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Measurements are presented of differential reflectivity in a strong magnetic field in InSb and
GaSb at the E& and E&+4~ edges. A description of the circular-polarization modulation technique
used to obtain the data is given. Optical absorption at a critical point along the [111]direction
in a semiconductor lacking inversion symmetry is discussed. An exciton model in a magnetic
field is developed. Numerical solutions for the first four bound-state energies having azi-
muthal quantum number m =0 are tabulated for the two-dimensional Schr5dinger equation of an
attractive Coulomb potential in a magnetic field. Solutions to the three-dimensional problem
are discussed using the Born-Oppenheimer approximation. The exciton model is compared
to experimental spectra of Landau levels at the E& edge of InSb. A value of 2.8+0.6 rneV is
obtained for the exciton rydberg. This agrees with the value obtained using the measured
effective transverse mass m/p~ =19.7+1.3 and the static dielectric constant of InSb. A lower
limit on the longitudinal mass of 15& ) p&/p&r is estimated. The sign of the longitudinal mass
has not been unambiguously obtained; however, the critical-point symmetry at the E~ edge may
be of type Mo instead of M&. The E& excitonic energy gap is determined to be 2.015+0.001
eV. Spectra of GaSb are compared to InSb. A line splitting of 33 meV due to the inversion
asymmetry in GaSb is proposed.

I. INTRODUCTION

Effects due to electromagnetic transitions be-
tween Landau levels were first observed in crys-
talline solids in cyclotron-resonance experiments
in 1S53 and in infrared magneto-optical experi-
ments a short time later. Extensive work has
followed on optical magnetic effects, yielding ac-
curate measurements of band masses and a wealth
of other band-structure parameters. Up to the
present time quantized harmonic -oscillator levels
have been seen only in the infrared. They have
been studied at the lowest-energy-gap thresholds,
and in transitions from the spin-orbit split-off
valence bands ' in a number of semiconductors.
Attempts to look at higher bands have not resolved
magnetic levels.

In the present experiment, however, Landau
levels are seen in the visible energy range at the
E& edge in InSb. ' The measurements have been ob-
tained using an optical-polarization modulation
technique, which is relatively noiseless. The
method is not unlike other techniques used to make

similar measurements, but it has the virtue of
requiring no modulation to be applied directly to
the sample. In the present paper we have com-
puted differential dielectric constants (he~ and b, ez)
from our data. The "density of states" calculated
from a model including excitons in a magnetic field
has been compared to 4e&. This approach has
been necessitated by previous evidence for strong
Coulomb effects at the E& thresholds. A discus-
sion of inversion asymmetry along the ~ direction
has been included in the analysis. This may be
important in interpreting new observations of op-
tical transitions in semiconductors lacking in-
version symmetry.

The "edge" E& where Landau-level transitions
are seen is shown in the energy-band-structure
diagram of InSb in Fig. 1. It is away from the
Brillouin-zone center in the [111j direction and
has a valence-conduction gap of approximately 2

eV. The component split-off by the spin-orbit in-
teraction is Ej+ 6& about 0. 5 eV higher. No Landau
levels have been seen there thus far. The same
statement may be made for still higher energy
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with a 2-in. internal bore mounted horizontally in
a Janis Dewar provided homogeneous magnetic
fields up to 63. 6 kQ.

The light beam incident on the sample is first
plane polarized. It is then passed through a modu-
lated phase shifter, which is a uniaxially stressed
fused-quartz rod ia The rod is resonantly coupled
to a piezoelectrically driven quartz crystal, self-
oscillating at 50 kHz. When plane-polarized light
passes through the fused-quartz bar, a relative
sinusoidal phase retardation 6 = 60 sin~t is intro-
duced between the axes parallel and perpendicular
(i, j) to the stress. By orienting the linear po-
larizing axis at 45' to these directions, a modu-
lated, elliptically polarized beam is produced with
an electric field vector

E=Eo(i+e' j) .
This may be decomposed into a basis of oppositely
rotating circular vectors. The resultant intensity
detected at the phototube after reflection from the
sample is then obtained as

I~ 1+ (nR/2R) sin5, (2)

where AR/2R is the difference in ref lectivity be-
tween left and right circularly polarized light nor-
malized by twice the average ref lectivity.

The oscillating part of the intensity (sin5) will
have a Fourier component at the fundamental fre-
quency of the phase modulator at 50 kHz, as well
as at odd harmonics. The 50-kHz signal is detected
with a Princton Applied Research HR-8 lock-in
amplifier and type-A preamplifier. The oscillator
which drives the modulator is wavelength pro-
gramed from the monochromator to ensure that the
maximum amplitude of. 5, namely 60, remains
constant as the wavelength is scanned. o

Keeping the average photocurrent fixed normal-
izes the dc part of the intensity in Eq. (2). This is
accomplished by comparing the photomultiplier
anode voltage to a fixed reference voltage and em-
ploying any error signal to modify the high voltage
on the cathode of the phototube. This feedback net-
work averages out low-frequency intensity fluctua-
tions. The bandwidth of the system is adjusted to
be a few hundred cycles so that the 50-kHz modula-
tion signal will not be averaged and can thus be
detected.

Measurements were made at near-normal in-
cidence on samples anchored by a copper mount to
a 4. 2 'K liquid-helium bath. Vacuum grease held
the samples to the mount. A check was made to
see if the samples were under a static strain,
which can shift the experimental spectra. We
loosely wrapped crystal specimens with soft 0. 005-
in. copper, allowing for optical access to the re-
flecting surface. The wrapper was then vacuum

greased to the mount. The measured wavelength
shift between this mounting scheme and direct
mounting of the samples proved to be less than 1

A, which is the approximate accuracy limit of our
spectrometer. Hence strain effects due to mount-

ing procedure can be ignored.
The samples were undoped, single crystals of

InSb and GaSb cut to expose a [ 111]face. ~' Each
specimen (0. 8 mm thick) was polished with three
grades of alumina and etched using standard recipes
just prior to runs.

Continuous wavelength scans were recorded on
a Moseley V100B strip-chart recorder. To nor-
malize the measurements, a perfect circular po-
larizer was placed in the light beam to determine
the unity signal. Markers could be set at 50 or
100-A intervals for each scan. Wavelength cali-
bration was periodically checked with low-pres-
sure Hg and Tl lamp standards. Prior to analysis
all spectra were converted to be functions of photon
energy rather than wavelength. All measurements
at high magnetic fields were taken at liquid-helium
temperature in the Faraday configuration.

In Fig. 3, the measured differential ref lectivity
spectrum hR/R for InSb, as a function of incident
photon energy, is shown in incremental magnetic
field steps of 10 kQ. The signal approaches zero
at the low-energy side of the threshold and is taken
as zero for 5~ & 1.85 eV. The absolute sign of
hR/R is not measured in this experiment. For any
given sample and fixed magnetic field, the experi-
mental peak heights were reproducible within 5/o,.
from sample to sample, however, peak heights
varied to about 20/q. Variations between samples
are observed in other modulation experiments'
and in our case may be due to details of the surface
preparation. On the other hand, the energies at
which peaks occurred reproduced to within 1 A for
all runs.

The quiescent noise level of the apparatus, using
a 1-sec lock-in integrating time, was approx-
imately 5x 10 so that the measured signal-to-
noise ratio was usually better than 20 to 1.

III. ANALYSIS OF DATA

In analyzing the measurements we must consider
the effect of circularly polarized light incident on
a sample with its propagation vector parallel to the
static magnetic field K For materials having at
least a threefold rotational symmetry about the z
axis, the dielectric response function & for 8 II g
has the form'

t
~o &i 0)

Eo 0
0 0

In general, the off-diagonal component &~= —e,„
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FIG. 3. Differential reflectivity spectrum for InSb
taken at liquid-helium temperature. All signals ap-
proach zero for I~ &1.85 eV. Curves for B&60 kG
have been displaced for clarity.

