
PRESSURE DEPENDENCE OF THE REFRACTIVE INDEX OF. . . 2279

4M. Kastner, Phys. Rev. Letters 28, 355 (1972).
5A preliminary report was presented by M. Kastner

IBull. Am. Phys. Soc. 17, 345 (1972)].
6We appreciate the generosity of J. Wagner of Servo

Corporation of America in furnishing samples of Assist.
W. C. Schneider and K. Vedam, J. Opt. Soc. Am.

60, 800 (1970).
We thank J. de Neufville and D. Sarrach of Energy

Conversion Devices, Inc. for preparing samples.
Our results for As283 are in agreement with those of

R. K. Galkiewicz and J. Tauc, Sol.id State Commun. (to
be published).

K. Vedam, E. D. D. Schmidt, and R. Roy, J. Am.
Ceramic Soc. 49, 531 {1966);K. Vedam and T. A. Davis,
J. Opt. Soc. Am, 57, 1140 {1967),

~~D. F. Gibbs and G, J. Hill, Phil. Mag. 9, 367
(1964).

G. A. N. Connell and W. Paul, J. Non-Cryst. Solids
8-10, 215 (1972); D. L. Camphausen, G. A. N. Con-
nell, and W. Paul, Phys. Rev. Letters 26, 184 (1971).

tsNote that since E is always positive, (1/n)(dn/dP) is
positive even if (1/nl)/fd(nl)/dP) =0 [see Eq. (&)].

~4Connell and Paul used the K values of the correspond-
ing crystal in extracting (1/n)/(dw/dP) from (1/nl)/
Id(nl)/dP] for the amorphous tetrahedral semiconductors.
The fact that (1/n)/(dn/dP) determined in this way is the
same for the amorphous and crystalline phases of Ge,
GaAs, and GaP means that (1/nl)/fd(nl)/dP) is the same
for the two phases. Furthermore, it would be fortuitous
to arrive at the same (1/n)/(dn/dP) if the K were not in
fact the same for the two phases.

J. Tauc, A. Abraham, L. Pajasova, R. Grigoro-
vici, and A. Vancu, in Proceedings of the Conference
on the Physics of Non-Crystalline Solids, Delft, 1964,
edited by J. A. Prins (North-Holland, Amsterdam,
1965), p. 606.

~BJ. Stuke, J. Non-Cryst. Solids 4, 1 (1970).

E. Mohler, J. Stuke, and G. Zimmerer, Phys.
Status Solidi 22, K49 (1967).

A. G. Leiga, J. Appl. Phys. 39, 2149 (1968); J.
Opt. Soc. Am. 58, 880 {1968);58, 1441 (1968).

In the et spectra of SiOt, for example, there is little
remnant of the two-peak structure. As ionicity in-
creases, the I.P —o ~ and o —o ~ 'peaks become closer
in energy. See H. Philipp, Solid State Commun. 4, 73
(1966).

cavan Vechten uses the Penn model: st 1= (i-adpE )t
x(1 -E~/4Ez). Since (1 -E~/4Ez) is close to unity, he
neglects its pressure dependence, in which case Eq. {11)
is obtained.

J. C. Phillips, Phys. Rev. Letters 20, 550 (1968).
For rhombic sulphur the values of n for different po-

larizatio'ns all fall within 0.1 of 2. 15 [American Institute
of Physics Handbook, 2nd ed. (McGraw-Hill, New York,
1963)j.

3G. Lucovsky, A. Mooradian, W. Taylor, G. B.
Wright, and R. C. Keezer, Solid State Commun. 5, 113
(1967).

24P. C. Taylor, S. G. Bishop, and D. L. Mitchell,
Phys. Rev. Letters 27, 414 (1971); D. L. Mitchell, S.
G. Bishop, and P. C. Taylor, J. Non-Cryst. Solids
8-10, 231 (1972).

'D. L. Dexter and W. R. Heller, Phys. Rev. 91,
273 (1953).

