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The pressure dependence of the refractive index (dn/dP) of several amorphous chalcogenide
semiconductors is reported. dn/dP is positive for materials containing group-Vl elements in
twofold coordination (lone-pair semiconductors), whereas it is negative for tetrahedral semi-
conductors. Furthermore, dn/dP is the same for the amorphous and crystalline phases of a
given semiconductor. Although a one-oscillator (Penn) model adequately predicts dn/dP for
tetrahedral semiconductors, a similar approach does not predict the positive dn/dP of lone-
pair semiconductors. Local-field corrections appear to be the cause of the positive dn/dP.
The Lorenz-Lorentz description of the local field predicts dn/dP in agreement with experi-
ment for most molecular lone-pair materials. It fails, however, for materials containing
large concentrations of group-IV elements. The limitations of the local-field correction in
describing dn/dP of partially molecular semiconductors is discussed.

INTRODUCTION

The pressure dependence of the refractive in-
dex of semiconductors is related to the pressure-
induced shifts of the principal interband absorp-
tion processes. For tetrahedral semiconductors
and compounds of the A"8 "type, Phillips' de-
scribes the principal interband absorption by a
single-oscillator model, with an oscillator of en-
ergy E, , a modified Penn gap. The value of
E, is actually determined from the refractive in-
dex n by

n' —1 = (h(u~/Z, )', (1)

where &u~= (4sNes/m)'~ is the plasma frequency
Ã is the density of valence electrons participating
in the principal interband absorption. The plasma
frequency changes with pressure as the reciprocal
volume. For group-IV elements the dependence
of E on interatomic spacing a follows the em-
pirical relation

E ~a"
With this information, Van Vechten3 calculated

the strain dependence of the refractive index. He
obtained good agreement with the experimental

values for the group-IV elements. One obtains
the same value of (1/n) (dn/dP) for the amorphous
and crystalline phases of the same substance.

Thus one can use g as a measure of E, which is
associated with the strength of the chemical bond.
The volume dependence of n can test to what ex-
tent this association is valid. The simple approach
of Phillips and Van Vechten is especially attractive
in the case of amorphous semiconductors where
the physical properties cannot be described by
band theory, and one might hope to relate observed
physical properties to the chemical bonding.

Phillips's theory has been limited to A" B
compounds. Most amorphous semiconductors
are, however, lone-pair (LP) semiconductors—
those containing group-VI elements in twofold
coordination. These, of course, are not A"B
materials. The purpose of this work is to de-
termine to what extent n is a measure of bond
strength in amorphous LP semiconductors.

This paper reports measurements5 of the pres-
sure dependence of the refractive index z or of the
optical path length nl (f is the sample thickness) of
amorphous layers of As~S3, As2Se„GeSez,
GeSe Te, and of the alloy glass Ge&6As35 Te28 Sg.
We find that (1/n) (dn/dP) is positive for these
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materials, whereas it is negative for the tetra-
hedral semiconductors. Moreover, for several
of the chalcogenide materials, (1/n) (dn/dP) is an
order of magnitude larger than is observed for
tetrahedral semiconductors.

These results cannot be explained by Eqs. (1)
and (2). In the following we examine whether the
different pressure dependence of the refractive
index in the chalcogenide materials is a result of
their different electronic structure, or whether
the fact that these materials are molecular solids
precludes the use of n as a measure of the strength
of the chemical bonds.

EXPERIMENTAL DETAILS AND COMPARISON WITH
PREVIOUS WORK

The experiments were carried out in an optical
pressure vessel using He as the pressure medium.
The maximum pressure was 2 kbar. No hysteresis
effects were observed. For the As2S, sample,
which was 1 mm thick, we measured the shift with
pressure of the position of spatially localized in-
terference fringes produced in reflection by a
He-Ne laser operating at A. =3.391 p, m. This is
essentially the technique used by Vedam' except
that we use an InSb photodiode rather than an in-
frared image converter to count fringes. The
four other chalcogenide materials were prepared
by radio-frequency sputtering in the form of self-
suppo. "ting thin films 5-10 p, m thick. For these
samples we measured the energy shift of the in-
terference fringes at phonon energies well below
the absorption edge.

