used in the derivation of
the transfer-Hamiltonian current in Sec. IV C. The po-
tentials are defined so that V(x) = V, b;) = V„(x) for 0~ x~g.
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E(k) =E— (4. 2la) t 0

dx g, y,„[z(k) -Z(q)]+ Z+, (O) .
4

E(q)= E — (4. 21b)

84D 2

[E(q) E(k)]+ 2 J„(b),

J„(x)-=(1),*„(x)—y, ((x) —y, ((x) d (),*„(x),d d

(4. 22a}

(4. 22b)

in which g„and g~ correspond to the same k„as
gz, and g~, hV( =h(x) —h, (x), and b, V„=h(x) —h„(x).
EVe use the method of Bardeen to rewrite the rna-
trix elements in terms of currents:

pOO

(q~l +v(lk() =

(4. 22c)

Using the forms of the matrix elements in Eqs.
(4. 22), we obtain

I'~ Z:,(b)y:„(x)
y, (z, k„, x) = y»(x)e(b- x) -

2

(4. 23a)

h' y,*,(x) Z.',*(0)
( x) . g (x) e(x)

2 (

(4. 23b)
where we have used the closure relation resulting
from the fact that ( g» j and (g,„jare complete sets
of nondegenerate orthonormal functions.

Substituting Eqs. (4. 23) into the expression for
the unperturbed one-electron Green's function in
Eq. (2. 13b), we can expand Go in terms of p» and

The Green's function for 0 & x, x & b is given
by

( k, l
b V„l q„)= ' dx gf, (h —h„) (I),„

~I) aeO Go(x, x', k„,x)= F, +F„, (4. 24a)

(x) yt(I ( )
@

y ( ) p ~jt+(I(xo) (()jj'jj(x ) h + ( t) p IT~+(,(xo) g~t)j„(x)

(, E(k) -« "' " 2m ",* E(q*) -E(k)+i5 2m " ez(q+) -E(k)

0 ~xo& b (4. 24b)

4(,~((x)&.(,*(xo) h ' ~ g„*,(x') Z.,+(xo)
* E(k*) -E(q) -ib 2m '" E(k*) -Z( )+(,5

0 & xo & b . (4. 24c)

In deriving Eq. (4. 24), we have replaced the sum over E~ (Es) states in Eq. (2. 13b) by the equivalent sum
over k (q) and denoted the total energy for fixed k)I 'by E(k) [E(q)] since the ranges of energies of gz and

g» (gs and P,„) are identical. We have dropped terms of order J and used the fact that J',~(xo) is position
independent for 0 & xo & b [i.e., since h, (xo) = h„(xo) = h(xo) for 0 & xo& b, g», and (I),„are linearly independent
in the same region]. From the definition of J,„ in Eq. (4. 22b), we can write

Go(xt x I k(I I x) = ~ Eik( 4(I((x) '4( (x ) 2 (1)o((x) l tg((xo) G„(x=xo, x, k„, E(k) —i6)
Eying —z

2
——t„(xo) I:,(x„x,Ij, , E(j) —Ij))+ t„(x ) (

—t„(xo) G,(x, x„)j„,Z(j)+It)

8 1—pa((xo) G (x x =x k E(k)+i5) ~
( )

[l-r, k-q], 0&x, & b (4. 25a)

where we denote the q, x terms schematically, and we define the one-electron Green's functions for the left
and right problem as follows:

G (x xt k E) — g ~(I( x ~(I((x )
G (x xt k E)=I I II I E(k) E t I' I I II t E( )

(4. 25b)

The retarded and advanced Green's functions are given by G", (E)—= G, (z+ib) and G", =- G, (E —i6), 5 =0, re-
spectively, for i= l, r.