P. Grosse, Die Festkorpereigenschaften von Tellur
(Springer-Verlag, Berlin, 1969), Vol. 48.

H. Krebs, Fundamentals of Inorganic Crystal Chem-
istry (McGraw-Hill. , London, 1968).

2 N. F. Mott and R. W. Gurny, Electronic Processes
in Ionic Crystals (Oxford U. P. , London, 1940).

29J. C. Phillips, Covalent Banding in Crystals, Mol-
ecules and Polymers (University of Chicago Press,
Chicago, 1970).

3 H. Mueller, Phys. Rev. 47, 947 (1935).

PHYSI CA L RE VIE W B VOLUME 6, NUMBER 6

Theory of Photon-Drag Effect in Polar Crystals*

15 SE PTEMBER 1972

Jick H. 7ee
Lawrence I ivermore I aboratory, University of California, Live~iore, California 94550

(Received 7 April 1972)

The theory of the photon-drag effect in polar crystals is considered using Fr5hlich"s model
for the electron-phonon interaction. An equation is derived for the electric field generated by
this effect. Numerical examples are given for CdS crystals.

I. INTRODUCTION

Recent advances in high-intensity laser technolo-

gy have made it possible for us to observe many
new and interesting phenomena in some semicon-
ductors. Among these are the multiple-photon ab-
sorptionprocess, harmonic generation, self-induced
transparency, and photon-drag effect. ' . The pho-
ton-drag effect arises from the transfer of momen-
tum from photons to the free carriers (either holes
or electrons) through photon-elec tron-phonon in-

teractions. 4' As a result of the transfer of momen-
tum, a net flow of charge appears in the direction
of propagation of the electromagnetic wave (i.e. ,
a current or photovoltage effect can be observed).

The mathematical basis of the photon, -drag effect
arises from the first-order terms of the matrix
element of the free-carrier-photon-phonon inter-
action when the matrix elements are expanded in
terms of the wave vector of the photons.

The photon-drag effect was experimentally ob-
served by Danishevakii et al. and by Gibson et al.



2280 JICK H. YEE

FI4I ",

(a)

Fi&o

p;t
I

(b)

FIG. 3. Feynman dia-
gram for (a) M&& and (b)
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FIG. 1. Energy-band diagram
showing the possible transitions
that affect the distribution func-
tion of the electron at the energy
state E (k;) =E;.

The theoretical basis was established by Grinberg~
in germanium crystals using the model of electron-
photon-acoustic-phonon interaction. The experi-
mental results agreed quite well with the theory.

The purpose of this paper is to present the theory
of the photon-drag effect in polar crystals based
upon the Frohlich model of interaction between the
polar phonon and the electron. Because the uni-
versal relaxation time has no meaning for cases
where the temperature is such that kT &,'q vp, we will
only treat the cases where kT ~ 6 pp.

In the calculations that follow, we will first find
the change of the distribution function of the free
carrier due to the electron-phonon-photon inter-
action and then, using the Boltzmann transport
equation, we will determine the field generated
by the photon-drag effect.

II. CALCULATION

The Hamiltonian for the interaction of the photon-
electron-phonon system can be written as follows:

g2
+ V y + Vkake'" + Vkake

'"'
2' Q k

e - e 2

+5K+,a a 0+ A I+ 2
A A)&

k SPY pQ SN pQ

Sa
i Bt'

where the dagger indicates the Hermitian conjugate
of the annihilation operator, As=A(t, r)+A*(t, r)
is the vector potential of the incident light, and

(4)

a*f(k)(n„+ 1)"'(n ~ hk&) tI „~,I,I., „
E(kI +q) —E(k&) —h«l mc

a*f(k)(n„+1) [n h(k, k)]&It-,g+tI p

E(k, —k) —E(kt)+h~ mc
(6)

where a is a unit polarization vector of the vector
potential and A is the amplitude of the vector poten-
tial.

Arrow 2 of Fig. 1 represents the case where the
electron makes a transition to the energy state F-;

by the emission of a photon with simultaneous
emission or absorption of a phonon. The matrix
elements which represent these transitions are:

a*f(k)(n, +1)'~3(n ~ Skt)&, ,it, i eA~

E(kI+ k) —E(R~)+h&d mc

a~f(k)(n„+ 1) [n ~ S(k& + q) l~i& ~ It-a-i eA*

E(k, + q) —E(k;) —he mc

transitions which will aff ect the distribution function
of the free carriers in the conduction bands.