In both cases one measured the pressure shift
of the optical path length (n l) which is related to
(1/n) (dn/dP) a.s

1 d(nl) 1 dn
nl dP n dP

K
3 9 (3)

where E is the compressibility. The measured
values of (I/nl) [d(nl )/dP] are given in Table I
for the four materials. Unfortunately, for several
materials E has not been measured. The mea-
surement of K is complicated in the case of
a-GeSe2 and the amorphous tetrahedral semicon-
ductors because these materials cannot be pre-
pared in bulk form for sound-velocity measure-
ments.

Where values of K were available, (1/n)(dn/dP)
was determined and listed in Table I. For com-
parison, Table I also gives values of (1/nl) [d(nl)/
dP], (1/n) (dn/dP), K, and n for amorphous Se,
for vitreous and crystalline quartz, ' for diamond, '
and for several amorphous and crystalline tetra-
hedral semiconductors which have been studied by
Connell and Paul.

One notices the following general behavior: dn/
dP is positive for the chalcogenides and negative

As mentioned above, the approach of Phillips
and Van Vechten as expressed in Eq. (1) satis-
factorily predicts dn/dP for the tetrahedral semi-
conductors. This approach is effectively a one-
oscillator model.

The refractive index n is related to ea(&u), the
imaginary part of the dielectric function, by

n' —1 = (2/p) f [&,((u)/(u] d(u, (4)

where h~ is the photon energy. The refractive
index n is measured at photon energies small
compared with the absorption edge. The factor
&u

' in the integrand of Eq. (4) a.llows us to truncate
the integral at some energy S~' which is large
compared with E,. In other words, we assume that
n is determined by the va, lence electrons. If E,
is well separated from higher -energy excitations,
the f sum can also be truncated:

C0$2 dCO = g 77 (dP 9

2

0

where ~~ is determined only by valence electrons.
If ca is strongly peaked at E„Eg. (4) reduces to
Eq. (1).

The success of the one-oscillator model in the
case of the tetrahedral semiconductors rests on
the fact that the e2 spectra of these materials con-
tain one broad peak, as shown in Fig. 1(a). One
observes, in contrast, two peaks in the c2of
materials containing group-VI elements in two-
fold coordination. An example is given in Fig.
1(b).

The reason for the different e2 spectra is re-
lated to the different chemical bonding in tetra-
hedral semiconductors and those containing group-
VI elements in twofold coordination. The valence
band of Ge, for example, has an origin different
from that of Se. If the states in the solid are con-

for the tetrahedral materials. " The compressibil-
ity K is large for the chalcogenide semiconductors
and small for the tetrahedral semiconductors. On

the other hand, no clear trend can be identified in
the values of n for the various materials. The
values of (1/n) (dn/dP) for the amorphous and

crystalline phases of the tetrahedral semicon-
ductors are similar. Connell and Paul' conclude
from this fact that dn/d P is determined by short-
range order. '

The fact that the pressure coefficient of n is
positive for the chalcogenide semiconductors but
negative for the tetrahedral materials means that
the volume dependence of the chemical bond is
different for the two classes of materials if n is
related to the bond strength as in Eq. (I). Let us
examine this possibility next.

ONE-OSCILLATOR MODEL
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TABLE I. Data and calculated parameters for amorphous (a-) and crystalline (c-) materials. K is compressibility, n
is refractive index, l is sample thickness, q is defined in Eq. (10).

Material

a-Ge~6As35Te28S2 f
a-As2S3
a-As2Se3
a-GeSe Te
a-GeSe2
a-Se
c-Si02
a-Si02

K
(10-' bar-')

7. 6b

9.3+0.4

10.0'
2. 6
2.69

1 d(ni)
nl dP

(10-' bar-')

5.5+1
3.6+0.2
4.9+0.6
2. 6 +0.5

0 +0.5
7.7

—0.19
—0.26

1 dn

n dP
(10-' bar-')

8.0+1.5
6. 8 +0.4

11.0
0.667
0.631

3.1+0.1
2.41e

2. 50~
1.54
1.46

—3.5 +0.4
—2. 5 +0.1

—3.9
1~ 32
1 ~ 33

—2(n'+ 2)