1-N,
1+N

= E& must be an odd function of the applied 8 field.
This must hold if the Faraday rotation is to re-
verse when the field is reversed. The diagonal
component e„„=&„=&0 is an even function of the
field to zeroth (&o) and higher orders. These
statements are consistent with the Onsager rela-
tions c,~(B)= e,,(- B) 8.

In the presence of the dielectric tensor above,
the eigenvectors for electromagnetic fields are
states of left and right circular polarization. The
propagation constant k~= (~/c)e, , where e, = &t
+ iraq. According to standard convention, the upper
(lower) sign is appropriate for left (right) circular-
ly polarized waves. '~

Using Maxwell's equations one may obtain the
normal-incidence amplitude from. a plane inter-
face as

The real part of eo is eq (= n —k ) and the imagi-
nary part is ez (= 2nk).

The coefficients A& and Az for InSb were deter-
mined from the room-temperature optical con-
stants (n, k) of Phillipp. 2' The optical constants
were shifted up in energy by 150 meV to corre-
spond to liquid-helium temperature. The amount
of energy shift was determined by comparing the
location of the E& peak of Phillipp's normal-in-
cidence ref lectivity curve to the corresponding
structure in 5'K ref lectivity (R) data. Admitted-
ly such a procedure cannot ensure that the optical
constants used to calculate ~& will be accurate.
However, if we recalculate the low-temperature R
from them, there is agreement to about 15%.
Moreover, since the parameters Az and A~ are to
a large measure structureless, errors introduced
in 6& will be primarily in absolute magnitude and
not in line shape. The coefficients A& and A~ are
shown in Fig. 4.

The differential phase shift 68 (Fig. 5) was ob-
tained by Kramers-Kronig transform of the dif-
ferential ref lectivity. We used the subtracted in-
tegral~'

Q

[(u(AR/R) ((u ) —(o (hR/R)((d)] d(d
co' I'((u')' —(u']

in which the principal-value singularity does not
appear. This integral is a transform between
quantities of definite circular polarization and is
not the usually encountered differential reflec-
tivity phase relation for linearly polarized quanti-
ties. The differential phase-shift curves presented
here were calculated numerically by applying
Simpson's rule to Eq. (8). The E~ and E~+ b, ~

parts of hR/R from 1.75 eV to about 3 eV were
included in the integration. To accomplish this,
&R/R was smoothly continued to zero near 3 eV.

where N, = &, =n, +ik, is the complex refractive
index. If the ref lectivity is defined as R = r, then
Eq. (4) may be used to obtain

120

i &R/2R+&8=i&a/eo (eo —1) .
The following definitions have been used:

+ gag&-—g+ —g„= 2gg~,

b R/2R = (R, —R )/(R, + R )~-
~e=e, -e .

(5)
100

80
OJ

60

40

Equation (5) may be rewritten in terms of real and
imaginary components as

4e g
= Ap b 8 + Ag hR/2R,

b ea = —Ag 68 +Ap hR/2R,

where A&-—n(e& —1) —k&3 and Az-—k(&( —1)+ncz.

20

2.62.0 2.2 2.4
Wcu (eV)

FIG. 4. Optical constants for InSb used for obtaining
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FIG. 5. Faraday rotation angle obtained from the data
of Fig. 3 by Kramers —Kronig transformation. The zero
level for each scan is shown.

The results were also calculated using the mea-
sured spectrum from 1.75 eV out to approximately
5 eV, where a smooth tail was again added. Near
2 eV, 48 is shifted in magnitude by a few percent
between these two cases. No correction for the
infraredIdirect gap transitions at Eo and Eo+ +
was included. However, we expect that the only
result would again be to shift 48 slightly. Pri-
marily affected is 4&&, but only by a few percent.

The real part of the differential dielectric func-
tion 4az is shown in Fig. 6. Because the constant
A&» A&, it is evident that over most of the photon
energy range he&~ b, e and Sea~ aR/R. Hence
the &R/R measurements are primarily of differ-
ential absorption.

IV. SIMPLE MODEL FOR MAGNETIC DENSITY
OF STATES AT CRITICAL POINTS

= ~(n+ -,') k~, +k'ka/2 p, , (12)

where the integral encloses the area out to the nth
orbit. The cyclotron frequency z, = eB/I p, I c,
where 1/p, = (2w/I ) BE(k)/BA, . The + or —sign
in Eq. (12)allows p, to be either positive or nega-
tive.

If we examine which states are excited in an en-
ergy interval 5E about E(k), we find them to be

l m„, I if m„, is negative.
The sign of the effective reduced masses in-

fluences the line shape due to electronic transi-
tions, which is seen for photon energies near E,.
If there are j negative masses, the critical point
is said to be of type M&. 9' all the masses are
positive or negative the energy surface E(k) is el-
lipsoidal, and the critical point is a maximum or
a minimum. If the masses have different signs,
E(k) is hyperboloidal, and the critical point be-
comes a saddle point.

Since energy is conserved, photons of energy
k(d generate electron-hole pairs on the energy
surface E(k) =S~ —E, . Let us now suppose that
a magnetic field B is applied. Then, as in other
magnetic experiments, the quantum-mechanical
effect of the magnetic field is to make only certain
orbits allowed which satisfy an area quantization.
The area A, transverse to the field must satisfy

A, = (2veB/hc)(n+ —,') .

The area enclosed by each orbit (dA, /dn) is in-
dependent of n. This means that in a magnetic
field the same number of transverse plane wave
states have coalesced to each magnetic level. The
expression for the energy is given by

,

"
sE(k) „„k'k',

I l BA 0 2p

At a critical point ko energy bands between va-
lence and conduction states are, by definition,
parallel. Hence in the vicinity of such a point the
surfaces of constant energy can be approximated
by

.10—

.08—

.06-
CI gg-

Sb
i]

E(k) =k '(k '„+ 0„')/2 p, , +I'k', /2 p, ,

where

E, —E„=E~+E(k) .

(s)

(10)

.02—

0— 8=60 kG

kG

Here we have assumed at least threefold sym-
metry in the transverse plane to ensure that
p, „=p,„=p, We have also assumed simple non-
degenerate bands as occur along A (excluding
spin). The wave vector k is measured from ko,
and E~ is the energy gap. The reduced conduction-
valence-band effective masses (p„p. , ) measure
the curvature of the bands near E . We have de-
fined 1/p, = 1/m„—1/m„, , which is 1/m„+ 1/

I

1.80
I

1.85
I I

1.90 1.95
'II(u (eV)

I

2.00
I I

2Q5 2.10

FIG. 6. Dispersive part of the optical dielectric
function of InSb near the E~ edge.
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FIG. 7. Excited states in an energy interval gE in the
presence of a magnetic field on an energy surface Eot).
The third orbit for the Mo and M3 case is extremal. The
width of the ring is large indicating that the density of
states is large.

dition which means many states over a wide region
of phase space will be coherently excited. As an

example, the third orbit for Mo and M3 critical
points is extremal. Hence the density of states
has a singularity there which is proportional to
1/k, . The Coulomb interaction and other sources
of broadening will prevent Eq. (18) from actually
blowing up at the singularity.

We wish to examine some properties of this
pictorial model. We have included the excited
states (shaded rings) for critical points of all sym-
metries in Fig. 7. Changing the energy 5~ of the
incident light means that a different energy surface
will be sampled. Changing the magnetic field will
change the area quantization instead. The density
of states on each quantized orbit will, of course,
change with either the field or the energy. A dif-
ference between ellipsoidal (Mo and Ms critical
points) and hyperboloidal surfaces (M, and Mz
critical points) is that in the latter case one may
have excitations and a nonzero density of states
for both 5(d&E, and 5(d&E . For an Mo critical
point states are excited only when I & E„and
for an M, critical point 5~ must be & E„ in the
absence of broadening. Hence only one figure is
necessary for these cases. It appears as if an in-
finite number of states are excited simultaneously
for each k(d for the hyperbolic critical points
whereas only a finite number are excited for el-
lipsoidal surfaces. This is, however, an error
introduced by the effective-mass approximation,
since we must restrict ourselves to wave vectors
well within the Brillouin zone.

