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The lattice dynamics of bec lithium have been studied on the basis of a two-parameter model
potential proposed by Krasko and Gurskii. A calculation of phonon frequencies, specific heat,
and Debye temperature gives a reasonably good agreement with the experimental results.

I. INTRODUCTION

The lattice dynamics of metals have received
remarkable theoretical and experimental attention
in present years. The neutron diffraction tech-
niques have produced a wealth of data on the vibra-
tion spectra of solids, requiring a serious confron-
tation between theory and experiment. Out of these
solids Li, an alkali metal, is the simplest from the
theoretical point of view. The ionic size is very
small compared with the interionic separations.
The conduction electrons can be considered almost
free. The Fermi surface is believed on both the-
oretical and experimental grounds not to be far
from spherical. The metal undergoes a Martensit-
ic type! of phase transformation into a hexagonal-
closed-packed form. This transformation produces
a lot of difficulties to the experimental and theoret-
ical investigators. This is cne of the reasons for
the lack of literature on this metal.

For the first time, Toya? calculated the phonon
frequencies of Na using the Hartree-Fock method.
Dayal and Srivastava® made a significant improve-
ment on his results by introducing a slight modifi-
cation. Several calculations on the pseudopotential
approach®~® have added considerably to the physi-
cal understanding of the crystal dynamics of met-
als. Recently Wallace!®™'2 has calculated the pho-
non frequencies, binding energies, and Griineisen
parameters for Na, K, and Li using Harrison’s
modified pseudopotential with considerable success.
Gupta and Tripathi!®!* introduced an exponential
term in the Harrison pseudopotential and calcu-

lated the phonon frequencies and binding energies
with good agreement. Introduction of an exponen-
tial term in their potential makes convergence of
their series more rapid than those of Wallace.
However, these calculations have either given re-
sults in slight disagreement with the experiment,
or involved extensive fitting of parameters to the
measured frequencies. Also these model poten-
tials need an extra exponential term*~!° to cause
the series to converge rapidly.

To overcome these difficulties a model poten-
tial was proposed by Krasko and Gurskii, 16 which
was used to calculate the crystal stability of some
simple metals.!” It was, therefore, thought worth-
while to treat lithium metal on this model. The
values of model parameters are taken from the pa-
per of Gurskii and Krasko. !® It is seen that our
theoretical results are quite reasonable, which
confirms the realistic nature of the proposed mod-
el potential.

II. GENERAL FORMULATION

The equations of motion for the atoms in a mon-
atomic bcc crystal and the reduction of these
equations to a dynamical matrix whose eigenvalues
are proportional to the squares of the normal-mode
frequencies lead to a 3X3 determinantal equation
of the form

|Doalq) -Mw?I[=0, 1)

where M is the mass of the atom and I is the 3 X3
unit matrix. The elements of the dynamical ma-
trix D,g are usually represented as a sum of three
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TABLE I. Data used in the calculations (a.u.) along
with the values of ¢ calculated from Noziéres-Pines (NP)
and Geldart-Vosko (GV) expressions.

Metal £, a ve z 7 kp £ Enp {gy

Li 143.6 5.95 0.36 1 3.192 0.596 1.901 1.871 1.733

terms [xy]°, [xy]%, and [xy]®. The first two terms
represent the contributions from Coulomb and non-
Coulomb ion-ion interactions, while the third term
is due to the conduction electrons.

The expressions for electrostatic coupling coeffi-
cient [xy]¢ have been derived by Kellermann.? The
numerical values for bcc crystals have been taken
from the paper of Srivastava and Srivastava. 2’ The
Born-Mayer-exchange repulsive coupling coeffi-
cient [xy ¥ may be calculated on the usual lines. 23
However, the contribution due to this term is
small and has been assumed to be negligible here.
The most important term [xy ]¥ arises from the
screening of the ionic vibrations by the conduction
electrons and is given by

by 1= 22 @@y P13+ )
-2 rayF(IRD], @)
0

where n denotes the number of ions in the primitive
cell, M is the mass of the ion, z is the valence of
the ion, hisa reciprocal-lattice vector, and the
function F is called the energy-wave-number char-
acteristic.

