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We study the problem of an electron and a hole interacting with each other and with longi-
tudinal optical phonons. Our method consists of examining the poles of the t matrix for dressed-
particle-hole scattering due to the Coulomb interaction and the exchange of phonons. This
approach is carried out in the two limits: (i) EI3 «&0 and (ii) Ez» ~0, where E~ is the binding
energy of the exciton state formed and &0 is the optical phonon energy. In both cases, we have
an effective-mass equation for the electron-hole pair with the same form of nonlocal potential:
however, in case (i) the self-energies occurring are polaron self-energies, while in case (ii)
the self-energies are eliminated. We find that the first corrections in both limits are more
important for the self-energy than for the interaction potential. We make the ansatz that this
is true for arbitrary values of EB/wo so that the potential is left unaltered, but the self-energy
scales with the parameter Es/coo. The calculated binding energies obtained from this procedure
are in excellent agreement with the measured binding energy of excitons in a variety of ionic
semiconductors. The effective nonlocal potential we obtain satisfies the physical requirements
of going asymptotically to (E'Or), where E'0 is the static dielectric constant, for r» polaron
radius and Eg/Q)0«1 and to (e r), where e„ is the high-frequency dielectric constant for r
«polaron radius, and E~/+0» 1. The first corrections go as r . We discuss in detail the
form of the potential and its nonlocality, etc. , as the parameters Esl(do E /E'p, and m~/ma
(ratio of electron mass to hole mass) vary. We define E~ as the energy to separate to infinity
the electron and the hole without altering the self-energy they have in the bound state. For
appreciable electron-phonon coupling strength, Ez and E~ differ considerably. The exciton
radius and the oscillator strength is to be estimated from E~. For TlCl, the actual exciton
radius is estimated to be about three times smaller than one might estimate from Ez.

I. INTRODUCTION

In the 1950's the problem of an electron (or a
hole) interacting with longitudinal optical phonons
(the polaron problem) received considerable at-
tention. Here was a problem which was the pro-
totype of the general problem of particle-field in-
teractions, and one in which the theoretical pre-
dictions could be tested against a body of experi-
mental results in semiconductors. In this work we
explore the problem of an electron and a hole in-
teracting with each other and with longitudinal op-
tical (LO) phonons as the prototype of the problem
of two particles interacting with a field. Again the
problem is made worthwhile by the availability of
experimental results on electron-hole bound states
(the excitons) in semiconductors.

We confine our attention to the case in which the
exciton state has a binding energy EB that is small
compared to the insulating gap n, (the Wannier ex-
citon limit). The interaction between the electron
or the hole and the LO phonons is represented by
the Frohlich Hamiltonian:

H=g- y"" e""~.1 a-+c. c.
q q

where a- is the annihilation operator for a phonon
of wave vector q, and r, ~ are the electron or the
hole coordinates, the plus sign in the exponent is
associated with r, and the minus sign with r„,

;"=(-I ./q)(4. „,/ „,I)"',
where 0 is the LO phonon frequency assumed to
be dispersionless, V is the volume of the unit cell,
n, „is the polaron coupling constant

o.„„=-,'(~ -'-~, ')e'lt„„/I~, , (1.3)

and z, „ is the inverse of the polaron radius

~g h (2~/ g too /I) (+g g)

In (l. 3) a„and es are the high-frequency and the
static dielectric constants, respectively.

A. Physical Discussion

Let us start by considering an electron and a
hole an infinite distance apart. Owing to their in-
teraction with the LO phonons, one has two quasi-
particles —the electron polaron and the hole pola-
ron. The polaron is characterized by a self-en-
ergy, whose momentum-dependent part is approxi-
mately described by an altered mass m*, ~ which
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can be related to the bare mass m, „. For ex-
ample, in the weak and intermediate coupling
regime, a„h 6,

m, /m„, since the potential depends upon this pa-
rameter. In the text we shall discuss in detail the
dependence of the potential on m,™

B. Experimental Consequences

the momentum-independent part of the self-energy
g, „is given for intermediate coupling by

O'e&h» ~ ™e,h@0 '

The self-energy and the change in the effective
mass come about due to the polarization of the lat-
tice. A typical distance over which the lattice is
polarized around the electron or the hole defines
the polaron radius.

For distances between the electron and the hole
large compared to the polaron radii, one expects
them to interact due to the Coulomb interaction
screened both by the lattice (since their relative
angular frequency would in this case be much less
than &0) and the other electrons, and also to have
their self-energies intact. As the distance between
the electron and the hole is decreased, their po-
larization clouds begin to interfere and partially
neutralize each other. In field-theory language the
virtual phonons emitted by the particle are ab-
sorbed by the hole and vice versa. The net effect
would be to alter the interaction between the elec-
tron and the hole, and somewhat loosely speaking,
cr, „and m,*„are reduced from their free-polaron
values. This effect should increase as some func-
tion of the ratio of the polaron radii to the distance
between the electron and the hole. Finally, when
this ratio becomes extremely small, the relative
angular frequency of the electron and the hole be-
comes large compared to ~0, and, therefore, the
pair is not influenced at all by the lattice, i. e.,
they interact with the Coulomb interaction screened
only by the electrons, their effective masses are
just the bare masses, and o, „ is completely elimi-
nated.

We have been discussing the problem above as if
the distance between the electron and the hole was
an independent parameter. Actually, the distribu-
tion of this distance is determined by the eigenval-
ue problem which incorporates the ideas discussed
above. Yet another feature of the problem is that
since the lattice polarization cannot respond in-
stantaneously, the interaction between the electron
and the hole will, in general, be nonlocal in space
and in time. We can also guess on physical
grounds that in the limit E~/"o «1 or more pre-
cisely r,„/r,*„»l, where x„is the exciton radius,
the nonlocality is important; in other words, the
nonlocality will scale in the same fashion as the
self -energies.

The problem is further complicated by the fact
that r fjr f or m, /m„ is also an important parame-
ter. But r,„(or E~) depends parametrically on

From the discussion presented above, we may
deduce the experimentally measurable effects of
the interaction of the electron and the hole with the
LO phonons: (a) The binding energy of the exciton
is quite different from that obtained from a Cou-
lomb potential screened either by the static or the
optical (high-frequency) dielectric constants, and
the distribution of the eigenvalues is nonhydrogen-
ic. (b) There are centrifugal terms in the poten-
tial due to the polarization of the lattice. These
lead to a splitting, say between the 2s and 2p states
of the exciton, i. e., we have a Lamb shift. (c)
Since there is effectively a change in the self-en-
ergy of the electron and the hole when they bind,
the actual characteristic distance between the elec-
tron and the hole is different from that deduced
from the experimentally measured binding energy
E~, which is the energy released on dissociation
into two free polarons. This in turn implies that
the actual oscillator strength of the exciton is dif-
ferent from that deduced from the experimentally
measured binding energy. (d) Another way of stat-
ing the above argument is that the minimum in the
energy for the free-polaron states and the exciton
states is displaced with respect to each other in a
lattice configuration coordinate diagram. The
above statement is meant to be only illustrative.
Strictly speaking, a configuration coordinate dia-
gram is meaningful only if the adiabatic approxi-
mation is valid, i. e., when E~»~0, or &0«E~.
Nevertheless, we may draw some qualitative con-
clusions from this argument. If the linewidth of
the exciton is much smaller than the optical phonon
frequency, we have a Franck-Condon effect, i. e.,
the emission frequency of the excitons is in gener-
al different from the absorption frequency, and the
thermal recombination energy is different from
the optical recombination energy. The magnitude
of all these effects depends upon the two parame-
ters characterizing the problem (r,*, r f) and x„.