We have evaluated the optical density of states
using Egs. (12) and (13). The result is7

eB 21M l P, , 'II

given by those states in the shaded rings in Fig.
7. The number of states in the energy interval
for each excited orbit will be proportional to the
width of each ring. Hence that midth mill repre-
sent the density of states for each possible orbit.
Since 5E =

I V~ E I 5k, we may write

e, - (density of states)- Q
dN dkg

1

I V~ E I

The sum is over all orbits which can be excited
at energy E(k) and the gradient is evaluated at
E(k) =E„~,. This gives us an interpretation for
extremal orbits for which V~ E=0 and for peaks

Jf

in our experimental spectra which result from
these orbits. V~ E = 0 is a stationary phase con-

e(~ [k+ —E,+ (n+ —,') K(u. ])
( 4

(~[k(o -E,+(n+-,') k(o, ]}'"
Here M is defined as g,/p, . The signs for critical
points Mo to M, in that order are (+ —), (- -), (++),
and (-+). The line shape above is shown in Fig.
8. It has been Lorentzian broadened.

If the Coulomb interaction is included in the
analysis, several important modifications to the
free-particle model in a magnetic field will then oc-
cur. We summarize these briefly and give a dis-
cussion of details and of approximations to obtain
them in Sec. V of this paper. Clearly the Landau-
level spectrum will no longer be given by the trans-
verse cyclotron energies (n+-,') km, . For Mo and

M& critical points the levels will be shifted down

in energy due to the attractive Coulomb field, the

ground state shifting the most. The resonances
in the spectrum will be determined by the eigen-
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Enk,

5-

DENSITY OF STATE S will be strongly depressed and the energy spec-
trum will be reversed. We will not discuss these
negative-mass resonances in this paper.

V. ENERGY BANDS IN .[1:.,11] DIRECTION IN
ZINC-BLENDE MATERIAL

2-

0-

3

LLI

I

5

Qlc 7
B II z

kz

«2

FIG. 8. Density of states for a particle in a magnetic
field for critical points of all symmetries. The energy
scale must be reversed for the M2 and M3 critical points
(from H,ef. 7).

1 amplitude for creating 2

I v„z I gath exciton state

(»)
Here the excitonic envelope functions are solutions
of the two-dimensional Schrodinger equation with

magnetic and Coulomb fields. Only in the limit of
very large magnetic fields do all amplitudes be-
come equal so that Eq. (13) is recovered. When

M becomes smaller but remains large in com-
parison to unity, the approximation (15) can under
certain conditions still be used, as we will see,
and we will examine its validity. For zero and

small magnetic fields the n= 0 line will be strongly
enhanced. Qn the basis of this model this is the
line responsible for the strong "hyperbolic" exciton
resonances observed in many semiconductors at
anisotropic Ej edges which are attributed to have

M& symmetry. It also accounts for the large os-
cillator strength of ellipsoidal excitons at Mo crit-
ical points. We should add that resonances can
also appear at both M2 and M3 critical points for
finite magnetic fields. The ground-state amplitude

energies of states with no azimuthal angular mo-
mentum component, for direct allowed transitions.
Only these states contribute, since the transition
strength will be proportional to the probability that
the electron and hole which are optically created lie
in the same unit cell.

In the limit that M is very large the absorptive
part of the dielectric function e2(~) in Eq. (13) will
be modified to be

The shape of the energy bands and the associated
wave functions near the I' point and elsewhere in the
the Brillouin zone have been extensively ex-
plored. ' ' Dresselhaus and Kane have consid-
ered the k ~ p band structure for zinc -blende ma-
terials such as InSb which lack inversion sym-
metry. In the [111]A direction the results for the
valence bands of highest energy are summarized
in Fig. 9. This figure should be compared with
Fig. 1. All splittings are exaggerated here for
emphasis.

At the Brillouin-zone center the fourfold degen-
erate states having p, ~a(I'8) symmetry lie at the
top of the valence band. They are separated by
the spin-orbit splitting ~0 from the twofold de-
generate p»~(I', ) states. Away from the zone cen-
ter the fourfold symmetry of I'8 is lifted. The
bands split into twofold degenerate light-hole and
heavy-hole bands. The heavy-hole bands are
further split by inversion asymmetry which intro-
duces a term linear in the wave vector (+M2Ck
in Dresselhanus's notation) in the E-vs-k curves
near k=0. The energy maxima for these curves
are hence moved away from I'. Further out in the
zone the splitting remains, and we have called it

This is the splitting of A4 A, at the critical
point ko. A4 andA~ are states of + ~ J, symmetry
which are compatible with the heavy-hole states at

The light-hole states remain doubly degen-
erate as A6 states. Far away from the zone center
the &4A., states are believed to lie higher than A6.
The levels A4A, and A6 may cross, but we only
expect this behavior for pathological reasons which
should show up in the optical spectra as well. We
do not believe this to be the case for the data pre-
sented, and have assumed A, A, above A6. 3 The
spin-orbit splitting between I.4 L,, and 1.6 or A4A&

or A6 is approximately —,
' of the zone-center split-

ting. This "3 rule" has been important in the anal-
ysis of optical spectra.

For materials with inversion symmetry A4A, do
not split and are Kramers doublets. However, the
lack of inversion symmetry can allow the twofold
Kramers degeneracy to be lifted. Since the time-
reversal operation connects Bloch states of op-
posite wave vector 0- —0 and spin o,- —a„ those
states will be degenerate. However, states at the
same wave vector and opposite spin need not be,
unless inversion symmetry is also present. We
recall that inversion symmetry connects states of
opposite wave vector and the same spin. Hence,
except at certain places in the Brillouin zone, only
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FIG. 9. Band structure in the valence band in the
t'111] direction of a zinc-blende semiconductor.

the combined operation of inversion and time re-
versal will flip a spin and ensure Kramers degen-
eracy. At the zone boundary inversion is not nec-
essary, since translational invariance will connect
states of the opposite wave vector. The same is
true at the zone center where k= -k automatically.
Hence A4 and A~ can split except at the zone center
and zone boundary. Dresselhaus gives a rough
estimate of n i as - C(2v/a) - 20 meV in InSb. Since
the spin splittings introduced by the application
of a magnetic field can be of comparable magnitude
(- 2 meV at 60 kG in InSb), the effect of including
this quantity is important.

We can perform a k p expansion about the crit-
itcal wave vector k0 along A or at L. In the low-
est conduction band the one-electron Bloch func-
tions at ko can be taken to transform as A&x Dz&2

and will be given by

U„=Sn, U, =Sf . (16)

U6, ——2 (X+iY)P, U6, ——2 (X—iY)n .

X and F are Bloch functions which are p-like under
Cs„symmetry. U4, and U5, , belonging to the rep-
resentations A4 A5, will be mixed by A~& .

The k p band structure about ko may be ob-
tained by calculating the matrix elements of

w = p+ (h/4m'c')(o x v v)
i

between these states and carrying out the pertur-
bation-theory computations. We have made the
approximation in mhich only the interband momen-

n and P are up- and down-spin functions and S is
an s-like Bloch wave under Cs„symmetry. At the
valence band edge the functions are taken to trans-
«rm aS +sXD&+=A4+&5+A6. They WiQ be

U4, =2 i (X—iY)P, Uq, =2 ~ (X+iY)ci

turn matrix element P = (S I p„ I X) is nonzero.
The results are given and discussed in Appendix
A.

The E& threshold in Fig. 1 consists of optical
transitions between the valence bands A4 A5 and
the conduction band A~, so we must consider the
effect of a magnetic field parallel to the longitudi-
nal axis on these states. Those Bloch wave func-
tions having wave vector k near the critical point
at ko will be mixed by the magnetic field and the
Coulomb interaction and will form a Wannier ex-
citonic wave packet. This will be examined in
Sec. VI.