Following Krasko and Gurskii, we write the mod-
el pseudopotential in the form

e -7‘/7‘0 - 1 a _ .
Wo(r)=z<-—7——-+;c-e ’) : 3)
Its Fourier transform is written as

arz (2a-1)(gr.)t -1
Qa®  [@r)?+17

where Q, represents the atomic volume, and ¢ and
7. denote the model parameter. The energy-wave-
number characteristic may be written as

Wo(@)= , (4)

P Y *@) -1
F@=- 55 Woof | srar: ©

where € *(q) is the modified Hartree dielectric
function which also takes into account the contribu-
tions from the exchange and correlation effects of
conduction electron as suggested by Hubbard?! and
by Sham.® €*(q) is then defined by

2 2
ex @)= 1+WL2 (ZkF+ (Zsz)q 2 1n
1 q° )
X -
(1 2 q2+ Ekép ’ (6)

2kp+q
2k p—q
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where & is the Fermi wave vector and ¢ repre-
sents the exchange and correlation parameter. In
some recent calculations, ® £ was computed from
the compressibility of an electron gas. This leads
to

Eqv=2/[1+0.153 (Tagks)™], @

where ag is the Bohr radius.
According to Noziéres and Pines, *® the param-
eter takes the form

Eyp=0.916/(0. 458+ 0. 0127) , (8)

where 7 is the radius of the Wigner-Seitz sphere
in the unit of a,,.

Since the real form of such correction is un-
known at present, and there is much difference
between the values of £ calculated by the above
two procedures, we have taken £ as a variable
parameter. (See Table I.)

III. NUMERICAL COMPUTATION OF PHONON
FREQUENCIES, SPECIFIC HEAT, AND DEBYE
TEMPERATURES

In order to keep the computation within limits,
the Brillouin zone has been divided into a mesh of
only 1000 equal parts. Owing to Born’s cyclic
boundary condition and the symmetry considera-
tion of the lattice, the 1000 points reduce to only
47, including the origin, lying within # part of the
Brillouin zone. The 3000 frequencies correspond-
ing to 1000 points in the zone are obtained by solv-
ing the secular determinant for 47 wave vectors
lying within an irreducible element of the Brillouin
zone.

The specific heats have been calculated by
Blackman’s sampling technique. # For this pur-
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FIG. 1. Comparison of calculated and measured pho-
non frequencies for Li. The calculated curves are shown
by solid lines, while the open and closed circles repre-
sent the data of Ref. 25.



2194

< 400} Li
w °
o
=) o
g 360}
4
i I
o
=
[}
= 3201
w
>
@
w
e L 1 1 1
2800 40 80 120 160 200
TEMPERATURE (°K)
FIG. 2. Comparison of calculated and measured Debye

temperature for Li. The calculated curve is shown by
the solid line, while the circle represents the data of
Ref. 25.

pose, the frequencies were divided into intervals
of 0.5%10'2 Hz, and the specific heats were evalu-
ated from Einstein’s function corresponding to the
midpoint of each interval. These values of specif-
ic heats were converted into the corresponding
Debye temperature ®,

IV. RESULT AND DISCUSSION

The theoretical phonon dispersion curves along
the three principal symmetry directions are drawn
and presented in Fig. 1. It is seen that our the-
oretical curves are in satisfactory agreement with
the neutron scattering results due to Smith et al. 2
In the [110] direction the longitudinal branch is
nearly 8% higher than the experimental one. The
experimental phonon dispersion curve of lithium,
unlike that of other alkali metals, shows that the
transverse branch crosses over the longitudinal
branch and then becomes higher than the longitudi-
nal branch in the [100] direction. However, we
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are unable to predict this peculiarity with our
model potential.