—5.8 +0.4
—3.9

—4. 1
—2. 18
—2. 06

Ref. '
P
P
P
P
P
7

10
10

c-C
a-Si
c-Si
a-Ge
c-Ge
a-GaP
c-GaP
a-GaAs
c-GaAs

0.173

1.02

1.33

1 ~ 13

1.34

—0.6

—1.4

—0.7

0.053
0.05
0.3
0.8
1.0
0.25
0.3
0.7
0.7

2.42

3.4

4.0

3.4

+1.1

+2.3

+0.9

+l. 8

—3.92

—6. 8

—9.0

—5. 5

—6. 8

11
12
12
12
12
12
12
12
12

P denotes present work. Numbers correspond to re-
ference numbers in the text.

From 0.1% measurements of longitudinal and trans-
verse sound velocity [D. E. Bowen (private communica-
tion)).

K. Murase (private communication).
This value was obtained from Young's modulus and

shear modulus furnished by Ref. e.
'Servo Corp. of America.
K. Vedam, D. L. Miller, and R. Roy, J. Appl. Phys.

37, 3432 (1966).
W. F. Koehler, F. K. Odencrantz, and W. C. White,

J. Opt. Soc. Am. 49, 109 (1959).

sidered to be a broadened superposition of molec-
ular states of the constituent bonds, then the
valence band of Ge is the bonding (o) band and the
conduction band is the antibonding (o*) band. In

Se, on the other hand, the valence band is the LP
band. The LP band is expected to lie midway in
energy between the o and o* bands. Whenever a
material contains a group-VI element as a major
constituent, the valence band will be the LP band.
Thus, the single broad peak in Ez of Ge is caused
by o to o* transitions; the two peaks in &~for Se
are caused by LP to o* and by o to o* transitions,
respectively.

TWOASCILLATOR MODEL

& —1 =f»/Er'. x +f./E.' ~

Again we have assumed that the integral of Eq.
(4) can be truncated. Equation (6) relates four

(6)

As we have seen, the assumption leading to Eq.
(1)—that ea consists of one peak —is reasonably
justified in the case of Ge. For Se, Eq. (1) must
be modified. To describe the transitions origina-
ting from the LP band and from the bonding band
we use a two-oscillator model characterized by
oscillator strengths f» and f, at energies Env and
E„respectively. Then Eq. (4) yields

50-
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FIG. 1. Imaginary part of the dielectric constant vs
photon energy for crystalline and amorphous (a) Ge (Ref.
15) and (b) Se (Refs. 16-18).

unknowns to the single measured quantity n. Let
us examine Eq. (6) more closely to see if it can
be simplified.

Se has two LP electrons and two bonding elec-
trons per atom. Thus we expect f„p = f,. Since
E, = 2E» as seen in Fig. 1(b), the second term
on the right-hand side of (6) contributes about —,

'

of n —1. In all materials except the elements
S, Se, and Te, however, there are fewer LP elec-
trons than o electrons. Thus there are 12 bonding
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n —1 = B [(ha~) '/Z,'],
where

(7)

LP ) 1 ty LP

Since 8 depends only on the ratios fLP /f, and 8, /
ELp it is permissible to assume that B is inde-
pendent of pressure for the group-VI elements.
We discuss this point further below.

When pressure is applied, the sample (assumed
isotropic) will undergo strain dl/I. Since Eqs.
(1) and (7) are identical except for the factor B,
their logarithmic derivatives with respect to
strain are identical. After rearranging, this
derivative can be written

l dn n l d(d p l dE~
n dl n —1 co& dl E, dl

We define the measured quantity g:

(9)

electrons per molecule in As& S3 but only six LP
electrons. In most chalcogenide semiconductors
the second term in (6) will contribute appreciably
to n2-1 and cannot be neglected.