There is, in addition, a spin splitting of the
states at ko, mhich can be treated by introducing
the effective Hamiltonian p*o" 5. Here g is the
Pauli spin operator, and p,* is the magnetic mo-
ment obtained from the k. p perturbation analysis.
In the conduction band U„and U„are split by
2 p, *, B. In the valence band including the inversion
asymmetry splitting 4~& gives

(l6)

where the basis states are (U4, , U5, ). This is
easily diagonalized and gives the energy separa-
tion of 2I (ii"„8)'+(-,'LPq) ] i in the valence band.
If &&=0, the effective magnetic moment in the op-
tical transition mill be just p,*= p, *, —p,*„. If 6~&w0,

the situation is slightly more complicated and is
discussed in Appendix A.

VI. EXCITON MODEL

Optical absorption in semiconductors proceeds
by the simultaneous creation of electrons and
holes, in pairs, which then scatter from one
another via the Coulomb interaction. The scatter-
ing correlates the motion of the pairs to produce
a new "quasiparticle" called an exciton. In a
semiconductor in mhich effective masses are
small and the dielectric constant of the material
is large, bound exciton orbits will have dimen-
sions much larger than the typical lattice spacing.
Under such circumstances the effective-mass ap-
proximation~ can usually be employed to analyze
the motion.

The importance of including the Coulomb in-
teraction in models of optical structure at critical
points of various symmetries has been empha-
sized. ~ This has been necessary in order to in-
terpret the experimental spectra in a variety of
covalent and ionic solids. Kane has considered
the Coulomb effect on transitions at an M& saddle
point in v iiich the longitudinal mass is negative. '
Other investigators have computed electric field
effects in the presence of the Coulomb poten-
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tial. o Several calculations have also appeared
in which a magnetic field has been included. '~4

Our results will be interpreted following a sim-
ilar approach. We work in the framework of the
model introduced by Elliott and in the effective-
mass approximation. Use is also made of the
Born-Oppenheimer approximation since along A
in the z direction the longtiudinal effective mass

is thought to be much larger than in the transverse
direction. ' ' This last approximation allows us
to separate the Schrodinger equation and reduce
it to a form which can be solved numerically.

The motion of each electron-hole pair, ex-
cluding the + p,* B contribution to the Hamiltonian
due to spin, will be given by the solution of the
Schrodinger equation 3

A 2
@

2 eA P @8~8 e
el ~, —r„l ((r, rh)= Eg(r, r„) .

We have assumed 8 parallel to the longitudinal
direction and have separated out transverse (t) and
and longitudinal (l) parts of the electron (e) and
hole (h) motion. Moreover, we have taken the
mass tensor to be diagonal and have assumed that
each of the two transverse masses is the same.
For simplicity a scalar dielectric constant has
been chosen.

The center-of-mass transformation of the elec-
tron-hole coordinates (r„r„)has been discussed
in detail and will not be reproduced here. The
inclusion of the center-of-mass motion will multi-

ply the wave function of the relative coordinates
by a field-dependent phase factor e-feA RISC. R
is the coordinate (m«r, +m, „r„)/(m«+ m, „). Such
a factor will not affect the optical absorption,
which depends on the absolute square of a matrix
element. We choose the cylindrical gauge so that

A=-,'5xr=-,'a(-y, z, O)

and make the approximation that light has zero
wave vector, so there is no center-of-mass ex-
citon momentum. Equation (19) then reduces to

I V' hg ek & & e eB p+
2pg 2P( 2c m«mph' E(p +z ) 8)L(pc

SN(p z) EN(tN(p z) ' (2o)

Q , +z„(i)+ w(i)) i)~(i)=zi)„,(i),

which may also be written as

(21a)

(2lb)

The relative electron-hole separation x
= (pz+z ) ~z, p =x +yz, and the reduced effective
masses are as in Eq. (9). Equation (20) also oc-
curs in the impurity problem in a magnetic field.

Because of cylindrical symmetry the azimuthal
quantum number m remains good for all magnetic
fields. States of different m are not mixed. In
what follows only transitions for which m = 0 are
considered, since only states with nonzero prob-
ability at the origin will contribute to the optical
absorption. Since L, =O, 8 means )Bt and revers-
ing the field will not affect the spectrum, in the
absence of spin. Central cell effects will be ig-
nored. Employing the Born-Oppenheimer ap-
proximation reduces (20) to the equations

( ay7, /g + g y P . ff Pz —E g Pgkp+~ l

~ il. +-. P
( p 2 1 8

y p

1 sa
+E„(z)+ ()'„(z)) i)~(i)=Bi)~(s) .

Here )I)„(pz)= g„(pz) g„z(z). The quantity

(22a)

(22b)

1 8$„
W„(z) = — dp

js a term which represents the extra longitudinal
kinetic energy of the transverse motion and is
needed to ensure that the eigenenergies obtained
will be upper bounds on the true energy. We will,
in general, ignore this term, however (see Ap-
pendix B).

Equations (21) and (22) are written in dimension-
jess form. In Eq. (21), the unit of length is a
=I (.'/g, e, the exciton Bohr radius, and the en-
ergies are in exciton rydbergs S= P, e4/2+z&~.

In Eq. (22), the corresponding quantities a,re the



EXCITONIC EFFECTS IN LANDAU TRANSITIONS AT THE. . . 2313

cyclotron radius X= (Klp&&o,) = (Kc/eB)v' and the
zero-point cyclotron energy 8&,/2 where the
cyclotron frequency &u, = eB/p, c. For these cal-
culations the transverse reduced mass p, , has
been assumed positive. Two parameters char-
acterize the problem:

y=hv, /2(R=(a/A. ) and M= p, /p, .

It is important to consider both forms (21) and

(22), since one wishes to work with the finest
mesh for accuracy in numerical computations.
Hence, Eqs. (21) are most useful for y- 0 and Eqs.
(22) for y- ~. It should be noted that (21a) and

(22a) are just the equations of the two-dimensional
Coulomb problem with a magnetic field (z = 0).

The imaginary part of the dielectric function at
the optical frequency & is given in the linear-re-
sponse approximation for direct allowed transi-
tions by23

E„=z„(o)+w, (o)=z„(o) . (27)

The form (26) can be seen to reduce to the free-
magnetic-field result, as given in Eq. (14), when

the Coulomb interaction is turned off. For critical
points of Mo symmetry this is seen by noting that

(2m)'" e(+ Es)
E )1/2

xp ly„(o) ' dz' y .(o) '6(z, -z')
Q

4 2

1&v Iz'p lc& I
2 lt„(0) I Ip (0)

I

(26)
where E, = E„-E„(0)—W„(0). The quantity E„(0)
+ W„(0) has been subtracted from E„to bring out
the location of the singularities explicitly, and
this amounts to a shift of energy scale in Eqs.
(21b) snd (22b). The location of peaks will occur
when E3=0 or for

4~2 2

e,((u)=, , 2
I & v

I
z p I

c & I

'
I o„(o) I

'- (»2~) (eB«c) .
(28)

x
I g (0) I'6(E E ) (23)

where E„=Rv —E, and g„ is the excitonic en-
velope function. The interband momentum ma-
trix element is assumed to be constant and P„(pz)
is so normalized so that

f d p I e.(pz) I'= 1 . (24)

f dz P„z. („z= 5(E —E ),
i. e. , such that the asymptotic outward current
is just —,mL For an M& critical point this is no
restriction since there are no bound states in the
g direction. The approximation is worse in the
case of an Mo critical point where both bound and
continuum states are possible.