There are some other effects due to the optical
phonons, which we do not consider here. For ex-
ample, if the hole is derived from a degenerate
valence band, one expects a Jahn- Teller splitting
of the exciton, which may be either static or dy-
namic. Another effect is the resonant interaction
between an excited state of the exciton and a state
consisting of the ground state of the exciton plus a
phonon.

C. Analytical Procedure

Our method consists in examining the poles of
the t matrix for dressed-particle-hole scattering
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due to Coulomb interactions and due to the ex-
change of the phonons. The position of the poles
gives the binding energy, and the exciton wave
function is obtained from the residue. This meth-
od has been outlined by Nozieres, 6 and has been
employed by Sham and Rice' to rigorously derive
the effective mass equation for Wannier excitons,
and by Sham in the problem of impurity states in
semiconductors. We find that this approach can
be carried on rigorously only in the two limits (i)
Es « ~3 (or r„» r,*, r24'), and (ii) E2» e3 (or r,„
«r,*, r24'). In both cases we obtain a Schrodinger
equation with the same form of nonlocal Potential;
however, in case (i) the masses occurring in the
kinetic energy and the effective potential are po-
laron masses, while in case (ii) they are all bare
masses. Further in case (i) the o, „are complete-
ly retained in the Schrodinger equation while in
case (ii) they are completely eliminated.

Next we look at the first correction terms to the
effective potential and the self-energy in both the
limits (i) and (ii) by expanding with respect to the
small parameter in each case. We find that in
both limits the correction to the effective potential
is an order smaller than to the self-energy. We

then make the ansatz that the potential remains un-
changed for all values of Es/&u3, and that the self-
energy scales with this parameter and goes ap-
propriately to the two limits and the first cor rec-
tions. We have no firm theoretical justification
for this procedure. However, we find that the
binding energies for excitons obtained through such
a procedure agree remarkably well with the exper-
imental results. In the two limiting cases men-
tioned, it is possible to handle the vertex correc-
tions to the particle-hole interactions exactly. In

the intermediate case we have found no way of
dealing with them properly. Our ansatz amounts
to saying that the vertex corrections affect only
the self-energy and not the potential. The success
of our ansatz poses the theoretical question as to
why such a simplification works.

The problem of the interaction between the elec-
tron and the hole with the LO phonons has been at-
tempted before, by Haken and Schottky using a
variational method, which seems to be valid only
for E~ « ~o. The binding energies obtained using
Haken and Schottky's potential are in poor agree-
ment with the experimental results.

II. MANY-BODY DESCRIPTION OF EXCITON STATES

The many-body formalism for treating an exci-
ton state as an excited state of the insulator has
been outlined by Nozieres. In this section we
first present this formalism in its full generality
and illustrate its use by considering the simple
problem of an electron and a hole interacting
through an unscreened Coulomb potential.

where k =—(k, g) is the momentum-energy four vec-
tor, I is the irreducible particle-hole interaction, '0

and G(k) is the single-particle Green's function.
The irreducible particle-hole interaction conserves
energy and momentum; thus we have

(2. 2)—u~+ u, = —0, + u~= —u, + u, -=q .
Equation (2. 2) defines q=—(Q, ~) as the total ener-
gy momentum carried by the electron-hole pair.
We may reduce the number of variables by intro-
ducing

1k=kq ——q, II
k =44--, q, k =k6--, q,

and we have

I (k1k2k3k4) = I (k, k; q) 5(k1+ k2 —k3 —k4) .
Similarly, we have

(k1k2k3k4) = t (k, k'; q) 5(k1+ k2 —k3 —k4)

The BS equation then takes the form

t (k, k; q) = I (k, k; q) +2 I (k, k; q) G(k ——,
'

q)

x G(k + —,
'

q) t (k, k; q) . (2. 3)

Since I (k, k; q) is well behaved as a function of

&, it may be neglected near the poles of t (k, k; q).
In principle then, given the single-particle Green's
function and the irreducible particle-hole interac-
tion, the problem reduces to seeking the poles of
t (k, k; q) as a function of + through the solution
of the homogeneous equation

t (k, k'; q) =Z I (k, k", q) G(k" ——,
'

q)

x G(k" + ,'q)t(k", k';q) . (2-. 4)

Since k and q are fixed parameters (they specify
the energy momentum of the initial state), we

may use

t (k, k'; q) - Z (k)

for brevity.
It is easy to specify the single-particle Green's

The formalism consists in examining the poles
of the t matrix for particle-hole scattering. Cor-
responding to these poles, there are poles in the
two-particle Green's function (other than those as-
sociated with the particle-hole continuum). The
energy of the bound states is given by the isolated
poles of the two-particle Green's function, and the
corresponding wave functions are obtained from the
residue at the pole.

The t matrix satisfies the Bethe-Salpeter (BS)
equation (Fig. I):

t (klk2k3k4) I (k1k2k3k4) + ~ I (k5k2k3k6)
Og206

X G(k, ) G(k, ) t (k,k3k3k4), (2. 1)
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kg 4me 2
«p=Z ~ ~g p p(k )

) I

(2. 9)

kp+

kp ~kg

Now we interpret y(k) as the exciton wave function,
and (2. 9) represents the effective-mass equation
for the exciton within the stated approximations.

FIG. 1. Bethe-Salpeter equation for the electron-hole
t matrix. The external electron and hole lines (dotted
lines) are not included in t.

III. SINGLE-PARTICLE GREEN'S FUNCTION AND
IRREDUCIBLE PARTICLE-HOLE INTERACTION

A. Single-Particle Green's Function

t:, „(k, g)=[g —E, „(k)+f5]-',

with

(2. 5)

function for an insulator, neglecting electron-
electron and electron-phonon interactions. Let us
for simplicity take a plane wave representation;
the generalization to Bloch waves is straightfor-
ward. Let us also consider the simple case of a
single valence band with maximum at k= 0 and a
single conduction band with a minimum, also at
k=0. Then we have

In our treatment of the particle-hole scattering
including both Coulomb and phonon exchange ef-
fects, we assume that the single-particle spectrum
is well understood. The single-particle Green's
function differs from the unperturbed function
(2. 5) by inclusion of the self-energy corrections
due to electron-electron and electron-phonon in-
teractions, and the resulting change in the spec-
tral function. For each k there are peaks of total
weight Z, (k) at energy E,(k) and Z„(k) at energy
E„(k). The electron and hole energies are given by

and

E,(k) = 4+0 /2m,

E„(k)= —k'/2m, , (2. 6)

E,(k) = 6+0 /2m, +Z,(k, E,(k))

E„(k)= —k /2m„+ Z„(k, E„(k)),

(3 I)

(3. 2)

where 4 is the energy of the insulating gap.
To continue with our simple example, if we con-

sider an unscreened Coulomb interaction between
the electron and the hole,

I(k k''q) = -4-'/lk-k I'

we can perform the energy integration .
' on the

right-hand side of (2. 4) to get

where Z is the self-energy. Besides these two
peaks which define the quasiparticles, there are
two smeared distributions in energy, one associ-
ated with the electron and the other with the hole.
These smeared distributions which represent the
incoherent parts of the single-particle Green's
functions are separated from the respective peaks.
The quasiparticle amplitude Z, (k) for the electron
is related ' to its self-energy by

)k-k (-)
(

BZ, (k, ()
gag (& )

B

(3.3)

X

(2 7)

In (2. V) we have neglected a term of 0((b —u&}/b, )
compared to unity. Since the binding energy E~ is
defined as

(2. 3)

this corresponds to considering Wannier excitons
only.