Figure 1 shows the possible transitions which
satisfy the conservation of energy E&=E,+8&+S&p
(arrows "1"and "2") and E, =E&, +h&uahcu~ (arrows
"3" and "4"). The Feynman diagrams (Figs. 2-9)
show the possible alternatives in which an electron
can absorb or emit a photon with the participation
of a phonon. Arrow 1 of Fig. 1 represents the
absorption of the photon by the electrons from an
energy state E& to E& with participation of a phonon.
Evaluating the matrix elements of this process
using perturbation theory gives the following results:

af(k)(n„)"'(n h. k, ) q, ,„-.;„; eA
E(k, +q) —E(k,.) —h&u mc 3)

af(k)(nil) n ~ h(k&+k)&&"&&I I+i+,"I

E(k, +k) —E(k&) —II&u mc

1= —ka = af(k),
(2)

where &p is the frequency of the optical phonons
and mp is the electron mass in free space.

From Eq. (1) we can calculate all the possible

af(k)(n„)' '(n ~ 1k&)&i&,il-~+i eA"

E(k~ —q) —E(g) +h~ mc

af(k)(n„)~~~n ~ S(g+k)&I, I I, ,I, ,
E(k, +q) —E(k, ) —h&u

(8)

(9)
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FIG. 2. Feynman dia-
gram for (a) M;& and (b)
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FIG. 4. Feynman dia-
gram for (a) M&~ and (b)
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The matrix elements which represent the tran-
sition as indicated by arrow 3 of Fig. 1 are

a*f(k)(n, +1)I~'(cx ~ hk»)6„.

E(k, —q) —E(k») +h&u mc
(ii)

a*f(k) (n, +1)"'[n h(k» -k) ~~-„-„.„
E(k; —k) —E(k&) —h»u mc

(12)

(18)
af(k)(n, )I~ ~(n hk») 6

E(k, —q) —E(k,) +h»u mc

MIQ af(k)(n»»)'"4 '@(k» +k)]& i»f &»+f-»I

E(kz+q) —E(k )-h»u mc

The matrix elements which represent the tran-
sition as indicated by arrow 4 of Fig. 1 are

a*f(k)(n, +1)"'(o' Ik»)&I», 1,-1 ~ eA'I.
E(k, —q) —E(k») +K»u mc )

a*f(k)(n»»+1)' (o' ~ Rkq)&i,
»

i..., i, (e~
E(kg + q) —E(k» ) —h»u

af (k)(ni»)' (o' ~ h&x) @».&g+~+I leg
E(k, +q) -E(k,)-h-~

(i8)

af(k)(n )'"[~ @(k +k)l&f,W& eAll
E(k» —q) —E(k,.)+R&u mc &

'

(18)
where q is the wave vector of the photon.

Using the matrix elements given in Eqs. (3)-
(18) and assigning the factor f or 1-f (where f is
the probability distribution function) as appropriate
for each transition to accommodate the Pauli ex-
clusion principle, we obtain the following partial
derivative of the distribution function due to the
interaction of the photon, the phonon, and the elec-
tron:

(19)

~ = fr(k, )[i-f(k,)]lMl, +M'„l'-f(k, )[i-f(k,)]1M», +M«l')&(E, -E» ~~, -h~),

~ = Q(k»)[1 -f(k»)]l M'y +Ms»y
l

~ -f(k»)[l -f(k»)]l M'g+M4»g
l
'}&(Eg—E, -If& +If»u~),

~ = ]f(k,,)[i-f(k,)]lMII+M»IPl'-f(k, )[i-f(k, , )]lM", +MI«'l')~(Z, —E,, -h~+h~, ),

(2o)

(21)

-= P(k» )[1-f(k )]lM;'y+M;» l~-f(k, )[l-f(kq, )]lM~q+MIql )t»(E» —E», —h»u —K»u ).
t',