It appears from Fig. 1(b) that E» =-,' E, for Se.
This simplifying assumption may not be valid for
other LP semiconductors, especially if they are
very ionic. '9 If E, is well separated from higher-
lying excitations, we may truncate the f sum as in
Eq. (5). This gives f»+ f, =2m~,', where u&~ is
determined by the total number of bonding and
LP electrons which are four per atom in Se.
Using this relation,

validates the truncation of Eq. (5). Note that q
is also positive for GaP and GaAs. The success of
the foregoing procedure rests on the equivalence
of the measured strain dl/I and the relative
change in bond length da/a.

Just as diamond and Si ere typical of tetra-
hedral semiconductors in the pressure depen-
dence of their refractive index, we expect S and

Se to be typical of LP semiconductors. In order
to test Eq. (11) we need to know how E, depends
on the nearest-neighbor distance for the elements
S and Se. Figure 2 shows that E, decreases with
increasing a for S and Se, as it does for group-IV
elements.

In computing E, from Eq. (7) we have assumed

f» = f, and E» = ~, . These assumptions are rea-
sonable for group-VI elements since there are
equal numbers of bonding and LP electrons and
the LP band lies midway between the o and 0*
band. ~ Furthermore, the relative position of the
LP band between the 0 and o* bands is expected
to remain the same as a is changed slightly.
Therefore, as mentioned above, we assume B is
independent of I'.

If a is not altered at all by pressure, Eq. (11)
predicts g= ——,'. The experimental values of g
for Se and As~S, are about g= —3. Any contribu-
tion to Eq. (11) from (a/E, )(dE,/da) makes the
calculated value of g a smaller negative quantity
or positive, as for the tetrahedral materials.
Therefore, we are forced to conclude that Eq. (8)
is not valid for group-VI elements.

LOCAL-FIELD CORRECTIONS
l dn n

n dl n
(1O) From the foregoing discussion we conclude that

for chalcogenide materials the refractive index
The model leading to Eq. (9) or (1) then predicts

3 l dE,
2 E, dl

because (l/&u~) (d&u~/dl) = ——,'.
Equation (11) is the relation Van Vechten used

to explain the pressure dependence of the refrac-
tive index for the grouy-IV elements. His pro-
cedure is simply the fallowing. He assumes that
E, depends only on the nearest-neighbor distance
for the grouy-IV elements. In particular, he as-
sumes that it is independent of the principal quan-
tum number. Therefore, a plot of E, vs nearest-
neighbor distance a for the elements C (diamond),
Si, Ge, and Sn gives the pressure dependence of
E,. He finds E,~g ' as shown in Fig. 2. Sub-
stituting (I/E, ) (dE, /dl) = —2. 5 in Eq. (11) gives
g = 1.0. As can be seen from Table I, g = 1.0 is
within experimental error of the measured values
for diamond and Si. The agreement is not as good
for Ge and Sn, but Van Vechten argues that this
is a result of the proximity of d states which in-

IO

lope
-2.5

Sno

I

4

FIG. 2. Log-log plot of ~E~ (in eV) against nearest-
neighbor distance a in A (c.f. Ref. 21).
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(12)

where iV is the number of molecular units per
unit volume. Their average polarizability n is
given by a relation like the right-hand side of Eq.
(1) or (6). In the ideal molecular solid, where
~ does not depend on pressure, we can use Eq.
(12) to relate n to the strength of the chemical
bond. In that case, logarithmic differentiation
of Eq. (12) with respect to dl/I and rearranging
yields the prediction

,'(n'+2) .-- (13)

In Table I are listed —
2 (n + 2) and measured

values of g for the LP as well as the tetrahedral
materials. The agreement is remarkably good
for some of the LP materials; it is within 5% for
Se. Most important, Eq. (13) predicts q to be
negative as observed. In contrast, Eq. (13) pre-
dicts magnitudes a factor 3-7 too large and a
wrong sign for g in the case of the tetrahedral
semiconductors.