For potentials in the z direction that are suffi-
ciently weak, ez(+) may be written as

4 2 2

~(~)= ', ',
I & vl i pl c&l'

This condition can always be met when there is
a finite magnetic field, since all the states g„will
then be bound states. In a zero magnetic field the
continuum states must be treated separately, but
fortunately do not have much oscillator strength. "
Thus for our purposes they are relatively unim-
portant. g„z(z) is taken to be symmetric in z, and
may be either a bound or continuum state. If we
ignore the complication of bound states for the
moment g„z(z) is a standing wave at infinity. It
can then be written with an energy normalization
such that

For M& symmetry the sign of E, is reversed. 9 is
the unit step function. One may, in addition, turn
off the magnetic field to obtain the ordinary free-
particle line shape

2 2IM (
3 f/2

"(~)= '
~ „." I(vie &lc&l'

(z„)"'e(z„) (M, )
X

(z„)'"-Iz„l'"e(-z„) (I,). (28)

E„is a cut-off energy which appears for M& cal-
culations. Its use is necessitated by the break-
down of the hyperbolic energy surface approxima-
tion for large wave vectors, as noted in the intro-
duction.

The Cooley-Numerov method has been applied
to the solution of the transverse Inotion, after
making the transformation u- p

~ p. Exact results
to which the numer'ical calculations may be com-
pared are, of course, available in both the zero-
(y=o) and high-field (y- ~) limits. A calculation
using the Born-Oppenheimer approximation for
zero magnetic field has been given by Ref. 3V.

Numerical computations for the first four bound
states of the two-dimensional Coulomb problem
with a magnetic field are shown in Figs. 10 and 11
and in Table I. The dashed lines in the figures
indicate the outcome from an approximate calcula-
tion in which the Coulomb potential was diagonal-
ized in a harmonic-oscillator function basis using
a 10&& 10 matrix expansion. This was performed
as a consistency check. For comparison to the
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FIG. 10. Numerical solution to the two-dimensional Schrodinger equation with magnetic and Coulomb potentials.
The dashed line indicates an approximate calculation in which the 1/x potential is diagonalized in a harmonic-oscillator
basis. A 10 &&10 matrix representation has been used. The probability density at the origin for the first four eigen-
states is also shown. Note that the ground-state amplitude is pushed up relative to the higher states by the attraction of
the electron and hole.

table it should be noted that at zero magnetic field

Z„(0)= [-4/(2n+ 1)'](61)

and that

~
y„(0)

~

' = 16/2n (2n+ 1)' a' .

It is clear that the effect of the Coulomb interac-
tion is left to quite high values of y. For the ex-
periment reported in this paper, however, we are
primarily interested in the behavior of the solu-
tions for the region in which 1& y& 3 where mag-
netic and Coulomb energies are comparable.

The longitudinal motion in the z direction is ob-
tained by solving the one-dimensional Schrodinger
equation (21b) or (22b) after obtaining the adiabatic
potential from the transverse motion. Either of
these equations may be written in the subtracted
form introduced in (26) to obtain

(so)

where

v„(z) = z„(~)+ w„(~) —E„(o) —w„(o) .

If M & 0 it may be written as

(31)
The effect of the negative mass has been to change
the sign of the potential and energy. A one-di-
mensional bound- and continuum-state problem
becomes the equivalent one-dimensional potential
barrier scattering problem, as pointed out by
Velicky and Sak. ' These authors consider this
problem in the %KB approximation, whereas Kane
has numerically integrated the longitudinal Schro-
dinger equation.

A summary of efforts to obtain solutions for the
exciton in a magnetic field is given by Baldereschi
and Bassani. They have noted that good agree-
ment to variational calculations to within a few
percent for y& 1 is attained by using the Born-Op-
penheimer approximation. However, with this
procedure the correct eigenenergies can be over-
estimated slightly. We present the eigenenergies
(000) and (100) of Eq. (30) as a function of M in
Fig. 12. The accuracy of the results will improve
with increasing M. The notation is (n, m, i) of
Elliott and Loudon. Here n is the Landau quantuin
number, m is the azimuthal quantum number, and
i labels the states of V(z). For very large mass
ratios M(M- ~) the longitudinal motion becomes
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1000

ioo

10

10 )00

free-particle-like. This may be seen by defining
z =z /M 'i~ in Eels. (30) and (31) and noting that
V(z /M'I )- V(0) =0. However, we find that the
eigenenergies do not approach those of the two-
dimensional problem until mass ratios M» 103.
But if we examine the difference energy, such as

FIG. 11. First four eigenstates for the thoro-dimen-

sional Coulomb magnetic fieM problem for large values
of y. The dashed line is the approximate solution.

between (000) and (100), we see that it agrees with

the two-dimensional model for M) 20 to within
2'7% for y= 1.5, 16% for y= 2. 5, and 5% for y= 10.
The corrections for oscillator strength will be a
few percent larger in each case. The energy dif-
ference between higher states (n00) and (n+ 100),
where n ~ 1, will check much better with the two-
dimensional difference energies. Within a given
Landau subband, for mass ratios M & 100 at least
80% or so of the oscillator strength is in the i =0
transition for y& 10. We have checked this by ex-
amining some of the higher states i. These cal-
culations are not included here, but the conclusion
may be obtained by using the transition strengths
of Ref. 44.

Hence we feel that a reasonable first approxima-
tion to a highly anisotropic critical point is to use
a two-dimensional model. At an M, critical point
there is no difficulty since there are no zero-point
energy shifts. The zero-point energy of the bound

states of an Mo critical point a~8 ignored, how-

ever. Moreover, the continuum approximation
used to obtain Eq. (26) would seem to be poor,
since all the transition strength is in the first
bound state. In the case of highly broadened spec-
tra, however, the line shapes duetobound states
or continuum states are not readily distinguished.
This is the limit of the present experimental data,
and so we make the approximation. In addition
there is the virtue that the model allows a deter-
mination of the excitonic rydberg independent of
the sign of M.

A method of treating the motion in g is to take

TABLE I. Energies and probability densities at the origin for the first four bound states of the two-dimensional

Schrodinger equation with Coulomb and magnetic fields.

n=0 n=l n —2 n=0
27(. t g„(0) l2 (Bohr radius)

n=l n —2

0
0.3
0.5
0.7
1.0
1.5
2.0
2.4
2.6
3.0
3.5
4.0
5.0
6.0
8.0

10
20
40
70

100

-4.000
—3.993
-3.977
—3.956
—3.911
-3.808
—3.674
-3.548
—3.479

3 ~ 333
-3.135
—2. 921
—2.454
—l. 946
-0.836
+0.368

7.18
22. 61
47. 52
73.45

—0.444
—0.210
+ 0.081

0.421
0.989
2. 034
3.154
4.085
4. 560
5.524
6.752
8.000

10.54
13.13
18.40
23.77
51.28

107.8
193.9
280. 9

—0.160
+0.624
l.353
2. 132
3.354
5.474
7.657
9.432

10.33
12.13
14.40
16.69
21.30
25. 95
35.34
44. 80
92. 68

189.7
336.4
483.8

—0.082

2.486
3.690
5.543
8. 707

11.93
14.53
15.83
18.46
21.75
25. 07
31.72
38.41
51.86
65. 38

133.5
270. 8
477. 9
685. 5

16.0
16.0
16.1
16.2
16.5
17.0
17.6
18.1
18.3
18.9
19.6
20. 3
21.8
23.3
26. 2
29.0
43.0
69.0

106
141

0.59
1.02
1.45
1.90
2.57
3.63
4. 62
5.37
5.73
6.43
7.29
8.11
9.68

11.2
14.0
16.8
29.6
53.4
87.5

120.8

0.13
0.74
1.16
1.58
2.17
3.08
3.93
4.58
4.89
5.50
6.25
6.97
8.37
9.73

12.4
14.9
27.0
49.8
82.9

115.4

0.047

1.08
1.47
2.Ql
2. 84
3.62
4. 22
4.51
5.07
5.77
6.45
7.78
9.07

11.6
14.0
25.7
48.1
80.6

112.8
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This is equivalent to assuming free-pa"ticle motion
in the longitudinal direction, which will not alter
the line shape drastically from the exact solution.
Moreover, since scattering mechanisms other than
the Coulomb effect may broaden the structure, the

I.O—

0.16—

0.12—

0.08—

EXPER IME NT

}CALCULATED

60 kG

y=2,4

0.04—

I I I I I I I I
-l2 -l0 -8 -6 -4 -2 0 2 4

V

FIG. 13. Line shape for the linear approximation to
the adiabatic potential barrier.

duced in Sec. VI. Results of this fit are given in
Fig. 15. We have made the further simplifying
assumption that the longitudinal motion can be
approximated by a Lorentzian with a broadening
parameter I' so that

Ml

OkG
y =l.6

30 kG
y =1.2

REAL BARRIER

AR APPROXIMATION

1 Z

Mo-.