(23)

After carrying out the summation for k and changing the summation on k to an integral, we obtain the
following results:

ef 2»» V
, Jif(E„+K»u+h»u~)[1 -f(Z„,)](n, +1) -f(E„,)[l f(E, +h»u+h»u~-)]n, ) a

eA

r
x dk» 5(Ey —E; —h»u —h»u~)MI + —

~ ff(E, +h»u —h»u~)[l -f(E», )]n„-f(E,.)[l-f(E„,+fi»u —h»u»)](n„+l)j
2w V

eA 2m V
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x ILf(E„—K(u+K(u»)[1 —f(E».)](g» y1) —f(E» )[1 —f(E»( —5(u+h(u»)]g»)

eA 2m Vx a dk&M&5(E& —Ez —5(u+R(u )+ —
3 I(f(E» -ff~ —h(u ) [1 f-(E» )]n»tRC n (2~)' A,'

3
-J(z, )() f(E-, -KQl-liter)](tl, +()) a( - dkJM4ii(&l —&/ —)i& —»&P), (24)

where

ly(e»»)»/»T 1)

~' kk;
Ik, +q —k~ I E(k, +q) —E(k;)-h'u&

a. 8+
E(k, —q) —E(k, ) +h~

0. ~ Sk]
Ik.,+q k,-I E(k, -q)-E(k, )+h(u

0'' Skf
2

Z (Ic~ + t() —Z (»i ) —)i(u )
Because the wave vector of the light, q, is small

when compared to the average momentum of the
electrons, we can expand M „M2, M„and M4 in
terms of q in a series and retain only the zero-
and first-order terms in the expansion. These are

Ik —klieg' [ (~ ')] h u'h'Ik. —k i 6~

x [o h(k~ —k,.)][((» hg)(q kt) —(n ~ hk,.)(q k,.)]+ — ~, ' [(» h(g —k,.)], (2'f)
3F

Ik —k, I
i(h'(u ~ '

I k, —ky I S(u mh(u

x [o.'~ Ii(ky —k, )] [(n ~ h ky) (q ~ ky) —(Z Kkq) (q..k()] —— ' [n. h(k) -k, )] . (28)
iky-k;I

So that the photon-drag effect will not be in-
fluenced by the optical absorption of the optica. l
phonon, we assume that the excitation energy of the
photon is much higher than tha, t of the optical pho-

I

non (i. e., hv» hv»). Using this assumption, the
approximation given in Eqs. (2V) and (28) for matrix
elements, and the coordinate system of Fig. 10, we
obtain the integrals given in Eq. (24) as follows:

I, = M-, 5 (Ey —Eq-—K(u + h(u») dky

x (cos 8) (sin8) (sin(i)) (j = 1 or 2), (29)

Ii =j M) 5(E( —E~ —5'(u +5(u»)dk~

E g' (I E I

xcos 8 sin8 sing (j= 3, 4) . (8O)
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where the value of r satisfies 1/2 ~ r ~ 0. We can
now write the Boltzmann equation for the photon-
drag effect as followss:

(E,) = (E-,) (,".) ' —'(„')"
1

s'tn,'(I/s. —I/s, )) ' (31)

In a polar crystal, the definition of relaxation
time has no meaning. However, as pointed out by
Howarth and Sondheimer' and Ehrenreich, when
the temperature of the crystal is such that Iz~& kT,
universal relaxation time may be defined as

(32)

where the sf~/bt is that given in Eq. (24).
We assume the distribution function f does not

deviate very much from the equilibrium distribu-
tion function fo by putting f=f0 in Eq. (24). This
assumption was found to be a good approximation
in previous work. ' Using this assumption togeth-
er with Eq. (24), we obtain the following expression
for the current:

2~ . p . eAj=- -
(2

„Ve—
2 „, — E, dE, (sin'g)(sing) dg dy 7(E,)(-1)f (E,) (2n, +1)~a~'I,

2WJ m 2 h S me

+ ( —I) ( S s
—

S s )
E,. dnt (sin S)(sind) dd ddt(Et)/(E, —Etn)(sn + 'I) . (s( ds

1 Ve@ 2w 1 2m'( 'eA
m h 2

)