As mentioned above, n is the average polariz-
ability of the molecules in the solid. Using the
polarizabilities of Se& and Te2 molecules and

Eq. (11), Grosse 6 was able to predict the in-
frared dielectric constant yz of solid Se and Te to

cannot be related to the bond strength as in Eq.
(8). This is because they are molecular solids.
It is well known that trigonal Se and Te are com-
posed of molecular units which are one-dimension-
al chains; As283 is composed of two-dimensional
layers. Amorphous Se is thought~ to contain
rings (like rhombic S and monoclinic Se) as well
as chains, and there is evidence that the layer
structure of crystalline As2Se, is preserved in
the glass. ~ In all of these materials the bonding
within molecular units is predominantly covalent,
but the molecular units are held together by
weaker Van der Waals forces. On the other hand,
Ge is entirely covalent: There are no molecular
units.

The compressibilities associated with Van der
Waals forces are larger than those associated with
covalent bonds. This explains why the chalcogen-
ides have compressibilities an order of magnitude
larger than the tetrahedral semiconductors. In
materials like Se and As&S„ the distance between
molecular units will be changed more by pressure
than the covalent bond lengths. The application of
pressure pushes the molecular units together
without appreciably altering their internal co-
ordinates.

Dexter~ has shown that in a solid held together
by Van der Waals forces the refractive index is
described quantum mechanically by the Lorenz-
Lorentz local-field equation:

within 5%. This is surprisingly good agreement
since the "molecules" in solid Se and Te are
chains in which the bonding is quite different
from that of Se2 and Tez.

Thus, the Lorenz-Lorentz equation predicts
values of q in fair agreement with experiment for
several of the LP semiconductors. In fact, the
agreement is better than expected. Dexter ar-
gues that the Lorenz-Lorentz equation is valid
only when 3 zion is small compared with unity.
In Dexter's treatment the local-field correction
is the second-order term in a perturbation cal-
culation in which —,pea is the expansion param-
eter. ~pN~ must be small if higher-order terms
are to be neglected. However, Eq. (12) gives a,

good prediction of dn/dP for Se although it has

3 pA~=0. 64. It is surprising that the Lorenz-
Lorentz equation gives reasonable values of dn/
dP for materials with such a large polarizability.

In deriving Eq. (12) Dexter assumes that ex-
change interactions (i.e. , covalent bonds) be-
tween molecular units are negligible compared
with Van der Waals interactions. In other words,
it must be possible to define molecular units
which are not covalently bonded in every direc-
tion to the rest of the solid. As we have pointed
out, this is the case for Se but not for Ge. Con-
sider now alloying Ge into amorphous Se. The
transition from a molecular solid to a covalent
solid will occur gradually with increasing Ge
concentration. At the concentration GeSe2, every
Ge is expected to be bonded to four Se atoms and

every Se to two Ge atoms. We would expect this
composition to contain no molecular units. In
that case we expect g positive as for Ge. We
have no compressibility data for GeSe2, so g has
not yet been determined. However, for the isol-
electronic material Si02, the relevant data are
given. in Table I. Although the experimental
value of g for quartz is smaller than predicted by
Eq. (13), it is negative. One does not usually
think of quartz as a molecular solid. However,
the structure of n-quartz is very complicated
and molecular units composed of spirals of Si04
tetrahedra may be present. ~ The fact that the
compressibility of n-SiO~ is twice that of Ge sup-
ports our contention that quartz is to some degree
molecular. A transition from a partially molec-
ular solid to one containing no molecular sub-
units must occur as one increases the Ge concen-
tration in an amorphous Ge-Se alloy. Experi-
ments are in progress to observe this transition.

Little has been said in the above discussion
about the effects of ionicity on the pressure depen-
dence of the refractive index. It was one goal of
Van Vechten's work to understand the different
dn/dP observed for ionic and covalent A~88 "
crystals. Van Vechten points out that while g is
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negative for the alkali halides (g+ 2 is positive
for allA" J38 " crystals) it is almost unity (the
value for C and Si) even for some very ionic
materials. The negative q observed for SiO, is
probably not, therefore, a result of high ionicity.
Rather it appears that just as g depends on
ionicity, it also depends strongly on the degree to
which the solid is molecular. Even if the solid
is only slightly molecular this will be revealed
in g because of the small force constants as-
sociated with Van der Waals forces.