Mo l

M
I

20 RG
y =0.8

10 kG

y =0.4

FIG. 14. Probability waves in the z direction leading
to the line shape in Fig. 13. In case A the particle has
more energy than the barrier height. For case B the
particle energy is the same as the barrier potential at
the origin so the particle starts off with the largest am-
plitude at the origin. In C, the particle must tunnel out
from the middle of the barrier. Hence the wave am-
plitude at z =0 is attenuated.

I

1.80
I

200 205 210
I

1.85 1.90 1.95
%~ (eV)

FIG. 15. Comparison of calculated and experimental
curves for Aq2. We have included the low-energy tails
on the exp .rimental curves to show how 6~2 approaches
zero. Infrared contributions to the absorption are
omitted. The points marked 0 and 1 are coordinate
origins for the Mo and M~ spectrum calculations.



2318 S. O.

2.080-

2.070-

2.060-

2.050-

W 2.040-
OP

UJ

2.050—

2.020-

X

2.0IQ

2,000

IQ
I

20 50
8() G}

40
I

50 60

FIG. 16. Magnetic field dependence of peaks in the
experimental magnetoreflectance structure. The error
bars show typical uncertainty intervals in the measured
data. The x's mark the intercepts for the ~=0, 1, and
2 states.

e P~
he =4m Q @(0)I "~~ 2p B~ VE SQ

(37)
where P„(0) is normalized as in Table I and g„~ as
above. In the present work 4, is taken to be zero.K

"3
This quantity appears to be small in InSb and may
indicate that the transitions occur near .L. l" = 3. 5
~(R was determined experimentally from the con-
dition v, 7 = 1, where I = 5/7. Since the calculated
spectrum was obtained numerically, the subtrac-

use of phenomenological broadening is not unrea-
sonable. Explicitly, these could be due to a num-
ber of sources, say phonon or intr3band. In addi-
tion, the sample preparation may introduce a sur-
face potential which will bend the valence and con-
duction bands. Since the reflected signal is com-
posed of scattered photons from near the surface,
a suitable average over the surface potential is
measured. This will have the effect of broadening
the line shape.

The data are compared to (26) which may be writ-
ten in differential form as

tion in Eg. (36) was computed directly instead of
using the first-order expression (37). We plotted
the Mo line shape in this manner and then simply
reversed the sign of E, in (36) to get the M, line
shape in the equivalent approximation.

All fits were made with a single field-indepen-
dent I'. The calculated spectrum was scaled to
fit the first two peaks of the measured spectrum
ai 60 kG. The relative zero of the theoretical
curve is displaced upward by 0. 04 at 60 kG from
the experimental zero-signal value. This may
indicate the presence of broad-band transitions
from elsewhere in the Brillouin zone, or of transi-
tions to degenerate ~ singularities made inequiva-
lent due to magnetic field direct~. vn, which gener-
ate aperiodic exciton orbits. The background is
roughly linear in B. It should be noted that the
signal amplitude in Fig. 15 becomes nonlinear at
high fields. This behavior is expected from (36)
in both the excitonic and free-field models for the
absorption. The spin splitting p, *B is taken to be
0. 29y((R), which has been calculated using Eqs.
(46) in Appendix A and the measured cyclotron
energy splitting.

The dip in the calculated curve below the 2-eV
threshold for the M, fit arises from the subtraction
of two I/(energy)'~ tails (independent of the model
used for the longitudinal motion) and does not seem
to be reproduced in the data. The M, threshold
produces no such dependence and in this sense can
be made to fit the structure better, particularly if
the free-particle model in the z direction is im-
proved upon. We do not, however, believe that we
can draw a definite conclusion from the present
experiment about the sign of M.

The magnetic field dependence of the peaks in
the measured ~/8 spectrum is shown in Fig. 16
and is similar to the results of other magneto-op-
tical experiments in which excitonic absorption is
important. We have performed a linear least-
squares fit to this data and the parameters are
displayed in Table II. If a linear extrapolation is
used to the origin, a definite gap appears for the
first few states. This procedure has been repeated
using the results of our numerical calculation.
The linear least-squares fit to peaks of the calcu-
lated spectra were made at values of the magnetic
field equivalent to those of the experimental spec-
tra. We used this method in an attempt to ensure
consistency in our comparison of measured and
computed quantities. The location of singularities
is essentially determined by the maxima in
S l(„~ (0) I ~/BE~. These occur near the eigenener-
gies K„(0) in Table I, as discussed in the previous
section. A calculation without the Coulomb interaction
was also performed, and those results are listed
in Table II as well. With both models there will be
small shifts (= I'/10~~~) due to broadening of the
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TA BLE II. Magnetic field dependence of peak energies of the Landau-level spectrum.

Experiment (~/R)
(E in eV)

2.0068+3.9x10 B ko
2.0107+27 x10 ~B

2.0127+47 x10 ~B

2.0135+69x10" B
2.008(7) + 10 B

Calculation with
Coulomb interaction

(E in g)
—3.008 +0.23'
—1.923 + 2.76'
—1.457+4. 79'
—0.759+ 6.67'
—0.50+8.50'
I'=3.5 g for
these results

Calculation without
Coulomb interaction

(E in 5~~)

E;+0.5
E]+l.5

E;+2.5

E,+3.5
E]+4.5

E& depends on broad-
ening and is = r/ZO'"

spectrum and due to the shape of the background
on which each line is situated. We expect these
to be unimportant, however, in any differential
comparisons, since all the structure will shift
together. The location of intercepts, in particular,
will depend somewhat on the choice of broadening
parameter.

Table III indicates the determination of the ex-
citon rydberg from the intercepts when I" = 3.5 I,.
The experimental differences are corrected by
1.0 meV in transforming from &R/R to &ss. The
n = 0 line shifts by this amount in the transforma-
tion. The higher lines shift very little. Dividing
by the calculated predictions gives a fairly con-
sistent set of values for the rydberg whose aver-
age is 2. 8+0.6 meV. Using the value &0=15.5
for the static dielectric constant' and the mea-
sured transverse mass m/p, = 19.7 + 1.3 gives a
value of 2. 88*0.2 meV. We use the static dielec-
tric constant since Sco~o=24 meV "»(R, hw, for
all magnetic fields in this experiment. For InSb
this assumption is not very restrictive because
the polaron coupling constant is small. At 60 ko
we have y = 2. 4+ 0.4. The excitonic energy gap
at the E,, threshold is determined as 2. 0068
+ 3x0. 0028= 2. 015~0. 001 eV.

The comparison of experimental to theoretical
peak energies vs magnetic fieM (slopes, Table IV)
for both models is unfortunately inconclusive,
since the n = 0 line does not seem to favor either
model.

If we assume M& symmetry, we may use Eq.
(36) to estimate IMI. A lower limit is obtained

TABLE IV. Comparison of models to experimental
results.

With Coulomb
interaction

Without Cou'. omb
inter action

by taking 4v I $„(0) I
= 2y from the large-y limit.

We expect this to be low, since it overestimates
the binding energy of the (000) ground state using
the linear approximation in z, and since the line-
width due to Coulomb scattering - 3.5. Using
y=2. 5 and l"„„=3.5 gives IMl ~15. If we choose
4m I g(0) I to obtain the correct binding energy as
calculated from the Born-Oppenheimer approxi-
mation, then I M I

- 100.
The absolute order of magnitude of 4~~ can be

computed by calculating all the constants in Eq.
(3V) and is -10 NM'~, where N is the number
of equivalent valleys which contribute to the
absorption. Experimentally, for B=60 ko, Aea
-0. 1 so NM' 3-10. Since the A directions of the
Brillouin zone are cos '(-, ) =70. 5' apart, excitons
in those valleys whose major axis is not along
k, will be created in states whose structure wiQ

appear broadened out. Such a background may be
due to aperiodic orbits, ' as discussed earlier.
This means we should take N = 1 at L and 2 in the
interior of the zone. With the estimated value
for M we get about the correct value for NJI/I'~ .