DEC,

e I I 2m
'm h (2w)' 2 h' r(E, ) E& dE

&
E ~ V„fo (sing) (sin(t) ) dg d())), (33)

where I, and I3 are those given in (29) and (30),

~a
~

'= 2wcI/~'/2(g',

I is the intensity of the light, and E is the electric field in the crystal.
Now if we put j= 0, we obtain the electric field E generated by the photon-drag effect at the distance y in

the crystal:

—g e (qw /mc) (Ih /E /
) [h(d& /(h(d) ] (1/e„—1/Eo) (2nE+ 1)

fo" v(E, ) E, dE, (/'~ fo sin g sin(t) dg d())

]. E / 1
x 1 —— ' —E, r(E,) — 2 + —

~
+E, r(E, ) ~ 2 „ 3 '„ ) = &I ~ ( 4)

Let us now evaluate Eq. (34) for some special
values of z and for a nondegenerated semiconduc-
tor.

Case 1. For r=-,', Eq. (34) takes the form

8&2 no e 1 qw Ih h(dq

5 o m' eJ'' c (hu), )' h(d

E =- — @(d~ ~ 2n„+

x 1+ ~ . 35

Case 2. For r=0, Eq. (34) becomes

where 0 is the conductivity of the crystal, n„=nI„
and no is the free-carrier density.

According to the work of Howarth and Sondheim-
er' and Ehrenreich, ' Eqs. (35) and (36) should be
applicable (or at least give an approximation) for
the case in which kT & hv~ and in which kV'=- &v~,



J ICE H. YEE

l

IQ

Z

A
Z =A crease of light intensity is very slow with respect

to the distance traveled in the crystal. Conse-
quently, when evaluating the matrix elements for
each section, we can consider the amplitude of the
vector potential a constant. We account for the
change in vector potential as we go from one sec-
tion to another by letting IA I

&
be proportional to

Ioe '~, where j designates the jth section of the
crystal. It then follows that the electric field can
be written as E,&=KI&. Hence, to obtain the total
potential across the crystal, we simply sum up all
the contributions from all the sections and obtain

v=-Z E,~&@ .
g=1

FIG. 10. Coordinate system used for the calculation.

respectively.
As an order-of-magnitude calculation, we apply

Eq. (35) to the CdS crystal. Using m=0. 2mo,
I = 1 MW/cm~, e „=9.25, k T = 0. 05 eV, kv~ = 0.036
eV, "and k v = 0. 12 eV (10.6- p CO2 laser), we find
the electric field is

V= —(1/o. ) (1 —R) IP' . (37)

It is interesting to note that Eq. (37) has the same
dependence upon the carrier density as that ob-
tained by Gibson et a/. ' for germanium crystals.

In Eq. (34) we let I=IO e ' and then integrate to
obtain Eq. (37). We were able to do this because
the usual length of the crystals used for this study
is a few centimeters. As a result, we can theo-
retically divide the crystal into many sections (say
n sections), each of which retains the character-
istics of the whole crystal. Now in the case of the
photon-free-carrier-phonon interaction, the de-

E,=O. 1 V/cm.

For the case in which kT:-he~, we use Eq. (36) and
find that the electric field is

E, = 0. 2 V/cm .
In investigating the photon-drag effect, what we

usually measure is the potential difference across
the crystal. This potential difference is obtained
by letting I= ID(l —R) e "' in Eq. (34), where n is
the absorption coefficient and 8 is the reflection
coefficient, and then integrating the resulting equa-
tion to obtain the potential across the crystal:

Or, in the limiting case, we may write as an inte-
gral

V= —J E„dy .

III. DISCUSSION AND CONCLUSIONS

In deriving the matrix elexnents M ff to M ff we
have intentionally left out the exact form of af (k).
As a result, these matrix elements can be trans-
formed to the case of the electron-photon-acoustic-
phonon interaction by making a proper substitution
for af (k). Therefore, the theory presented is much
more general than we indicated earlier.