CONCLUSIONS

Local'field corrections are only understood
for the simplest systems. The Lorenz-Lorentz
equation' adequately describes the refractive in-
dex in the extreme tight-binding case: the Van
der Waals solid. It is unsatisfactory, however,
even for the most ionic alkali halides. Mott and
Gurny argue that the failure of the Lorenz-
Lorentz equation in this case is due to the non-
zero overlap of neighboring ions. ~ Phillips
has pointed out that the Lorenz-Lorentz equation
fails to describ'e the refractive index of diamond
and Si because of the overlap of the bond charge
for neighboring bonds. He suggests that there
may be no local-field correction in such ma-
terials.

It is worthy of note that the success of Van
Vechten's procedure in the case of group-IV ele-
ments tells us little about local-field corrections
in those materials. Although he shows that n de-
pends quite simply on nearest-neighbor distance,
there may be local-field corrections which also
depend on nearest-neighbor distance. The vol-
ume dependence of n yields information about
local-field corrections only if the local fields are
determined by coordinates which change more
under pressure than the bond lengths.

If local-field corrections are not understood in
Ge and Si-the completely bonded extreme-it is
not surprising that the problem remains unsolved
for cases like AsaS, or Si02 which are only par-
tially molecular. There have been attempts to
extend loca, l-field arguments to partially tight-
binding cases. The most common approach o is
to assume the full Lorenz-Lorentz correction as
given by Eq. (12). Then any deviation from the
prediction of Eq. (12) is attributed to a change in
a with pressure. This takes into account the

fact that if the molecular units are large and com-
.)

plex, their internal coordinates will be altered
somewhat by stress. Such an approach seems
reasonable for solids in which the molecular
units are not too large. However, when molec-
ular units are of macroscopic dimensions it fol-
lows from the arguments of Phillips and Mott and
Gurny that the Lorenz-Lorentz correction is it-
self invalid.

Throughout the preceding discussion we have
not distinguished between amorphous and crys-
talline materials. Indeed, it appears that dn/dP
is quite insensitive to long-range order. Connell
and Paul pointed this out in the case of the tetra-
hedral semiconductors. Fused quartz and n-
quartz have (I/n) (dn/dP) equal within 6/o. It ap-
pears, then, that local-field corrections as well
as microscopic polarizability depend only on
short-range order.

So far we have discussed the effects on n of
only two kinds of coordinates: the bond length or
nearest-neighbor distance and the intermolecular
distances. When stress is applied to a solid,
bond angles can also change. In anisotropic ma-
terials, bond angles will change even under hydro-
static pressure. This will be the case for many
LP semiconductors. We need, therefore, a,

greater understanding of the relation between
local-field corrections and bond angle in order to
utilize n as a measure of bond strength for LP
semiconductors.

In summary, the Lorenz-Lorentz local-field
correction predicts results in reasonable agree-
ment with experiment for molecular solids. In
this case, Eq. (12) can be used to relate n to the
strength of the chemical bond. For the tetra-
hedral materials, on the other hand, Phillips's
theory is appropriate. However, for solids which
are only partially molecular, a better theory of
local-field corrections is necessary before we can
relate n to the strength of the chemical bond.
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The theory of the photon-drag effect in polar crystals is considered using Fr5hlich"s model
for the electron-phonon interaction. An equation is derived for the electric field generated by
this effect. Numerical examples are given for CdS crystals.

I. INTRODUCTION

Recent advances in high-intensity laser technolo-

gy have made it possible for us to observe many
new and interesting phenomena in some semicon-
ductors. Among these are the multiple-photon ab-
sorptionprocess, harmonic generation, self-induced
transparency, and photon-drag effect. ' . The pho-
ton-drag effect arises from the transfer of momen-
tum from photons to the free carriers (either holes
or electrons) through photon-elec tron-phonon in-

teractions. 4' As a result of the transfer of momen-
tum, a net flow of charge appears in the direction
of propagation of the electromagnetic wave (i.e. ,
a current or photovoltage effect can be observed).

The mathematical basis of the photon, -drag effect
arises from the first-order terms of the matrix
element of the free-carrier-photon-phonon inter-
action when the matrix elements are expanded in
terms of the wave vector of the photons.

The photon-drag effect was experimentally ob-
served by Danishevakii et al. and by Gibson et al.