VIII. DISCUSSION ON GaSb MEASUREMENTS

GaSb is a material similar to InSb in that the
.F., and E,+ 6, thresholds are well resolved be-

TABLE III. Determination of the exciton rydberg
from intercepts.

3.9
0.23

27
2.76

3.9
0.5

Experiment (~/R)
Ef Ep 3 ~ 9 meV

+1
E2 Ep=5 9 meV

+1
E3-Ep=C. 7 meV

+1

Fxperiment (aq 2)

2. 9

4.9

5.7

Theory Re:.ult of 8,

1.09 (R) 2.7 (me V)

1.55 (g)

2. 25 (W) 2. 5
Av; 2. 8+0.6

47
4.79

69
6 67

100
8.5

;"=203.5
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cause of the large spin-orbit splitting. We at-
tempted to look for Landau levels at the equiva-
lent threshold in this material. Up to 62 kG they
were not resolved. The measured signal was
about ~ of the InSb signal. Hence, if one assumes
this ratio for the square of the interband momen-
tum matrix element, then m/IL, in GaSb is -15,
which means Landau levels should be seen for mag-
netic fields under 100 kG.

We show equivalent spectra for GaSb and InSb
in Figs. 17 and 18. A peculiar feature of the GaSb
spectrum is the extra structure appearing below
the E, exciton line. The main exciton peak is at
2. 189 eV and the subsidiary peak is at 2. 156 eV.
If this splitting is assumed due to inversion asym-

A

metry, then 6& =33 meV. We have checked to see
that the splitting is at least second order in the
magnetic field, but we have not observed a definite
field dependence.

The difference in apparent amplitudes for the two
lines can be accounted for in the model we have
given. It is due to the large splitting of &2 by && .
Under this condition the amplitude of the low-ener-
gy peak is lowered, since the tails of all the
higher-lying structure must be subtracted in con-
structing the differential line shape. This inter-
pretation for this peak is tentative. Neighboring
critical points, for example, could lead to the
same structure. It is puzzling that it is not ob-
served in other modulation experiments. 53
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Fig. 18. Magneto-optical
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IX. CONCLUSIONS

A summary of information for InSb, which is
determined from this experiment, is given in
Table V.

At critical points of higher energy where effec-
tive masses may be larger than at the fundamental

edge, the size of the Coulomb interaction relative
to the cyclotron energy spacing becomes greater
(~ p, ). Hence, in order to interpret Landau-level
transitions, Coulomb scattering between electrons
and holes may need to be included. This is accom-
plished in an excitonic model by solving the effec-
tive Schrodinger equation including both Coulomb
and magnetic effects. If the effective-mass tensor
has cylindrical symmetry and the longitudinal
mass is much larger than the transverse masses,
then the Born-Oppenheimer approximation may
be used to separate the Schrodinger equation when

the magnetic field is in the longitudinal direction.
In such a model the transverse Coulomb interac-
tion and the magnetic field determine the relative
amplitude and location of transitions, while the
longitudinal Coulomb potential will determine
primarily the line shape.

In materials lacking inversion symmetry it may
prove possible to obtain information on the anti-
symmetric part of the periodic crystal potential.
This asymmetry can warp energy bands by split-
ting the Kramers degeneracy and displace critical
points from positions of high symmetry in the

Brillouin zone. The fact that it exists can provide
a means for deciding whether some critical points
are interior to a zone boundary.
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APPENDIX A

At the valence-band edge we introduce the spa-
tial Bloch functions, X, Y- e' 0'u

& (s). These
wave functions belong to the representation A3 of
C3„and transform as x, y. The spin-orbit inter-
action

H„= (I/4m c )(FVx p) ~ a = 5 c (s8)

may then be diagonalized using as a basis set the
product wave functions Xn, XP, Ycy, YP. L has
been defined as (I/4m c~)(V Vx p) and transforms
as an axial vector. Under conditions of spherical
symmetry L becomes proportional to the orbital
angular momentum.

Under C,„symmetry there are two distinct non-

zero matrix elements of L:

Y&=irm&X
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TABLE V. New parameters at the Ei edge of InSb

determined from this experiment.

Quantity

jg&c(60 kG) = keB/p, c
m/p,
p, /m
p2

m/m„
m/m„,
P /Ps
Ptp/Ps
8=pe /2epk

E'p

y(60kG) = h~ /2@
a(q =1)

i vg/vt]
Sign of p&/p&
gE

Value How obtained

Measured
From ~~c

13.7+0.9 meV
19.7+1.3
0.0508 + 0.0032
0.52 (au)

13.7
—6.0
—0.36
—6.0

2.8+0.6 meV

k p analysis, Eqs. (46)

Measured, e and us ing
a fit to exciton model

From 6i15+4
2. 4+0.5
25+5 kG
2.015 +0.001 eV Measured, and using

fit to exciton model
Linewidth
Line-shape analysis
Line-shape analysis

/15
?

small (? )d

Average of spacing ofhighe~nergy peaks of Landau-
level spectrum. The error is the rms spread in the data
used.

May be compared to the zone-center value of 0.403
(a.u. ) in Ref. 5; 4i ——0.49 eV was used in the computation.

From intercepts in E-vs-B dependence of Landau
energies. Compare to 2.98+0.2 meV calculated using
the measured transverse mass and eo —-15.5 from Ref. 50.

(& 20 meV of Ref. 31~

(XI L IX&= —( Ylf, I
Y&= &xl f, I Y) =Re(X

The usual spin-orbit splitting in the [111]direction
is just

~,=»m«IL.
I
Y) . (40)

In this case X and Y are Bloch states, at the zone
center which transform as x and y under tetrahe-
dral operations. Since V V and p are largest near
the atomic cores of the crystal lattice, the bulk of
the contribution to the matrix elements in Eqs.
(40) and (41) occurs there. Hence we expect the
spin-orbit splittings to be simply related to ionic
spin-orbit parameters. ~ Moreover, the spin-orbit
interaction is then rather insensitive to k vector,
and to this extent we have a —', rule. '

The splitting a", =4Re(XI I.„I Y), on the other
hand, does depend on the k vector. It will only

be nonzero due to the antisymmetric part of the

This assumes that k is far enough from the zone

center that the k p splitting of the orbital degen-
eracy is larger than the spin-orbit energy. At

the zone center the spin-orbit splitting

(41)
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periodic crystal potential V, which vanishes when
there is inversion symmetry. Symmetry argu-
ments also tell us that whenever 2P = TX= Yand Y*
= TY= Y, && must vanish. Here T is the time-
reversal operator which is antiunitary so that

m E (E +A~)

&xlL
I
Y&*=-&»IL»&, (42)

where TLT =- L. Xand Y cannot be real at a
general point along the [111]direction in the Bril-
louin zone, where a Bloch function at Q is trans-
formed. to one at -ko. However, they are at the
zone center or zone boundary. If we include in-
version symmetry (I)

(x
I
&

I
Y)~ = —&f» (43)

and (44)

U6,
——2 (X+i Y)P,

U6, =2 / (X-iY)o( .

The latter two wave functions of A6 symmetry are
degenerate; U4 and U, are split by 4z, and U4,
and U„„are split by 4&.

The g p effective masses and magnetic moments
in the approximation in which only Ip = (Sl p J X&
= (SIp, i Y) is nonzero may be calculated fromss

since L is invariant to inversion. Now 4q must
vanish identically, since the combined operation
IT transforms spatial Bloch wave functions into
themselves.

