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We have made a detailed study of the effects of force-constant changes on the frequencies

and the widths of phonons in random dilute alloys.

A nearest-neighbor perturbation model in-

cluding the changes in the mass and the changes in the central and noncentral force constants
has been employed. The theoretical results have been compared with the inelastic neutron
scattering experiments recently performed on Cr-W alloys containing different impurity con-

centrations (0.3, 0.8, 1.6, and 3.0 at.% W).

The change in phonon frequency on account of

the expansion of the crystal lattice on alloying has been considered to explain the experimental
results. Although an over-all good agreement between the low-concentration theory and the
experiments has been observed at four different concentrations of tungsten atoms in chromium,
there exist some discrepancies in certain frequency regions.

I. INTRODUCTION

It is well known that the study of inelastic-neu-
tron-scattering experiments is the most important
tool for the determination of the dispersion rela-
tions of all branches of the acoustic- and optical-
phonon spectrum in crystals. Elliott and Mara-
dudin® discussed a theory of inelastic neutron scat-
tering by lattice vibrations in imperfect crystals
and showed the possibility of the detection of the
resonance effects by performing coherent neutron
scattering experiments. Soon after a number of
experiments®~” were performed on dilute alloys,
such as Cu-Au and Cr-W to observe these effects.
In the low-concentration mass-defect theory of
Elliott and Maradudin, one assumes that the force
constants between the impurity and its neighbors
are similar to those of the host lattice and that the
perturbation is caused only by the mass change at
the impurity site. Almost all the attempts, made
on the basis of the mass defect theory to explain
the observed shifts and widths of the phonons due to
the presence of impurities in the crystal, were
found to be inadequate. It was not clear whether
the discrepancy between the theory and experiment
arises because of the failure of the low-concentra-
tion theory which includes only the scattering from
a single impurity site and neglects interference
effects betw -en the pairs (or the clusters) of the
impurities, or whether it arises because of omis-
sion of force-constant changes around the impurity
atoms.

Any success in accounting for the said discrepan-
cy on the basis of a high-concentration theory was
ruled out later by a number of theoretical and ex-
perimental investigations. On one hand, Behera
and Deo® discussed a high-concentration theory
based on a graphical method after including the ef-
fects of force constant changes in a rather phe-
nomenological way but the situation could not be
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improved. Hartmann® investigated the effects of
short-range order within the low-concentration de-
fect theory for a high concentration (9. 3 at.%) of
gold in copper and observed that the corrections
in the resonance region were only of the order of
10%, which were insufficient to remove the dis-
crepancies. On the other hand, the more recent
experimental and theoretical investigations of
Svensson and Kamitakahara* on copper alloys con-
taining low concentrations (1 and 3 at.%) of gold
atoms also lead to a similar conclusion. Thus the
need for a detailed study of the effects of force-
constant changes on the phonons in an imperfect
crystal was realized. Some efforts in this direc-
tion were made by Lakatos and Krumhansl!® but
they did not consider any experimental result.

In the present paper, we have made a detailed
study of the effects of force-constant changes on
the phonons of an imperfect crystal and have tried
to explain the neutron-scattering experiments per-
formed recently on chromium-tungsten alloys. We
observe that the inclusion of the effects of the ex-
pansion of the lattice on the phonons on alloying,
i.e., the volume effect, is essential to understand
the observed phonon shifts especially in the high-
frequency region.

The first studies of the effects of impurities us-
ing coherent inelastic scattering on Cr-3-at.%-W
alloy were carried by Mgller and Mackintosh® for
the (0, £, )T, branch (polarization vector parallel
to [0, £, £]). Later on these authors extended their
measurements for the (0, £, £)T, branch and also
studied the (0, 0, £)7 branch in Cr-3-at.%-W al-
loy.® More recently, Cunningham et al.” have
measured the trans rse phonon groups in the
(0, 0, £) and (0, #, £) symmetry directions in very
dilute alloys of chromium containing a number of
small concentrations of tungsten (0.3, 0.8, and
1.6 at.% W). In all these attempts, the mass-de-
fect theory has been found to be completely unsuc-

2178



6 FREQUENCIES AND WIDTHS OF PHONONS IN DILUTE Cr-W ALLOYS

cessful in understanding the observed effects. The
discrepancies are not caused by large concentra-
tion effects but instead by some other agencies.
Thus a more extended perturbation model including
the impurity—host-crystal interactions should be
considered to understand these experimental re-
sults.