According to our method, we calculate the physical (or measured) current via the following steps: (i)
Derive the temperature Green's function by performing the Matsubara sum in Eq. (3.35c). (ii) Calculate
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the temperature current from Eq. (4. 9a). (iii) Make the analytic continuation v, -0 (- e V) in the terms in-
volving sums over k (q) as stated in the prescription directly following Eqs. (3. 35). Denoting the analytic
continuation by X~ - p, ~ (A.„-p,„), the physical current calculated at x= xo is then

OO

j—=
2

(&„—'(4'„) 2 e'"" ' ""' dzf (z) Im[GO (x, x', k„,z)] ~;
-. "

&o ~ «oo

d r
~

d r 5(x —xo) 6(x —xo)
l

dz[f1, (E) -f~(E+eV)]
~

—ImGI, (r, r, E) ImG"„(r', r, E)
ek (2s+ I)

m) «4)O

82 82
, ImGI (r, r, E) ImG"„(r, r, E) —ImG~ (r, r, E), ImGs(r, r, E)

ex&x Bx~x

+ ImG (r, r, G) —ImG„(r, r, 2)), (4 262)

f (E)=(e" 'I'+I) ',

G;(r) r, E):Q e " G)(x) x I ))I E) I

ll

(4. 26b) that the junction is symmetric, i. e., V& = 0 in Fig.
l. In this case the TH current at T = 0 is, from
elementary calculation (with spin degeneracy in-
cluded),

f=(I, r) . (4. 26c)

In deriving Eq. (4. 26a), we have used the fact that

J dE f (E) ImG, (x, x, k)„E)

= —f dzf (E)Z, y„(x) g, (x') ~6[z - E(k)],
(4. 26d)

with an analogous term for G„.
Equation (4. 26a) is precisely the expression

given by Appelbaum and Brinkman for the current,
except for the spin degeneracy factor, which these
authors omit.

Let us apply Eq. (4. 26a) to the square-barrier
model of the average barrier [i.e., U(x) = Vo,

0 ~ x & b] in which there is a 5-function impurity
potential UO5(x —d). For simplicity, we assume

em

"0'~-e&

16k2~4 -2Kb

dz4
(

b „~)z D

(4. 27a)

ZQ &+ik '
-2K—

( ~ )
. e, (4. 27b)

&, =- -mV, /a',

E= [(2m/8') (V, -—E,)]"',
k =- (2mz, /k')'~ '

For the same case, the exact current is

(4. 27c)

(4. 27d)

(4. 27e)

D'-=(If -Z. ) -Z ' (e'z«-b)+e-~&)
K —ik

em.
dE

~ ~L-eV Q

I6k'Z' e '"b
dE,' (&'+ k')'l I - e ' '(K+fk)/(SC- fk) I' (4. 28a)

K 'k «2
2K (4-Q) -2K4

Q
—

Q ~ rk e + e + .
k

e (4. 28b)

From our derivation of the Appelbaum-Brinkman
formula for the current in Eq. (4. 26a), we observe
that the result does not depend upon the explicit
form of the average barrier potential. The deriva-
tion does depend critically upon the assumption that
V„= U, = V in the barrier and that ) J,~~ «1. The
first of these assumptions is necessary to make the
left-flowing current subtract exactly from the
right-flowing current; i. e., the first assumption is

necessary to derive the fz, (E) fI, (E+ e V) form for-
the current in Eq. (4. 26a). It is, therefore, in-
consistent to assume a priori that the potential of
an impurity near the interface between the left
electrode and the barrier, for example, can be
omitted from the Hamiltonian of the right electrode
(as done, e. g. , in Ref. 8).

The second assumption (i. e., l J I «1) is neces-
sary for the series truncation involved in the step
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of the derivation between Eqs. (4. 23) and (4. 24).
In the case of a resonant-impurity potential in the
barrier I Jl =1, and this truncation is invalid.
This point is emphasized in the expressions for the
TH and exact currents in Eqs. (4. 27) and (4. 28),
respectively, calculated for the case of a 6-function
impurity in a symmetric square barrier. One of
the conditions for resonance is that K=K0. In
this case, the term multiplying e " in Eq. (4. 27b)
becomes very large, which contradicts the re-
quirement that the width of the resonance be very
small. By comparing Eqs. (4. 27) and (4. 28), we
see that the TH theory is an inadequate description
of resonant tunneling.

Finally, for the static-impurity model we dis-
played explicitly the limits in which our theory re-
duces to the TH method. As anticipated, we find
that our method adequately describes resonant
elastic tunneling for all types of junctions whereas
the TH does not. We find additional differences
between the two methods in our analys;s of inelastic
tunneling.