%e may write

(~, (&+lQ)', (&-l())' )'~(g) (q)
2mB 2m'

we can then rewrite Eq. (2. V) as

(k+ ~2Q)' (k —
g Q)'

EB+
2

+
2 Pk

and a similar relation holds for Z„(k). It is rea-
sonable to assume that even in the presence of
electron-electron and electron-phonon interaction,
one can think in terms of well-defined quasipar-
ticles with long lifetimes, especially for low mo-
mentums. In our analysis we shall, therefore, ig-
nore all lifetime effects.

The effects of electron-electron interaction on
the single-particle properties in an insulator are
quite small for low momentums (because the inter-
mediate state energies are ~ b, }, and we shall neglect
them. However, for the case of electrons inter-
acting with dispersionless optical phonons, it is
known that~s the continuum is separated from E(k)
approximately by (do. Further, there are several
theories which give the real part of the self-en-
ergy of the polaron for different regimes of the
coupling constant ~B „. For intermediate coupling,
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the self-energy has been defined by Eqs. (l. 5) and
(l. 6). Thus, the energy of an electron and a hole
with bare mass m, and m„and momentum k are

E,(k) = h+ k'/2m„* —o., (oo, (3.4)

~~ k'-q

~k-q

FIG. 3. Polarization
corrections to the Coulomb
interaction.

Eo(k) = —k /2m(*, —a„(oo . (3. 5)

We may also have some knowledge of Z(k) from
the Gellman-Low relation

tion part'o S(k —k ). In the long-wavelength limit,
k —}'o - 0 and to O(Eo/b), the sum of the contribu-
tions from Figs. 2 and 3 ~eads to a screened inter-
action between the electron and the hole:

I.(k -k') =- (- I/. .) (4«o/lk -k
I

o) (3. 10)

(3. 6)
where (p(., and g.„are the unperturbed and perturbed
ground-state wave functions, respectively. The-
ories such as those of Lee, Low, and Pines pro-
vide us with reasonable expressions for g„".

We may summarize the above discussion by
writing the single-particle Green's function as the
sum of a coherent part G„whose poles are at the
quasiparticle energies, and an incoherent part
G„,(k, f):

a result derived earlier by Sham and Rice.
The inclusion of vertex corrections is expected

to alter the above effective electron-hole interac-
tion. However, before discussing the vertex cor-
rections to diagrams 2 and 3, let us consider
the contribution to I(k, k; q) coming from the ex-
change of LO phonons. The simplest diagram that
contributes is shown in Fig. 4, where the wavy line
represents a phonon propagator. The contribution
from this diagram to irreducible particle-hole in-
teraction is

G(k, f) = G,(k, f)+G„,(k, t),
where

Z.(k) Z„(k)
f —E,(k)+i6 l —E„(k) —i6

(3.7)

(3. 8)

(~ ~ )Us 4m I

Ik-k I

r oD(k-k; f —g),
(3. 11)

where the phonon propagator D (q, g) is given by

and D (q 0) =I/(& &o+ i6)+1/(f+ (oo i6) . (3. 12)

G„,(k, g)= ' ' dE
" S (k)+E

P +co

+! " ' dE (3 9)
-s (k) s &-E

h

In Eq. (3. 9) p, and p„are the spectral weight func-
tions and E, and E„are appropriate cuttoff ener-
gies which separate the quasiparticle peaks from
their respective incoherent parts.

B. Irreducible Particle-Hole Interaction

The simplest contribution to the irreducible
particle-hole interaction I(k, k'; q) comes from the
unscreened Coulomb interaction between electron
and hole and can be represented by Fig. 2. This
diagram and its contribution to the electron-hole
interaction have already been discussed in Sec. II.
The next important contribution to I(k, k; q) comes
from the inclusion of polarization diagrams due to
Coulomb interaction alone. In the interaction line
of Fig. 2, we may insert the improper polariza-

We shall use the experimentally measured values
of &0 and n, „and ignore phonon lifetime effects.
Therefore, we do not consider any polarization
insertions in the phonon line. For the same rea-
son the diagrams of Figs. 5 and 6, where both Cou-
lomb and phonon lines are present, need not be
considered. The diagrams of the type of Figs. 5

and 6 merely modify the coupling constant and the
phonon energy. The contribution to the electron-
hole interaction from the simple phonon exchange
represented by Fig. 4 is calculated in Appendix A.
Other diagrams contributing to I(k, k, q) are (i)
retardation diagrams, Fig. 7, where two phonon

lines or a phonon line and a Coulomb line cross
each other, and (ii) vertex corrections to all the

above. We denote by I» the contribution of all di-
agrams of the type of Figs. 4 and 7.

In the BS equation (2. 4) for the particle-hole t
matrix, the vertex~ corrections occur in the com-
bination G, &, I~&G& for the important set of inter-
actions. Here, I= I»+I„A „refer to the vertices
associated with the electron and the hole, respec-

k'» p'k -q

k~ »k-q

FIG. 2. Lowest-order
Coulomb contribution to I,
the irreducible particle-hole
interaction.

k'» I

k-q

FIG. 4. Lowest-order
phonon exchange contribution
to I.
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~ k'-
q

&k-q

FIG. 5. Class of dia-
grams contributing to I
with both a Coulomb line
and phonon exchange. k-k

P k'-
q

' k-q+k

, k-q

k-k

(b)

k -q+k'

i k-q

tively. The vertex A, „ is, in general, a function
of k and k —k = (t, g). The effect of including the
vertex corrections is seen to be twofold: a modi-
fication of I and an effective change in the single-
particle propagators G„&. In general, these two
effects cannot be separated unless A(k, t) is a sep-
arable function of k and t.

The vertex corrections due to Coulomb interac-
tions are negligible' for k /2m, „«6 and may be
ignored for insulators with a large gap. Only the
phonon contributions to ~, „are expected to be im-
portant. The lowest-order vertex corrections to
A, is shown in Fig. 8, there being a similar con-
tribution to A„. The contribution to A, (k, t) from
Fig. 8 is calculated in Appendix B. We utilize
these results to discuss the phonon contributions to
the vertex corrections in two limiting cases de-
termined by +o/E~ or equivalently r,„/r,*„. Here
Ea is defined as the energy to separate an electron
and a hole to infinity without varying the self-en-
ergies they had in the bound state. Thus E~ 4 E~ .
The Bohr radius corresponding to E~ is denoted by

We will show below, that in the two limits
&uo/E~» 1 and eo/EB«1, the effect of A(k, t) on the
single-particle propagator is more important than
on the interaction.