We consider here a perturbation model in which
changes in the nearest-neighbor central and non-
central force constants of the de Launay type, along
with the change in mass, are taken into account.
The shifts of the phonon frequencies because of the
expansion of the crystal lattice on alloying are
calculated by assuming the Griineisen-mode param-
eters as variables for the two polarization bran-
ches. The calculated frequency shifts are com-
pared with the experimental data for Cr-W alloys
containing various impurity concentrations. An
over-all good agreement with the experiment is
observed except in some frequency regions. The
points to be included in the theory for its improve-
ment have also been discussed.

A brief account of inelastic neutron scattering
theory for an imperfect crystal has been given in
Secs. IIA-IIC. The perturbation model is de-
scribed in Sec. IID. We describe the lattice dy-
namics for chromium and the calculation of
Green’s functions in Secs. IIIA and III B, respec-
tively. The effects of force-constant changes due
to impurity atoms on the phonons and the lattice
expansion effect are discussed in Secs. IIC and
IIID, respectively. The theoretical results are
compared with the experiments in Sec. IV. The
main approximations taken in the theory are dis-
cussed in Sec. V and the main conclusions are in-
cluded in Sec. VI.

II. THEORY

A. Scattering Cross Section

The scattering of neutrons by lattice vibrations
in the Born approximation can be treated in the
Fermi-pseudopotential or scattering-length approx-
imation. The problem can be formulated conve-
niently in terms of the correlation functions or in
double-time thermal Green’s functions for the
atomic displacements. The inelastic, one-phonon
cross section for the coherent neutron scattering
per unit solid angle per unit interval of outgoing
energy per nucleus is given by* 12

d’o Y -
o __ IRl 1
dQdw 2|k Seon®; @) » W
where

Sonl&, )= (A%/N) > gik IFm-Fa)l

n,n’

x [~ dte'®t (&, K- G0, 00, (2)
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where k; and k, are the incident and the scattered
wave vectors of the neutron, respectively, with
K=K, - K, and 7w = 72(k% - k2)/2m is the energy
transfer to the neutron; m is the mass of the neu-
tron; N is the number of nuclei in the crystal.
U(n, t) denotes the instantaneous atomic displace-
ment from its equilibrium position T(n). The
brackets ( ) denote a thermal average. A is an
average of the effective temperature-dependent
scattering length and is defined by

A=(A)=(a,exp (-3 (|k-aWw)|?))), ®3)

where the exponential function is the Debye-Waller
factor and q, is the coherent scattering length of
the nucleus. The thermalized scattering length A,
is same for every atom in a perfect crystal but
may vary from site to site depending on impurity
positions in an imperfect solid and leads to inco-
herent neutron scattering. In general, the impurity
usually has a different scattering length than the
host atom. Also the Debye-Waller factors for the
impurities and their neighbors in the perturbed re-
gion are different from that of the host atom. For
the coherent scattering, we assume that the
thermalized scattering lengths are unaltered in an
imperfect crystal, an approximation which is found
to be more appropriate at high temperatures. We
thus write

A, =ae (4)

where ¢ * is the Debye-Waller factor for the per-
fect lattice and is independent of the lattice site x.

The time-dependent correlation functions be-
tween the atomic displacements (i(xn, {)Ja(x’, 0))
appearing in Eq. (2) may easily be evaluated by
the method of Green’s functions. The essentially
temporal Fourier transform of the correlation
function can be written in terms of the Green’s
function as

f_: dt et (uy(n, )u,n’, 0))

=1lim (e® - 1) [Gy,(n, n'; w +i5)
5-0*

-Gy, n';w-145)], (5)

where ¢, v denote the Cartesian components of the
displacements and 8=7%/k,T. The classical Green’s
functions G,(n, n’; w +45) themselves are the
Fourier transforms of the double-time Green’s
functions, i.e.,

Goyln, n'; w i5)
= (1/2,”)[: dt e (@x it Gret @an (0 gy (6)

Here the retarded and the advanced Green’s func-
tions have been defined as

Gy (n, n'; ) =F 210 t) ([uy (n, 1), w,(n’, 0)]), (7)
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where the upper (lower) signs stand for the re-
tarded (advanced) Green’s function. The brackets
[ ] denote the commutator of the operators and the
step function 6 (¢) is defined by

o(t)=1 for ¢>0
=0 for £<0. (8)

If we introduce an impurity substitutionally at a
lattice site, the translational symmetry of the host
lattice is destroyed and we cannot go over to nor-
mal-mode representation. In order to recover the
periodicity in the imperfect lattice, we assume that
each impurity is equally likely to be at any lattice
site and take an ensemble average over all config-
urations with certain impurity concentration.