APPENDIX: GENERAL THEOREMS

Theorem 1

From Eq. (3. 15a),

g (r, r', 7, r') -=—Tr AT, [)t)(r, r) P'(r', 7')]),
V. SUMMARY AND CONCLUSIONS

g (r, r', 7, 7') = g(r, r~, r —7', 0) & (Al)
We have developed a new microscopic theory of

tunneling from the two physical assumptions that
electrons are in states of the entire junction and
that a tunnel junction across which a bias is im-
posed is a steady-state system. In Sec. II we em™
ployed the first assumption in order to define the
extended-basis functions (EBF). In Sec. III, we
used the second assumption to develop the statis-
tics of current flow. That is, we used the equilib-
rium temperature Green's function in the deriva-
tion of the "temperature current" of Eqs. (3. 16),
and then obtained the physical current by treating
the bias as a boson index v„which is analytically
continued: v, -0 (-eV) for right (left) flowing cur-
rent. In the discussion following Eq. (3. 35), we
gave a prescription for calculating the current in
perturbation theory.

We displayed explicitly the two simplest applica-
tions of the method. The first is the calculation of
the average-barrier one-electron current in Eq.
(3.31a). The second application, described in Sec.
IV, was the calculation of the current in a junction
containing static -5-function impurity potentials.
This current was derived in Sec. IV [i.e., Eqs.
(4. 10)] and the expression shown to agree with the
"exact" one-electron current in Eq. (3. 31a). Al-
though the static-6-function model is a special case.'n which the perturbation-theory series can be
summed explicitly, our perturbation-theory pre-
scription obviously agrees with the one-electron
theory of tunneling for any model of the static im-
purity potential.

We next examined the effect of resonant static
impurity potentials upon the current. In this case,
a new channel for current flow, i. e., a resonant
elastic tunneling channel appears. Resonant elas-
tic tunneling can produce zero-bias anomalies
(ZBA) in the conductance. The shape of a ZBA
depends upon the position of the resonance energy
at zero bias relative to the Fermi level as well as
the variation of the resonance energy with applied
bias.

then ))~ =))s+ 2))m j(-ip), where m is a positive or
negative integer.

Proof. Let r) r, then, from Eqs. (3. 14) and
(3. 15),

g (r r 7. r )
— g ( n

~

e))(~L)J+)~s&s) 8

x q(r)e '" 'g'(r')e ""tn&,

where we calculate the trace in the (complete)
Fock representation in Eqs. (3. 5) (i. e., eigenstates
of N~~ and Nos, but not of X). Invoking cyclic in-
variance of the trace and inserting a complete set
of intermediate states I p) in the same occupation
number representation yield

g(r, r, rr )= ——Z (n~e e '~ ~ s )))~ p&A))
e,8

&).= (p~e -""t(r)e'"' "0'(r')In&

Define

(A2)

1 0
( ~

8th M+4)df ) -3l '
~ p& g

a, tt
(A3b)

Equations (A3a) and (A3b) are equal only if

(nl[e, e" ]IP&-0 (A4a)

for all (n~ and (P~. Equation (A4a) is true only if

eM A, (n~ n~) ] (A4b)

Thus, A J. N L, + X~ N z = Xr, N+ &XN~, where N = N~
+No from Eq. (3. 6a). Since [N, X]=0, we can
write

g (r, r', r, r') = -—Z (
~

ne" 8""x,"' ""~'i p&A.,~ .
8 o g

(A3a)
At this point, let us note that for 7 & v, we can

trivially derive that

g (r, r', r —r', 0)
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for ail (uI and I p), where, according to Eqs.
(3. 5), gg is the eigenvalue of N„ in the state II u).
The relation in Eq. (Al) is true, therefore, only if

y, = x„+&wm/(- ip)

for yn an integer. A similar proof applies for
I7'& 'T .

In the case that X=3eo, Eq. (A4a) is true, from
Eqs. (3. 5), for all I u) and I P). Therefore, there
is n0 restriction upon ~~ in this situation and the
theorem is a truism here.