- The theoretical ®-T curve for lithium is shown
in Fig. 2 along with the experimental neutron data
due to Smith ef al.? The figure shows that our
theoretical curve is in good agreement below 50 °K.
In the very-low-temperature range a rigorous
comparison between the experimental and theoreti-
cal @ values is not meaningful, owing to the change
in the crystal structure. This transformation
causes unusual deviations in the calorimetric De-
bye temperature and makes a rigorous comparison
based on the cubic structure rather doubtful. The
sampling technique can give accurate values of C,
only when the number of frequencies falling in each
frequency interval is fairly large.

V. SUMMARY AND CONCLUSIONS

The discrepancies in the theoretical and the ex-
perimental results may be attributed to the approx-
imations adopted in the analysis.

(i) The uncertainty lies in the contribution of the
exchange and correlation effects which differ in
different theories, 8%1~%

(ii) The neglect of higher-order pseudopotential
terms in the dynamical matrix may affect the re-
sults significantly. 82

(iii) We have assumed that the contribution due
to Born-Mayer-exchange repulsion is small and
negligible in this case. However, this assumption
may affect the results slightly. %!
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Second- and third-order elastic-constant data have been used to determine the Griineisen
mode ¥ &), average-square Griineisen constant ¢(y2, and nonlinear constant D for Cu, Ag, and
Au. The attenuation suffered by longitudinal ultrasonic waves propagating in the (100) and
¢110) directions and transverse waves polarized along {100) and {110), owing to the phonon vis-
cosity and thermoelastic phenomena, have been evaluated for the three metals at 293°K. The
phonon viscosity and dislocation drag along the {100y and ¢110) directions are also discussed.

INTRODUCTION

Thermal attenuation of ultrasonic waves, par-
ticularly the part arising because of the interac-
tion of waves with phonon gas, i.e., the phenome-
non of phonon viscosity and the dislocation drag,
provide a good probe! for the study of dislocations
in solids. Ultrasonic attenuation in some dielec-
tric and other crystals has been extensively studied
in the recent past. The interaction of acoustic-
wave phonons with thermal phonons accounts for a
dominant portion of this attenuation. Thermal-
phonon relaxation time 7,, decreases with an in-
crease in temperature and generally at room tem-
perature T,, <<1/w, where w is the angular fre-
quency of the acoustic wave. 2 Hence the interac-
tion between various phonon modes becomes insig-
nificant, and a statistical model of phonon gas hav-
ing macroscopic parameters, which may be varied
by sound energy, is described. The two well-
known absorptions in this region are (i) phonon
viscosity loss (Akhieser loss)® occurring because
of the relaxational flow of thermal energy among
various phonon branches at different temperatures
and (ii) thermoelastic attenuation arising from the
thermal conduction between the compressed and
expanded parts of the acoustic waves. For shear-

wave propagation, the volume remains intact and
there is no heating effect. Hence the thermoelas-
tic loss is absent in this case. The phonon vis-
cosity in solids, which is the analog of shear vis-
cosity in liquids, damps the motion of both the
types of dislocations (screw and edge dislocations)
in a crystal.! This damping is represented by the
drag coefficient B. The acoustic attenuation, pho-
non viscosity, and drag coefficient are theoretical-
ly predicted for Cu, Ag, and Au at 293 °K.

THEORY

The expression for the acoustic attenuation pro-
duced because of the phonon-viscosity effect for
longitudinal and shear ultrasonic waves are, re-
spectively,

_Eq*(Dy/3)T,
N 20 V3 ’
o - Eo?(Ds/3)7s

$ 20 V3 ’

@,

@)

@)

where the condition wr <1 has already been as-
sumed. Here E, is thermal energy density, w is
angular frequency, p is density, and V is the ve-
locity of ultrasonic wave. The subscripts ! and s
represent longitudinal and shear. The two relaxa-

TABLE I. Primary physical constants calculated for three Debye solids.
Vi Vs K Cy E, Ttn
Metal (m/sec) (m/ sec) (cal/sec cm °K) (107 erg/cm?°K) (10° erg/cm?) (10~ sec)
Cu 4322 2916 1. 0057 3.307 6.673 0,345
Ag 3411 2079 0.7069 2.358 5,705 1,013
Au 3161 1467 0.9177 2.401 5,742 1.354