Now using Egs. (2) and (5) and taking the spatial
Fourier-transform, we obtain the scattering func-
tion for a monatomic crystal as

Soun(® @)= 2 1 e,,j j lim D 2 [E- 36| s)]
X[k- 6&|s")][Cer (K, w+8) - Gygr (K, w —0)] -

©)
Here e(&ls) are the polarization vectors asso-

ciated with a plane wave of wave vector K in the
polarization branch s. The Green’s function in the
phonon representation has been obtained as

Cosr (&, wi8)=(1/NL 2 [et Fre (K] s)

X Gyy(n, n'; w5) ik o e,u(-lzl s)
(10)
Here ¥,, ¥, denote the lattice vectors of the sites
n, n', respectively.

B. Configurationally Averaged Green’s Function in the
Low-Concentration Limit

The time-independent equation of motion for a
pure crystal can be written in the matrix form as®®

£9$o=w2$o s (11)

where Lo=M;'/%¢°M;'/2 is the mass-reduced force-
constant matrix of the pure lattice, and M, is the
mass matrix. io is a vector which is related to the
usual atomic displacement vector U by

=M%, . 12)

Ly is a 3NX3N matrix for a Bravais lattice.

For a crystal containing a finite concentration of
defects which have different masses and interactions
with its neighbors than the host atoms, the equation
of motion may be written as

[Lo+Pl®]d=w?, (13)

where w is the frequency of the normal mode and
g(wz), the perturbation matrix caused by the de-
fects, is explicitly given by
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P(w?)= - WZMBIMAMMBUZJfMBUZAQMBI/Z . (14)

Here the new mass and force constant matrices
for the imperfect crystal have been denoted by
(Mo +AM) and (¢°+A¢), respectively, and j is the
corresponding vector for the imperfect lattice.

The Green’s function for the perturbed crystal
is defined by

G(z)=[Lg+P(w?) - 21] | (15)

with I as an unit matrix and z=? + 2iw¢*, as the
complex squared frequency in the limit ¢*~0. It
can also be expressed as

G(2) = Gy(2) - Go(2)P(w?)G(2) , (16)

where the Green’s function for the perfect crystal
is defined by

Golz)= (Lg— 2D . am)

After performing a statistical average over all
configurations containing the same number of de-
fects, the configurationally averaged {G} has the
form

{G=Go-Goz{g}, (18)

where the self-energy I is translationally invari-
ant like G,. After going over to the normal-mode
representation, the perturbed Green’s function is
given by

{G®)}=G"k) - G°K) = (K){G (K)} (19)
or
{c®)}=

Thus the real and the imaginary parts of the
self-energy Z () determine the shifts and the
widths of the perturbed phonons, respectively.

If we take into account exactly only the scatter-
ing of phonons off single impurities and neglect
scattering off clusters of impurities, i.e., if we
neglect the possibility of neighboring defects in-
terfering with the scattering off a particular defect,
the first-order self-energy is given by

[ W, s)+Z (k) -zI]*. (20)

= elfI- cGotl™ (21)

where c is the fractional concentration of defects
in the crystal. The t is the T matrix for a crys-
tal containing one defect and is given by

t(2)=p(®)[1+g(2)p(®]*, (22)

where the p(w?) and g(z) are the perturbation and
the Green’s function matrices which lie in the sub-
space of a defect (356x3b, if b is the total number
of atoms directly disturbed by the presence of a
single defect including the defect site itself).

For the lowest order in concentration, Eq. (21)
may further be approximated by



6 FREQUENCIES AND WIDTHS OF PHONONS IN DILUTE Cr-W ALLOYS 2181

Zi=ct. (23)

In the above approximation, it has been assumed
that the impurities are widely spaced so that one
may safely ignore the interference effects between
the subspaces of any nearby impurities.