Theorem 2

Make the definition

g (r, r', r) = g(r-, r', ~, 0) .

A.g = A.s+ 3wm/(- ip),

Proof. From cyclic invariance of the trace and
the definition of T„
g(rq r

q
7')

= -»[9(7') y'(r') py(r ~) -8(- ~) y(r 7) pAr') 1

g) -~3l eBx e-OQIN ~g)
8f

x [9(7)y'(r') e'"I""""'e "y(r, v)

0—9(- 7) y(r, 7') e "&"' &' e "y'(r')]j .
For simplicity, we refer again to the Pock rep-

resentation in Eqs. (3. 5), since '.he trace is invari-
ant. From Eq. (A4a),

(u([e" ', y)~P)=(u~[e" ', y']~P)=0,
then

g (r, r', v & 0) = —e "I
g (r, r', v+ p)

and

g (r, r', 7 & 0) = —e~"I
g (r, r', 7 —P) .

(A5a)

(A5b)

since we have assumed that 4A. is a boson index.
In addition,

e-8 AgN
y

Bill,N BAg -ski, N gt eBxgN %xi

Therefore,

g (r, r', r) = —(l/8) Tr /e""I."~'"s"»e ' [8(&)e "I
p (r', p) g(r, ~) —9(-7) e "& g(r, r+ p) g (r', 0)])

8(~)e '& g(r, r, v p) —9(-7)e ~ g(r, r, v+p, 0),

= —8(7') e "I- g(r, r', 7' —p) —8(—7') e "& g(r, r', 7'+ p) .

Thus, theorem 2 is proved.

(A5)
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Second-harmonic generation of ultrasound propagating transverse to a dc magnetic field in
a piezoelectric semiconductor is treated using a phenomenological approach which is valid when
either qR «1 or ql «1. We find that the magnetic field can change both the magnitude of the
harmonic generation and the frequency at which the harmonic generation has its peak value. It
is found that at frequencies near or below the frequency of maximum gain the magnitude of the
harmonic generation has a maximum as a function of magnetic field. Therefore, the applica-
tion of a transverse magnetic field can lead to an enhancement of. second-harmonic generation
in a piezoelectric semiconductor.

I. INTRODUCTION

When large-amplitude acoustic flux propagates in
a piezoelectric semiconductor, the acoustoelectric
interaction between the acoustic flux and the con-
duction electrons leads to frequency mixing of the
waves comprising the flux. One such frequency-
mixing effect of particular interest is second-har-
monic generation. Ultrasonic -second-harmonic
generation due to such acoustoelectric interactions
was first observed in photoconducting CdS by Tell. '
Recently, there has been a revival of interest in
such frequency-mixing effects, mainly because of
the role they play in the growth of domains of
acoustic flux under conditions of acoustic amplifi-
cation. Most of the work involving the nonlinear
acoustoelectric interactions has concerned the sit-
uation in the absence of any external magnetic field.
However, in high-mobility semiconductors such as
InSb, the application of a strong magnetic field can
crucially alter the behavior of the acoustoelectric
interaction. ' When such a field is applied trans-
verse to the direction of propagation of the ultra-
sound, the acoustic gain or loss due to the acousto-

electric interaction is greatly enhanced over its
value in the absence of the field. Moreover, the
types of acoustoelectric current oscillation which
occur in piezoelectric semiconductors are also
greatly altered by the application of strong mag-
netic fields. ' It is therefore of interest to investi-
gate the effect of a magnetic field on the second-
harmonic generation due to the nonlinear acousto-
electric interactions.

In Sec. II we present the theory of second-har-
monic generation due to the interaction between the
ultrasound and the conduction electrons in the
presence of a dc magnetic field. This is done using
a phenomenological theory which is valid when the
sound wavelength is much greater than the average
distance the carrier travels between collisions. In
weak magnetic fields ~07«1, where the carrier
does not have much of a chance of being deflected
by the field before undergoing a collision, this dis-
tance is the carrier's mean free path l. In strong
fields ~o7» 1, on the other hand, the carrier com-
pletes several orbits before being scattered and
this distance is of the order of the cyclotron radius
R. The theory is then applied to second-harmonic