CaseI, uo &&E&

FIG. 7. (a) and (b) Retardation diagrams.

lim&, (k, t)=&', (k) =1+sz. (k)

tie

(3. 16)

&',(i, E,)=[Z,(i)j '. (3. IV)

It is interesting to note that to order E~/ao, the
phonon vertex corrections to I,„and I, differ„ this
is so because the analytic properties of I» and I,
differ.

Now we examine how the vertex corrections alter
the effective particle-hole interactions. We ex-
pand &,(k, t) in powers of t, t /2p, *~o being in the
present case a small parameter. From Appendix
B we find the t dependence of A(k, t) to be

(3. 15)

Thus in the limit E~-0 and t- 0, the vertex cor-
rection and the quasiparticle renormalization can-
cel each other. In fact the cancellation in this lim-
it is exact (not restricted to the second-order per-
turbation theory) as is seen from the Ward iden-
tity, '

From Appendix 8, we have for t=0,

E 2

+ 'g i +0 —,(3. 13)

I

(dp

On the other hand, if we expand I (t), the Fourier
transform of the r-space potential given (in the
local approximation) by Eq. (4. 12) in terms of the
parameter Es/~o, we find that

4~a' E', 4~e'f(t)- =, +—'
o~& ~ &o )U~+o & &o

3 p, +~p ~o 6 6p 2 p.+E&

(3. 19)

(3. 14)
The quasiparticle renormalization to the same or-
der of approximation is given by' '"

+' k'-
q

kll

(a)

p k-q

+,k-q

kit

(b)

y'k-q

k-k

ik-q

FIG. 6. Class of diagrams contributing to I with both
a Coulomb line and phonon exchange.

FIG. 8. (a) Phonon vertex correction to the phonon-
exchange diagrams. Only the electron vertex is shown.
(b) Phonon vertex correction to the Coulomb interaction
between the electron and the hole.
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If now we consider AIA. for its t dependence, we
find that the vertex contributes additional terms to
the effective interaction (i. e., t-dependent terms~ )
which are at least of O(Es/~0) ~ . This is to be
contrasted with the self-energy alterations due to
A which are of O(E~/~0). Thus in this limit we

may regard the modification of the effective po-
tential by the vertex to be relatively unimportant.

CaseII, E& ))mo

In this limit, as discussed in Sec. IV, it is more
appropriate to start from the bare electron and
hole propagators (no polaron self-energies), and
as a first correction consider the effect of includ-
ing the vertex corrections on the potential and the
self-energy. The self -energy and the potential
alteration themselves are O(eo/E~). The second-
order phonon vertex correction to the Coulomb line
[Fig. 8(b)] in the limit (+o/Es) «1 is

t'(oo ~ 5o.'e IkI &0
8.c(~& ) + 2 +e~ P +

&E~ pE3 E

A, ,„(k, t) has precisely the same (&o/E~) depen-,
dence with different coefficients arising from the
different analytic properties of I, and I,„. The
above expansion is valid for small values of mo-
mentum transfer t only. In this limit the most im-
portant modification of the potential is a term in-
dependent of t. ' This comes from the product of
the t ~ term of the vertex and 1/t term of the po-
tential I(f). This t-independent term is O(roo/
E~)'~', whereas the self-energy corrections are
O(&uo/E~). The first t-dependent term goes as
(eo/EI3) ~ . For large t, the vertex falls off as
(eo/E~) (1/ It I ) and the modification of the poten-
tial is again expected to be small as the additional
terms are O(&uo/EB) (1/I t I'). From the above argu-
ment we conclude that the modification of the po-
tential I(t) due to vertex corrections is less im-
portant than the self-energy corrections to the
bare electron and hole propagators. It is to be
noted that in this limit, we have here a Migdal-
like theorem where all the vertex corrections
can be neglected.

The intermediate case where ~0/E~-1 is quite
difficult to handle in general. We shall utilize the
results of the two limiting cases to develop a suit-
able interpolation procedure.

Before obtaining the form of the effective elec-
tron-hole potential, we examine the importance of
retardation (nonladder) diagrams. These are
shown in the Figs. 7(a) and 7(b). In Fig. 7(a) two
phonon lines cross each other. The calculations
are straightforward but tedious. In the small t

I

U
~k-q

FIG. 9. Diagram contrib-
uting to the effective electron-
hole interaction which are ex-
pected to be unimportant (see
text).

IV. %LAVE EQUATION FOR EXCITONS

In this section, we utilize the single-particle
Green's functions and the irreducible particle-hole
interaction obtained in Sec. III to solve the homo-
geneous equation i'or the f matrix (2. 4). We start
by considering the two limiting cases.

A. Case 1, r,„&,*&( & uo)

In this limit, the vertex corrections cancelled
the quasiparticle renormalization factor, the cor-
rections beyond this cancellation being O(E's/~0).
We therefore omit both Z„„and A„„and use for
I(k, k ) the following expression:

1 1 2 pg ('do

«„Ik-k I' «„«0 Ik-k'I'

x D(k -k~; g —K') . (4. 1)

When I(k, k ) is energy dependent, the derivation
of the effective-mass equation for the exciton is a
little more difficult. The t (k, 0 ) matrix depends
upon g and therefore the f integration in Eq. (2. 4)
cannot be carried out in general. However, a pole
approximation to the exciton Green's function (see
Sham and Rice') leads to an effective-mass equa-
tion (see Appendix A) for the exciton wave function
A (k+Q, k) in the momentum space. The exciton
wave function is given by

The exciton wave function in momentum space
A(k+Q; k) satisfies the integral equation

(4. 2)

limit, the lowest-order contribution is proportion-
al to t in general but proportional to I t I when the
electron and the hole masses are the same. These
can be neglected compared to 1/It I contributions
associated with the ladder diagrams. For large
momentum transfers, their contribution to I falls
of as 1/It i4 and can therefore be neglected. The
diagrams of type Fig. 7(b) are also found to be un-
important and so are the diagrams of type Fig. 9
as has been shown by Kohn.
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(
& —v —(n, +e„)&@0+2 ~ +

2 A(k+Q;k) =Z V,«(k, k;Q&o)A(k'+Q;k'),
my m$ ~Oy

(4. 3)

where

4' 1 (do 1 1 k" (k+q)'V. (&, &';9~)= —
~& ~a

——2' ——— -~ —( .+~a)~0+2, +
E~ ~~ EO m4f m

Jg

k (k +Q)+ + —Q) — Q8+ QI (do+ + . 4. 4
e* 2m'*

For simplicity we shall put Q, the total mo-
mentum of the exciton, equal to zero (this is justi-
fied when the electron-hole pair are created by op-
tical absorption for a direct gap material). Recal-
ling that the binding energy of the exciton E~,

Es = + —& —(c's+ o'a) &0 (4. 6)

4'~
V ff(k k 'Es)=- lk-k I

(Ei+k /2p*)A(k) =Z-„, V,~, (k, k; Es)A(k ),
(4. 6)

where

k kIa p

+ EB+ +
2ma* 2me*

(4. V)

We now transform the wave equation (4. 6) to co-
ordinate space. The r-space wave function 4 (r)
is related to A(k) by the relation

e(r)= A(k)e"' 2w' ' (4. 8)

r = r —r„being the relative coordinate of the elec-e h ~I
tron and the hole. V,«(k, k; E~) depends sepa-
rately on k and k. Thus, V,« is nonlocal, and the
wave equation for the exciton becomes

k k
E — 4(r)= V„, (r, r )4(r') dr', (4. 9)2 p,*

where

e - -& 1 e p.*up
2 2

V„, (r, r )= — 5(r -r )+—
2 Ir —r'