The valence-band edge-states resulting from the
spin-orbit interaction diagonalization are

U4= —,'[-i(X+i Y)n+ (X —i Y)P],

U, =-,'[(X+iY)o. -i(X-iY)P]

(48)

where p~ is the Bohr magneton (=eh/2rnc). Cor-
rections of order /p", /E~ are ignored.

The eigenstates obtained by diagonalizing II„&„
in (18) are just

=( / )(( .' +I. ( *, )'+(l ')']"') „+ (l "),},

U, = (1/D)[--,'i&fU„+(/E/+ [(/'/E)' +(-,'&f) ] ) U& }
(47)

where

f (//gE ~ [(i/iPE)2+ (( /2 2')2]1/ 2)2+ (2 gE)tj1/ 2

For p*„B»4„U4 -U4, and U, - U„. In the op-
posite limit we recover Eq. (44).

In optical transitions these states interact with
the radiation field of light. If &~ =0, the situation
is particularly simple: A spin 0 (0) electron in the
valence-band state U„(U4, ) is promoted to the con-
duction-band state U, ,(U„) leaving behind a hole.

The transition matrix element for circularly po-
larized radiation (C le, ~ p I V& is

—,'(sip„~ip, lx+iY&=&sip„lx& .

Hence, following Eq. (23),

tg2 = El((2) 6 if,*B)

4m'~= „. a &l&.(o) I'lf'I'&(~~-E. ~/*E), (48)

(45)
e

Qp +
2mc

uvp

mc
(I Ip" I I) (I IP"

I i)
)l&f E) -E,

where &""~=1 if p, vp are cyclic, and zero other-
wise.

The results which we use are

m ) 1 p 2E+&g
m"

/ „m E (E + &g)

(
m "" 2 ~ (IIIP" I!)(I)P"Ili)

)
—5~„+ Re "c)

U4

U5)

"'t
I

)(1'l
l

l

(G G)

I

I I

f

I

I

I

I

I

Uem

Unm
f2T OP

m P'
( m"

62 m(E, + n, )

A, D)=0
B, D)&0

FIG. 19. Transitions bebveen the valence and

conduction bands for A~ —-0 and for LP~g 0.
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l8

where

PWB [(peB)2~ (x ~z)2]1/2

l6

l2

(Q

lU

paB = P.'B+ [(p,*B)+ (3&1)']"'

These cases are illustrated in Fig. 19. When 8 is
reversed, both p,B and paB reverse sign although

this is not immediately apparent in the square root
factor. This is essential if Ez, —ea is to be odd in
B. The difficulty is that diagonalizing Eq. (17)
produces a sign ambiguity, which can be recognized

by examining the eigenvalues when ~& - 0.
Since b, 1«E~+61, the results (46) show that

I p, I« IQ*„I. H nce p~= —pa so that

FIG. 20. Computation of Wo(0) for small y and com-
parison to the Coulomb contribution to the ground-state
energy. The result for Wp(0) was obtained by summing
over the first fifteen terms in Eq. (53) and estimating
the remainder by an appropriate integral.

where the effective magnetic moment p,*= p,,*- p,„*.
If &, 40, we define

{(pAB~ [(POB)2~ (& 13 z)2]1/2)/D]2

and C = (&1/2D) . Then Eq. (48) becomes

4m~8~
~2. = a„a ~ &~(0)l'I&'

&&[A~(I3~-E~+ P, , B)+CO(h&u —E„+»B)l, (

+~2= &2+ ~2. = (& C)[~2(~+ &1B) 22(& —p1B)1

(60)

where ea is given by (48). We emphasize the dif-
ference aa(~+ P,B)—ea(&o —p,B). It is only equal
to (2/h)(8&2/S+) p, 1B when P, ,B is small compared
to the energy characterizing the structure of &~

(the cyclotron energy, for example); otherwise we

expect higher-order terms to be important.

APPENDIX B

The effect of the kinetic energy of the z depen-
dence of the transverse motion W„(z) may be con-
sidered by differentiating the expressions (20a) or
(21a) for the transverse motion with respect to z.
An inhomogeneous equation results which may be
formally solved by introducing the Green's func-
tion for the problem. Since $„(pz) must remain
nor malized,

le

I

dp p„'(Pz)=2
~

dpi'. (pz) d,
" (Pz)=o, (~1)

which means that there is no homogeneous part to
the solution. The result for Wa(z) is

2&0" dp PA. ( pz ) 4o ( pz ) (d/«) [1/(p'+z')"']
E„(z)—E,(z) (62)

For z-0, note that

1 zp 6( 0+)
Pd (p2 2)1/2 (p2+z2)3/2

so that

4 p 22$„(0)$ (0)
M „~ E„(0)—Ea(0)

This is in agreement with perturbation theory.
Our main interest in investigating the term Wa(z)

is to check that it is "small" compared to the main
contribution of the Coulomb potential. Hence we
have computed IM I Wa(0) and compare it to the
Coulomb contribution /3E, = y —Ea(0) to the total en-

ergy (Fig. 20).
For large y the ratio goes as y ~ . This may
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2

An(p) = 2us1 I
s ' "L.(4 &'»

l P„(0)l

'= 1/2v&'= y/2''
(64)

Small &:

+4vl y„(0) l'Is (lR), (66)

Large g;

~.(&) =(2&+1» -2/I &
I

+ o(1/I &
I

')(lit) .

L„are Laguerre polynomials.

be verified by using perturbation theory and high-
field results:

However, when y- 6 or less, which is the region
of interest to us, IM I Ws(0) becomes larger than
the Coulomb energy &E,. The worst case is for
zero field when I M I W&(0)/&8 = 4. 65. Since Wo is
in a sense a correction term this indicates poor
convergence for small mass ratios jM l. For the
Born-Oppenheimer approximation to be valid to
1/p say, we expect Ws to have to be of order 1%
so IM ) would have to be & 500. Numerical com-
putations show the actual situation to be somewhat
better if the S'„ term is omitted entirely. This is
what we have done. The eigenenergies for the po-
tential V(z) will not then be proper upper bounds on

the true energies but will approximate them to
order 10% or better. Take a worse case: The
ground state for 8 = 0 and IM I

= 1 is computed as
—1.127((R) which is 13% low. If Ws(s) is included
in the computation, the eigenenergy obtained is
high but much worse.
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Spectral Distribution of the Photomagnetoelectric Circulating Current in Semiconductors
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The investigation of the spectral distribution of the photomagnetoelectric (PME) circulating
current is made possible by the new method of measurement based on the magnetic flux cre-
ated by this current. The formula for PME-circulating-current magnetic flux is derived and
the results of calculations of the magnetic flux as a function of absorption coefficient are pre-
sented in graphical form. The measured spectral distributions are in good qualitative agree-
ment with theoretical distributions.

INTRODUCTION

The idea has been introduced that the so-called
circulating current flows in a semiconductor sam-
ple when the photomagnetoelectric (PME) effect
takes place. ' The photomagnetomechanical ef-
fect gives us some information about PME circulat-
ing current. 3 This effect is not suitable for mea-
surement of spectral distribution because of a
spurious effect caused by the diamagnetism of the
sample. The new method enabling measurement
of spectral distribution is based on the following
idea: Circulating current can be understood as a
current winding. The PME circulating current is
created and disappears in a sample placed in a
magnetic field when the sample is illuminated by
a chopped radiation; the magnetic flux created by
this current induces a measurable voltage in coils.

Results presented here are the first direct proof

of the existence of the PME circulating current.

MAGNETIC INDUCTION FLUX OF PME CIRCULATING
CURRENT

The PME circulating current has been shown~ to
flow in a sample as illustrated in Fig. 1(a). If a
long enough sample or a sample with end electrodes
is considered the current flow approaches the case
illustrated in Fig. 1(b).

The current flow illustrated in Fig. 1(b) is con-
sidered in our derivation. The resulting magnetic
flux is a sum of the magnetic flux of elementary
current windings as in Fig. 2. The magnetic flux
of the elementary winding is divided into two parts,
a part for p ~pp and a part for y& yp, and each part
is expressed separately. We have