C. Phonon Shifts and Widths

In order to obtain the shifts and the widths of
phonons we write the above-obtained self-energy
in the normal-mode representation as

=& s)=c2(k s'|t|K s). (24)

In general, there is a mixing of phonon polariza-
tion branches, i.e., for a phonon of a particular
polarization s, the phonons are scattered into all
the polarization branches. However, in some sim-
ple cases such as for a low concentration of de-
fects in the mass-defect model or in the presence
of force-constant changes when K lies along certain
symmetry directions, branch mixing does not oc-
cur. In cubic crystals, these symmetry directions
are the well known (0, 0, £), (0, &, £) and (¢, &, £)
directions where &=k/k,,,. Thus, in the presence
of trivial nondiagonal terms in §_(E, s), we may
write for one polarization branch

(&, s)=(K s|t|K, s). (25)
The frequency shifts are, then, given by

w - wi o= bw=[ReZ(, 5)] /(w +wg ) (26a)

or

w =i, s ~[ReZ(K, s)]/2wg,, (26D)

in the first approximation.
The phonon full width at half-maximum is given

by

S= 2[Im§(f<,s)]/(w+w;ys) (27a)

or

S~[ImZ (&, s)] /wi, (270)

in the first approximation.

Usually, the dimensions of the perturbation ma-
trix are very large and it is difficult to evaluate the
self-energy z_‘D_(E, s). The problem may be simpli-
fied immensely if the perturbation has some sym-
metry. In that case the use of the symmetry co-
ordinates, i.e., the coefficients of the atomic dis-
placements of the symmetrized linear combina-
tions of these in the impurity space block-diagonal-
izes the matrices p(w?) and g(z) simultaneously.
Let |v, m ) denote the normalized symmetry coor-
dinate transforming according to the first row of
the irreducible representation v. The index m
varies from 1 to m, where m, is the number of
times the irreducible representation v occurs in
p(w?). The t-matrix elements may then be written

as
<E’s|_t_lﬁ,s>= E l,,(k: slv’m>t;nml<l/: mI|E,3>;

v, mym’

(28)
where [, is the degeneracy of the irreducible repre-
sentation v, and the contribution of one matrix ele-
ment of £ matrix in the vth irreducible representa-
tion is given by

mm = (v,m|t [v,m’) . (29)
D. Perturbation Model

Chromium and chromium-tungsten alloys crys-
tallize in bee structures. We consider the change
in mass at the impurity site and the changes in the
central and noncentral force constants of de Lau-
nay type between the impurity and its nearest
neighbors. The matrix p(w?®) is of dimension 27
x27. The substituted impurity possesses O, point-
group symmetry. The irreducible representations
occurring in this problem are Fy,, Fp,, Fy,, F,,
E,, E,, A, and A,,. For details, we refer to
an earlier paper’® by one of the authors, where the
results for the ¢ matrix in the various irreducible
representations have been obtained for a more gen-
eral lattice, i.e., for CsCl structure. The ex-
pressions are easily applicable to a monatomic lat-
tice where they are further simplified. For the
sake of completeness, we reproduce here the ex-
pressions for the various irreducible representa-
tions of the # matrix. They are as follows:

tay, (B)= M1 +2(g1 - 2g4 +g5 - 256

~g1+2g5 — 8o+ 2810, (30a)
£ag,(2) = A[1+ (g1 - 224 +g5+ 226
+g7— 2g3+80 - 2810, (30D)

tEu(Z) =N[1+X (g1 =284 +85+ 88 +87+ 8 + &0 — 2210) ],

(30c)
tr(2)=N"[1+2" (g1~ 224 +g5+86 — g7~ L5 — 8o +2g10)]7,
(30d)
tpzu(z) =N[1+X (g1~ gs+8s+87+ 8 -g)]", (30e)

ch,(z)=)\l[1 +>\'(g1-g5+gs-g7-gg +g9)]'1 ’ (30f)

1
tF (z):——___
2 3DF&'(Z)
’ 22
A+2) 30 gy, 200-2") = 3gE, )
200=2") = 3glR, 2>t+>\'+3n'g}12g
where (30g)

8ry, =81+ 284+ 85 =81~ 8 — 2810 5
8ip =V 2(ge+8s) ,

2 _
o "81= 85~ 88— 81+ 88+ 80
and
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Dp, (2)=1+3[(\+21") gFy +2VE(\ -\ gH,