I

m~+ g mg

I

M* '„r+—"r' exp(-[2p, *(E~+(go)j'~'~ r —r'~j. (4. 10)

B. Case 2, ex ~e h~EB++~o)

In this limit, there is no simple way to estimate
the contributions to I from the electron and the
hole vertices ~, and A„. As has been pointed out
in Sec. III, the vertex corrections in this limit
should be large enough to eliminate the self-energy
clouds surrounding the interacting electron and
hole polarons. We saw that if we start from a
bare electron and a bare hole, then the vertex cor-
rections are O(~0/EB). For this case, therefore,
it is more appropriate to start from the other ex-
treme where the interactions with phonons are
treated in second-order perturbation theory. The
unperturbed states are the exciton states obtained
in the potential —I/» r. In this analysis, it is
seen that the change in E~ of an exciton state due
to phonons has two parts, both of order ao/E~ .
One of these terms can be interpreted as the

change in electron and hole self-energy, and the
other as a change in the interaction energy. A
diagrammatic representation of the change in the
interaction energy (up to second order) is provided
by a single phonon exchange between the electron
and the hole (not the multiple scattering as implied
by treating the single phonon exchange as the ir-
reducible particle-hole exchange) allowing only for
the multiple scattering due to the Coulomb inter-
action.

To see the above more clearly, we consider the
local potential introduced in Sec. IV C by Eq. (4.12).
By a further approximation one obtains V,»(r) giv-
en by Eq. (4. 13). If we expand V„,(r) in powers of
urz/Ea, we see that in the limit ~0/E~-0,

V,»(x) = — + —0 ~ ———— . (4. 11)
1 1 m 1 1 1

&r r E~ 4 &„

Thus, the first correction to the potential is
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O(~o/E'o). The above analysis shows that if in Eq.
(4.9) one uses the potential V», (r) and self-energies
(both the mass and the momentum-independent
part) due to phonons obtained from a second-order
perturbation theory, then the calculated binding en-
ergy is accurate up to O((do/E's). We expect this
conclusion to be true for all m, /m„. We shall
utilize this point along with our findings for the
case of opposite extreme, r„»r,*„, to obtain a
suitable interpolation procedure for the interme-
diate case.

V„,(r)e(r) = f V,«(r, r')e(r')dr' . (4. 12)

For simplicity we may use for 4(r) the ground-state
hydrogenic wave function of energy —E&. Ne have
not been able to perform the integral in (4. 12) ana-.

lytically. Numerical evaluation of V„,(r) has
been done and will be discussed in Sec. V.

Since V,«(r, P) contains the factor e o o o ' '

we can obtain an approximate local potential by
putting r' = r in the terms inside the large square
brackets in (4. 10). This approximation removes
the explicit m, /m„dependence of the potential.
We can then perform the integral (4. 12) analytical-
ly to obtain

e' 1 2 f 1 1'(&Es '~' 1v„(r)=- ——+-I—r -(-'o r (c„co&~~o (2P*(do)'~o

x(1-elf(2~'E, )'"- [2m*(E +~ )]'") ))

(4. 13)
Comparison with the numerical results shown that
(4. 13) is an excellent approximation to the actual
potential for Eo» &uo. In (4. 13) we have used p*
which is the polaron reduced mass and is therefore
appropriate for the case E~« ~p. For the opposite
limit p,* should be replaced by p, . In the case when
either m„or m, -~, the donor or acceptor im-
purity limit, the integration in (4. 12) can also be
performed analytically. %e obtain

C. Discussion of V, gag'g')

We now discuss V,ff(r, r') given by (4. 10) in de-
tail. The first thing to note is that the range of
nonlocality is [2p*(Eo+&oo)] '. This is to be com-
pared with the characteristic length in the problem,
viz. , (2p~Eo) '. We conclude, what we noted in
Sec. I, that nonlocality scales with the parameter
Eo/&o. To gain physical insight, we may handle
the nonlocality in an average fashion by convoluting
V,«(r, r') with a suitable wave function to obtain
V...(r):

)1/2
X 2p* ) (4. 15)

The strength of the r term in the potential, given
by (4. 15), depends upon the product (c(,o.'„)~~o. The
r 2 contribution to the potential may be understood
physically as the additional contribution to the
electron-hole potential coming from the dynamic
polarization of the lattice by the electron and the
hole. Sha,m has obtained a similar r potential
in his study of the shallow impurity states in semi-
conductors. In that case, however, the dipoles
are created by the static polarization of the lattice
by the impurity ion.

The form of the potential V,»(r) when @ is p-like
is given in the Appendix C.

D. Intermediate Case (r,„-p,*& ) and the Interpolation
Scheme

We have seen that V„,(r) given by Eq. (4. 12) be-
haves appropriately in the bvo limits. Further-
more, the effective potential is seen to be unaltered
up to O(~o/Eo) in the large Es limit and up to
O(Es/~)~~ o in the small Es limit if one includes the
t-dependent part of the vertex corrections. %e
make the ansatz that the form of the potential re-
mains the same even in the intermediate case.
The important changes in the intermediate case
takes place in the electron and hole yropagators.
%hen the electron and hole interact to form an
exciton, they no longer behave either as free polar-
ons or as bare particles. Let us denote the mass
and the self-energy of the electron and the hole in
this intermediate case as m,*,*I„o,*,~&, respectively.
In the limit r,„»r,*, m*, * approaches m,*, the polar-
on mass, and 0,**approaches the value —a,&p.
In the opposite limit, m,**approaches m„ the bare
electron mass, and cr,**approaches the value zero.
A similar set of conditions hold for the hole, in
this case r„* and r,„being the relevant lengths to
compare.

To obtain E~, let us substitute the modified
electron and hole energies

E.(&) = ~+ I&l'/2m.**+~.**, (4. 15)

&exp(((2u, z ) —(2g (z~+roo)]' )r(I(, ((4(

where p,*=m,* or m* as the case may be. For
arbitrary m, /m„numerical results are given in
Sec. V.

Certain qualitative features of the potential V~,
will now be discussed. For large r, the exponential
term falls off rapidly and can be ignored and the
local potential has the form

1) E )~~o
V. (r) = -e' —+2 ———

I

charge r ~p ~~ p & +p&
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in Eq. (4.4). In the Q=0 limit, the Schrodinger
equation becomes

(E' + 0'/2 p, **)A. (k) =Z„-, V„,(k, k'; E' ) A(k'),
(4. 18)

where V,«(k, O'; Es) is same as that given in Eq.
(4. I) with Es, m,*„replaced by E~, m,**„. The
local form of the potential also gets modified in the
same way. The quantity E~ that enters in the
Schrodinger equation (4. 18) and the potential is
given by

Since E~ is defined as the difference between the
internal energy & of an electron-hole pair and the
energy of two free polarons, we have

—E~ + (gee ~g) ~ (ops ~g) (4. 20)

+2
m**=m — "" +m*+e h ex

e, h e, h g2+ 2 e, h ~2+eh +ex eh ex
(4. 22)