Although the derivation of Eqs. (35) and (36) was
made for crystals above room temperatures, it may
also be used for order-of-magnitude calculations
for some semiconductor crystals at room tempera-
ture. The reason for this is that when a high-in-
tensity laser beam (with power such as MW/cm &

is incident upon the crystal, the temperature in-
side the crystal will rise into the region where Eq.
(36) is valid.

The numerical calculation for the CdS crystal
shows that we should be able to observe the photon-
drag effect in this crystal. Because the polar cou-
pling coefficient and hv~ are numerically very close
for many crystals (such as GaAs, InSb, etc.), we
suspect that the polar phonon also plays an im-
portant role in the photon-drag phenomena in these
crystals.

It is also interesting to note that the value of the
longitudinal phonon energy (k& '~) of many polar
crystals is smaller than kT at room temperature.
Therefore, the theory presented here is valid for
those crystals at room temperature.
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Atomic Energy Commission.
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The compressibilities of the monotellurides of Pr, Sm, Eu, Tm, and Yb and the mono-
selenide and sulfide of Sm have been investigated to - 300 kbar using high-pressure x-ray-dif-
fraction techniques. SmTe, SmSe, TmTe, and YbTe show abnormal volume changes in the
20-50-, 15-40-, 15-30-, and 150-200-kbar regions of pressure, respectively. SmS shows
an abrupt decrease in volume at 6.5 kbar. Since there is no change in structure, the anoma-
lously large volume changes have been explained on the basis of a pressure-induced 4f-5d
electronic collapse which involves a change in the valence state of the rare-earth ion from 2'
towards the 3' state. The results of high-pressure x-ray studies on Sm chalcogenides are con-
sistent with the conclusions drawn in the earlier work from high-pressure resistivity measure-
ments. PrTe, SmTe, and EuTe exhibit a phase transition from NaCl-type to CsCl-type struc-
ture at pressures of about 90+ 10, 110+ 10, and 110 + 10 kbar, respectively. It appears that
a pressure-induced NaCl-to-CsC1 transition may be commonly encountered in rare-earth
mono chalcogenides.

INTRODUCTION

Bare-earth monochalcogenides have attracted
much attention in recent years because of their
interesting magnetic and electrical properties.
They crystallize in the NaCl-type structure and
are semiconducting if the rare-earth ion is in the
divalent state and metallic if trivalent. ' Recent
high-pressure resistivity studies4 6 on Sm chalco-
genides and TmTe revealed that these undergo a
pressure-induced semiconductor -metal transition;
the transition is found to be continuous in the case
of SmTe, SmSe, and TmTe, while discontinuous
in the case of SmS. This phenomenon was inter-
preted as due to the promotion of a 4f electron of
the rare-earth ion into the 5d conduction-band
states, as the energy separation between the lo-
calized 4f electronic state and the latter decreased
with pressure. Such an electronic transition in-
volves a change of the valence state of the rare-
earth ion from divalent to a higher valence state
tending towards trivalency. Since the ionic radius
of the trivalent ion is substantially smaller than

that of the corresponding divalent ion, the occur-
rence of 4f-5d-electron promotion should be reflected
in the pressure-volume behavior, and hence the
pressu."e-volume relationship should provide con-
clusive evidence for 4f-5d-electron promotion.
Theretore, we undertook a high-pressure x-ray
study of a number of rare-earth monochalcogenides
of interest in this connection. The results will
be presented and discussed in this paper.

EXPERIMENTS AND RESULTS

The pressure-volume data up to nearly 300 kbar
were obtained from lattice-parameter measure-
ments, using a diamond-anvil high-pressure x-ray
camera. ' In the pressure range 1-50 kbar, mea-
surements were also made using the McWhan-
Bond high-pressure camera. Pressure was esti-
mated using NaCl or Ag as an internal standard.
At pressures above 50 kbar, the diffraction lines
from NaCl became too weak when using the dia-
mon-anvil camera, due to the extrusion of the salt
from the center of the anvil. However, silver
proved quite satisfactory at higher pressures. The