2
0.Q Q &ex

eh eh g2+ 2
e,'h ex

where x„ is defined in Eq. (4. 21).
We have used other forms of the interpolation

scheme and find that E~ is not very sensitive to
the choice, although the form of Eqs. (4. 22) and
(4. 23) gives the best agreement with the experi-
ment (see Sec. V). The relative insensitivity of
E~ to the interpolation scheme is due to the fact

E~ (which was qualitatively defined in Sec. III)
can be physically interpreted as the energy re-
quired to separate an electron and hole apart with-
out deforming their self-energy clouds, the self-
energy clouds in this case being those of interact-
ing electrons and holes rather than of free polarons.
It is clear that the effective exciton radius y,„ that
we have been using to compare with y,*h should be
related to E~ and not E~. This is given by

-1 (2 ggEs )1/2

It is E~ and not E~ that determines the radial ex-
tension of the exciton and hence the oscillator
strength. For intermediate and strong coupling
cases where n, „are quite large, one expects an
appreciable difference between E~ and E~. In
order to obtain E~ from E~ one needs to know

m,**„and cr,*~h. We know their values in two limit-
ing cases and also know on what basic parameters
they should depend upon. An interpolation scheme
between the two known limits may therefore be
used. The interpolation scheme that we have used
is consistent with the first corrections to the self-
energy, and is

that the effects of m,**„and o,**„onE~ are in op-
posite directions.

V. RESULTS AND DISCUSSION

A. Discussion of the Potential

To find out how the local potential depends upon
the parameters &0/e„, m, /m„, and EB/&uo, we
have numerically evaluated V„,(r) using Eq.
(4. 12). For convenience we have plotted the
quantity

which defines an effective g-dependent dielectric
constant. For numerical calculation we have
chosen A = q = 2 p, = q„=1.

In Figs. 10(a) and 10(b) we have plotted e,„(x)
as a function of r for several values of m, /m„and
E~/coo. From these figures we can see that V„,(x)
depends strongly on Es /&uo whereas for a particular
value of Es/&uo, the dependence on the mass ratio
~,/~„ is rather weak. The potential approaches
its asymptotic value for z- 0 quicker, the larger
the ratio E~/&eo Conve. rsely the asymptotic value
at g- ~ is approached quicker the smaller the val-
ue of Eg /(dp.

To find out how significantly the ratio m, /m„
affects the potential we have evaluated it in two
limits: (a) m, /m„=0, the impurity limit, V, ,(r)
and (b) m, /~„=1. For comparison, in the same
figures [11(a) and 11(b)]we also plot V„,(r) which
is, by virtue of the approximation made, indepen-
dent of m, /m„. The following observations can be
made: For E~/&oo» 1, the difference in the three
potentials is not significant. It is noteworthy that
for x=0, the potential with m, /m„=l is significant-
ly different from m, /m„=0 (or ~). For the im-
purity potential there is a correction for x= 0
proportional to ~0/E~, as can be seen directly
from Eq. (4. 14). It is clear that for pz, /m„- ~
and E~/u&0- ~, the potential will depend on the
order in which the two limits are taken.

V„,(x) is an excellent approximation to V„,(z)
which justifies our use of V„,(z) in an earlier cal-
culation. 2 However, there is some difference;
V„,(x) is less attractive than V„,(r) near the ori-
gin and more attractive for large z. In the pres-
ent work we have calculated E~ (actually E~) using
V„,(x) for computational reasons. This seems
to be quite justified because for the cases of ex-
perimental interest, Es/ufo»1. We believe, how-
ever, that for large ~, /~„and small E~ j&uo one
should use the potential V„,(~) instead of V„,(y).

B. Calculation and Comparison with Experiment

To obtain the exciton binding energy E~, we have
solved the Schrodinger equation (4. 18) numerical-
ly to obtain E~ using V„,(r) for the potential ex-
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for TICl and TlBr is seen to be smaller by a factor
of 3. 5 than one would have calculated from experi-
mentally measured E3. The radius (r) differs
from (2p**E~) ~ because the Schrodinger equa-
tion that gives E~ is not hydrogenic. However, we
expect (r) not to differ appreciably from z,„. For
the weak coupling system, y,„does not differ much
from the one obtained from the experimental F~.
The prediction made here concerning the exciton
radius can be verified by measuring the diamag-
netic shifts. As mentioned in Sec. I, these con-
clusions are applicable also to oscillator strengths.

C. Best Hydrogenic Potential

The local electron-hole potential V,»(r) of Eq.
(4. 13) can be interpreted as if the bare Coulomb
potential —e /x is screened by an r-dependent di-
electric function &,«(z). As we have already dis-
cussed, q„,(~) approaches e„at small distances
and qp at large distances. We can define an aver-
age dielectric function q,„by

(5. 2)

ground state, &,„(E~)with a hydrogenic model
works beautifully. The values of exciton binding
energies E~ with the above values of E8 are
practically the same as given in Table II.

For calculating the energy of other states, one
could average (4. 10) [or for a rough calculation
(4. 10) and (5. 2)] with respect to the appropriate
wave function. For the 2p state, the effective
V„,(x) is given in Appendix C.

D. Comments on the Potential Derived by Haken

We would like to make some comments regarding
the form of the effective electron-hole potential
derived by Haken. Haken used a variational prin-
ciple to obtain this effective form for the potential.
His variational wave function was a linear combina-
tion of functions, which were products of electron
and hole polaron wave functions U5 a(r, „,b~).

However, in deriving the effective electron-hole
potential he assumed U& to be independent of the
momentum p. His form of the potential, which we
denote by V„(r), is given by

v„„,(~) = —e'/~. ,~ . (5.4)

One can calculate Es from Eqs. (5. 2) and (5. 3) and
using Eqs. (4. 20) and (4. 23) obtain E~. E~ is
given by the equation

(5. 5)

In principle, one can solve (5.4) self-consistently,
allowing p, (E~) and &„(E3)to vary. For simplic-
ity, we have used p, (E~) = p, , the bare reduced
mass, and p(E~) = p, ~*, the interpolated reduced
mass of Table II. The actual result should lie in
between these two values if one carries out a self-
consistent calculation. We have calculated E~ for
TlCl, TlBr, and MgO. The two sets of Z~ are,
respectively, (80 and 90 meV), (56 and 61 meV),
and (309 and 325 meV). Taking the mean of these
pairs of values we have

E8 =85 meV for TlCI

=58 meV for TlBr

= 317 meV for MgO .

These values of E~ compare very well with those
obtained from an actual numerical solution of the
Schrodinger equation. This tells us that for the

Using the hydrogenic form for g(r), we obtain

1 1 f'1 1 E~= —+4I ——— In(-,'[I+(1+re /E' )
~ ])

av Ep (E~ Ep p

(5. 3)
and the electron-hole potential in this approxima-
tion has the hydrogenic form

(5.6)
where g, „are the inverse of polaron radii, defined
in Eq. (1.4). Bachrach and Brown have used this
potential to calculate the exciton binding energies
of TlCl and TlBr. Using the known polaron mass-
es (p*), they find E~ =152 meV for T1Cl and Es
=75 meV for TlBr. The experimental values given
in Table II for these two are (11+2) and (6+ 1)
meV, respectively. The theoretical values of E~
are reduced if one uses the bare reduced mass p
instead of p,*. The agreement with the experiment
is still poor.

The inadequacy of Haken potential is due to the
nature of the variational wave function. By choos-
ing it to be a product of two polaron wave functions,
one does not allow the wave function to represent
correlation effects, whereby when the electron
and hole are close together, most of the polaron
effects, are absent. In addition, the p dependence
of U& is expected to be quite important. Recently,
Shindo" has also approached the problem of effec-
tive electron-hole interaction from a t-matrix
point of view. As we have indicated in Sec. IV,
the energy integration in the Bethe-Saltpeter equa-
tion for the f; matrix cannot be carried out when the
irreducible particle-hole interaction is energy de-
pendent. We have carried out the energy integra-
tion by making use of the spectral representation
of the particle-hole t matrix (equivalently the ver-
tex function). On the other hand Shindo makes an
approximation at this stage; he uses a form of the
t matrix that one would obtain in the gbsence of
the phonon-mediated interaction I,h. This form of
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the t matrix is not correct when I,„is included.
this sense, his electron-hole potential, as he
points out, is correct for small n only. Shindo's
results may be obtained for small o. and small
E~/~, in our formalism.

E. Bound Polarons

The simpler problem of impurity levels may,
of course, be handled in the formalism we have
employed by letting one of the masses go to infinity.
One has to use the potential V, ,(x) of Eq. (4. 14)
in this case. However, the interpolation scheme
we have developed on physical grounds is not di-
rectly applicable to this case. This is because
there is no cancellation of polaron self-energies
arising from the dynamic polarization around both
the electron and the hole. On the other hand, one
might interpolate just the electron (or hole) self-
energy between its polaron value and zero using
the parameter E~/&do, where Z~ is the binding
energy obtained for the impurity potential V, ,(r).

F. Approximations Made

The major analytical approximation in this work
is the ansatz that the effect of the vertex correc-
tions plays an important role in altering the self-
energies of the interacting electron and hole and

does not affect their mutual interaction. We have
shown that this is true in two limiting cases. The
success of our ansatz (in that it predicts the bind-

ing energies very well) for the general case poses
the theoretical question of its justification. This
problem may be studied by looking at the spectral
properties of the vertex functions.

In arriving a the conclusion that the leading cor-
rections due to the vertex are smaller for the mu-
tual interaction than for the self-energy, we have
made two approximations: neglect of the incoher-
ent part of the single-particle Green's function and
the pole approximation to the exciton Green's func-
tion. We now justify these on heuristic grounds.
For E~ «~0, the incoherent part does not contrib-
ute because the continuum is separated by wo from
the pole; for E~ +& wo, we expect that very little
weight is left in the incoherent part. Thus, the
first approximation would appear to be justified.
The second approximation is related to the first;
it amounts to assuming that an exciton is a com-
bination of a quasiparticle and a quasihole. In
the two limits, this would again seem to be justi-
fied; in one limit we have polarons, in the other,
bare particles.
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APPENMX A: METHOD FOR PERFORMING ENERGY
INTEGRATION S

It was pointed out in the text that when the ir-
reducible particle-hole interaction I(k, k") is en-
ergy dependent, the t(k, k') matrix does not satisfy
the simple Schrodinger equation {2.8). In this case
the effective-mass equation (EME) for the exciton
is obtained when one makes the pole approximation
for the exciton Green's function (see Sham and
Rice ). To obtain ttus EME, one has to integrate
over the energy variables f and g' of t(k, k'). This
is done by analyzing the analytic property of
I(kg, k"t'") as a function of both g and g". The
general procedure for carrying out the energy in-
tegrations is to separate I(k, k") into four parts:

I(k& k )=I„(k k )+I, (k, k )+I,(k, k")+I (k, k"),
(A1)

where I"has poles in the lower-halves of both the

f and g" plane, I has poles in the upper-halves
of the g and f" plane, I' has poles in the lower-
half of the g and the upper-half of the f" plane,
and I ' has poles in the upper-half of the & and the
lower-half of the g" plane. The g and g" con-
tours are then closed such that one avoids the poles
of I(k, k") and only the electron and hole poles
contribute to the energy integration. Thus, after
carrying out the g and g" integrations, one has

I(R, k"; (uQ) = I„((u, a) + &&,(k —2), (u + &&,(k" —~2Q))

—I,((u, E,(k+ Q), (u+Z„(k" ——,'Q))

—I, ((o, (u + Z„(k ——,'Q), Z,(k" + Q) )

+I (&&, Z,{k+-,'Q), Z, (k" + —,'Q)) . (A2)

ln Eq. (A2), ~ is the internal energy of the exciton,
the second arguments of all the four parts of I
refer to the g variable, whereas the third argu-
ments refer to the f" variable.

The contribution to I(k, k") from the single-pho-
non exchange is given by

I,„(k, k")

4ge v
Ik-k"

I
g" —( —(go+ jp g" —&+~0+ jp

!AS)
where v = 2&so(1/q„—1/qo). The first term inside
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the large parentheses of E(l. (AS) has poles in the
upper-half of the f plane and the lower-half of the

plane and is e(luivalent to I,(k, k"). The second

term has opposite analytic property and is equiv-
alent to I, (k, k"). After carrying out the f and
g" integrations, one has

2 1 1
lk —k" I' (~+X,(k" —()) —E,(k+!(()—~, R.(k" +-,(() —(a —Z„(k —*(()+~o) (A4)

APPENDIX B: PHONON VERTEX CORRECTIONS TO
(i) COULOMB AND (ii) PHONON EXCHANGE INTERACTIONS

While carrying out the & and &' intergrations one
has to study the analytic behavior of I(k, k') as a
function of g and f'. On inclusion of the phonon
vertex corrections A(f, f ) it is the analytic proper-
ties of the Al that are important. Although A(f, f')
is the same for both cases (i) and (ii), the analytic
behavior of I is different for these two cases. We
therefore consider these cases separately.

(i) Phonon correction to the Coulomb line. Let
us consider only the electron part, the hole part
being exactly similar. The total contribution to I
is given by [see Figs. 8(a) and 8(b)]

I(k, k') = A, (k, k') I(k, k')

= v(k -k') j G, (k -k")G..(k' - k")

1x, , „- . (BS)—(vo —E,(k -k )+iq

Since the contribution to I from I is just v(k -k'),
which is independent of g and f', the entire g and
g' dependence is given by the term inside the
large parentheses. As a function of both g and f it
has poles in the lower-half plane and is there-
fore equivalent to I„. Therefore, the g, g' inte-
gration gives

I(k, k'; &u) = v(k —k')4ve v

dk" 1 1
(2v) Ik"

I &u+E„(k) —u&0- E,(k —k")

1
(a+z„(k') —(oo —R, (k' —k"))

2 l I I i'

D(k(( (() 47Te () dk df
Ik"I' (2w)' 27(i '

-=v(k-k')A, ,(k, t; ~) . (B4)

where v(k-k') is the Coulomb interaction screened
by the high-frequency dielectric constant q„. We
rewrite (Bl) a,s

dk"
I((o, g', g) = v(k —k') 4m e'v

~

—,—

PT(

We consider (B4) for small t The .terms propor-
tional to t ~ k" vanish when one carries out the k"
angular integration. Also we look in the limit of
small k to get

(B8)

l' —(,
"—E,(k —k")+iq

1
(' —("—Z.(k'-k")+iq)

where

A' =1+ (B8)

X
dg"

o+ i& &" + vo —i5 2@i

(B2)
The first term of the phonon propagator ha, s a pole
in the lower-half of the f"plane. For this term
we close the contour in the upper-half plane, and
both the electron poles contribute. The second
term has poles in the upper-half of the g" plane;
we close the contour in the lower-half, and there
is no contribution from the electron poles. There-
fore, the f" integration gives

"dk"
I((()( g ) f) = v(k —k )4'(('e v

(2w)

So., t /2p Ee

5n lkl2 (oo
"' 1

+E Q) +Q (B8)

(ii) Phonon correction to the phonon line [see
Fig. 8(a)]. We have

1 dk" df"
)Ik"I Ik-k'I' (2.)' 2-

A, »(k, t)I»= (4() e v)' G, (k —k')G, (k' —k")D(k")

1
l —(do —E,(k —k")+ig which gives

(BO)
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(«e")' I" dk"
(2m) Ik I2II; —f"—E (k —k")+iq g' —g" —E (k' —k'')+jq 2pj

rI(
1 1 1 1

g" —coQ+ i5 g" +4)Q —8 g' —g —GrQ+ i5 g' —g +(dQ —i5
I

The g" integration can be performed exactly in the manner as before, and one has

(B10)

(4oe v) dk" 1 1
lk —2't ' (2o) tia" to 2 —ooa —Z(k —,k")oio) 2' —aoa —Z, (k' —k")+ik)

x, —, . (B9')
~ ~

1
g' —f —eQ+ i6 g' —g + vQ —i5

I,„, as distinct from the previous case, depends
on g and g', and has poles in both upper- and low-
er-halves as functions of f and g'. If we take the
first phonon term, we see that the product

A, ,„I,„has poles in the lower-half of the g' plane,
but has poles both in the upper- and lower-halves
of the & plane. Onq has to separate this term
such that these two poles in the f plane are sepa-
rated. A similar situation arises for the second
phonon term as a function of ('. One has, there- where

1
oo+Z, (k) —Z(k')-ao "'" ' ) '

(B11)

fore, four ter~s. After studying the analytic
properties of these four terIns and carrying out the

&, g' integrations, one has

(4me v) 1
Ik —k'

I (u+ E (k') —E,(k) —(uo

*dk" 1 1 1

l (2m)' lk" I' (u+E„(k') —(uo —E„(k'-k") (d+E„(k') —2&so —E,(k-k")

(u + E„(k') —(uo —E.(k)x 1+ ——" ' ' „.811'

Again, A, ,„(k, t) can be expanded for small values of t and k:

where

(B13)

and

APh —2 t~ 3/q 1 2 1 1., a- —
~ a 2 km. 2o oooo

—
koo (z ooo )ohio)

1E+(g 2 1 1 3 1
+— —X—— 3/3+22 oooo oooo (Z, oooo)" o

kaao (Z, oooo)ooo)

2 km, ~ a aoo(Z oooo) koan (Z oooo) 8ooo(Z + o) )

~/3 ~B 1 1@4m' 'u&o 2o)o{Ea+2(2)o) 2(do (Ea+o)o)
——(2m. ) —

s X+ o ohio+, -,y, 2
(B14)

where
1

(E~+(uo)"' (E, +2(d )"'
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In (C3), we have

where

+ ' o Y, (815)

y'= [~o/«s+ ~o)l"' - [~oj+'s+ 2~o)1"'

In (3.13), (3.14), and (3.20) the appropriate
limits of the above expressions are taken for the
case m ='mg.

APPENDIX C: LOCAL POTENTIAL FOR THE p STATE

VVe have the simplest form of the p-state wave
function

q, (r) = a,re "1,-.( r). (C1)

v~(r ) = —e [1je „r v»(r)], (c2)

where

1 1 X a(r) C(r)
l)yh(r) = — + + +

c fo r (c3)

While obtaining the local potential for the s state,
we had approximated [(m,*/M*)r+(mf /M*)r']
&&(Ir —r'I) by r/Ir —r'I. We make a similar
approximation here. The potential for the p state
has the form (for simplicity we denote p, **as g and

E~ as E~; in the actual potential p, **and E~ oc-
cur)

o 2&o II,& &o 5 +a

xexp(- C2I (Es+ ~o)1'"—(2i &s)'"}),

&&ll -exp]. l[2p(&s+(uo)]"'- (2~~s)"'lr}

For large z, the leading contribution beyond the
—1/&or potential is again 1/r, and is proportional
to (Es/&uo)'~ as in the case of the s-state potential.
The potential, however, is twice as large as that
for the s state and has to do with the angular charge
distribution of the p state. Although the potential
has terms going as 1/ro and 1/r4 they do not lead
to any singularity at &=0. This is easily seen by
expanding the exponentials occurring in B(r) and

C(r) for small r. The first term of C(r) goes as r
near the origin. Therefore, there is no 1/r
contribution. The coefficient of the 1/ro term also
vanishes. The leading nonzero term is O(1/r )
and has no divergent contribution, as we are deal-
ing with a p state.
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The effective-mass equation for an exciton in a polar semiconductor is derived, including the
corrections to the effective electron-hole interaction originating in electron (hole)-optical-
phonon interaction. It is assumed that the electron (hole)-phonon coupling is weak (the Froh-
lich constant u~ „«1) and that the binding energy of the exciton is small [p = (Es/h~p) ~~2«1].
The electron and hole self-energies and the irreducible vertex part are calculated to include
terms up to the order O,'P Izp. The homogeneous Bethe-Salpeter equation is reduced to a hy-
drogenlike equation containing additional terms of the forms p~ „and d (r). They are of the
order ep48&p and correspond to the nonparabolicity of the dispersion laws and to the effect of
the phonon-field fluctuations, respectively. Contrary to other theories, no term of the order
nP hp behaving asymptotically as 1/x is present in the effective Hamiltonian.

I. INTRODUCTION

Two polarons, e.g. , an electron and a hole in a,

polar semiconductor, interact to a good approxima-
tion via a Coulomb interaction which is screened
by the static dielectric constant when their separa-
tion is large and by the optical constant at a small
separation. The distance between the polarons is
compared to the sum of the polaron radii

p, „= (m,tp„'top) '", (l)

where m,' „' are the effective masses of the electron
and the hole assuming the ions are fixed and ~0 is
the optical-phonon frequency. We put A = 1. Haken
derived an interpolation formula for distances
comparable to polaron radii on the basis of a varia-
tional principle. His formula predicts that the
corrections to the Coulombic field at large dis-
tances decrease exponentially, reflecting the ex-
ponentially decreasing overlap between the clouds
of the bound charges around the polarons. '

However, we can easily convince ourselves that
there must exist corrections to the potential of
other analytical forms. For instance, the interac-
tion of the electron (hole) with the zero-point fluc-
tuations of the phonon field (in other words the re-
coil effects caused by emission and reabsorption
of virtual phonons) leads to an analog of the Zitter-
bewegung; thus a contact term [-b(r)I may be ex-
pected in the effective interaction.

The electron-hole system interacting with the
phonon field is described by the Frohlich' Hamil-
tonian

kZ a,'a-„+Z br b-„
Vl g m Jg

4'
n ~ (g g )2 bk4 22 k2 kt

k~k

Z+Z 4&pc&cq+ Jn Zl V& (c
lf cq)a2+qa2

i V $ q