The optically active F;, mode is given by

”n 22 1:;1“(2)=BF1“(0)2) [l+-gFl.u(Z)—P"-lu(wa)]-1 ’ (313,)
+(27\+>\)gpzx]+>\7\ [ngg Fzg—(g ]. (30h) where
|
-3ew?+8(A+21) VB +2)) —-4(-2")
1
Pr(0f)=3|  -VBQ+2)) (+20)  VZOo-2) (31b)
—4(x=2") V2= (2x+2")
and
g1 V8¢, 4gs

gr, (2)=| VB  £1+2g1+g5+81+80+ 2810 V2 (g6~ g0) . (31c)

4g3 ‘/_z-(gs‘gs) 81— 85— 88+t8&71— 88—

Here e= (M' - M)/M is the mass-change parameter
with M’ and M as the masses of the impurity and
host atom, respectively. The A(= Aq,) and \'(= AB;)
are the changes in the mass-reduced, central and
noncentral, nearest-neighbor, force constants, re-
spectively, in units of squared frequency. (a,

and B, denote the first-neighbor central and non-
central force constants, respectively). The ten
Green’s-function matrix elements are given by

2.(2) = Z) z %—k'i (32)

k

where the summation is to be taken over all the

wave vectors lying in the first Brillouin zone and
J,([&|s) for u=1-10 stands for the following ex-

pressions:

Jl(ElS)z lex(ﬁ\s)lz >
J,&| s)=|e,&|s)|? cos(2nk, 2a)cos(2nk,ta)

x cos(2nk,3a) ,
J3&| s)=e, | s) e,®|s) sin(2nk, 3a)sin(2nk,3a)

x cos(2nk,3a) ,
Ju&|s)=]e,&|s)|?cos(2nk,a)cos(2nk,a) ,
J5&|s)=| e,(&|s)|? cos(2nk,a)cos (2rk,a) | (33)
Jo&| s)=e,&| s)e, (| s)sin(2nk,a)sin(2nk,a) ,
J,&| s) = | e,®| s)|? cos(2rk,a)cos (2nk,a)

x cos(2nk,a) ,
Jo(&| s)=e, (] s)e, (k| s)sin(2nk,a)sin(2nk,a)
x cos(2nk,a) ,
Jo®|s) =] e, ®|s)|?cos(2nk.a) ,

Jio®|s)=|e,&|s)|%cos(2nkya) .

III. CALCULATIONS AND RESULTS
A. Lattice Dynamics of Chromium

Chromium is a transition metal which shows
antiferromagnetic behavior below 313 °K.”® It
crystallizes in a bece structure with one atom per
unit cell. According to Fuchs,'® the resistance to
shear in metals stems usually from two type of in-
teractions (i) the Coulomb interactions between
positive ions and negative conduction electrons and
(ii) the exchange interaction between the ions as-
sumed to be significant only between the nearest
and the next-nearest neighbors. A four-neighbor-
force-constant model'” has been used by Feldman
to explain the dispersion curves measured by in-
elastic-neutron-scattering experiments. This type
of calculation does not take into account the influ-
ence of free electrons on the lattice dynamical
properties of metals. In the present work, we
have discussed the lattice dynamics of chromium
at room temperature in Kreb’s model after con-
sidering the first- and second-neighbor ion-ion
interactions. In Kreb’s model,'® one considers the
effect of electrons on ionic motion through the
screening of long-range Coulomb interaction be-
tween ions. The values of the elastic constants at
room temperature used in the present calculation®®
are C;;=3.500x10% dyncm™, C;,=0.678x10% dyn
cm™? and Cuy=2.008 %10 dyncm=. The value of
the lattice constant is 2.87918 A. The values of
the effective charge Z and of the Bohm-Pines pa-
rameter g8 are taken to be 1 and 0. 353, respective-
ly. We have also considered the factor £(¢) ap-
pearing in the calculation of the screening param-

eter k.. This factor is wave-vector dependent and
is given by
1 1-42 1+¢
f(f)—2+ Y lnl—_t' , (34)
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where ¢=%/2kp, and by is the radius of the Fermi
sphere in the wave-vector space.

The eigenfrequencies and eigenvectors were ob-
tained by diagonalizing the dynamical matrix for
a bee lattice of chromium by the Jacobi method.
Different mesh sizes were tried and a grid which
yielded 8000 points in the Brillouin zone was cho-
sen because it yielded maximum accuracy in rea-
sonable computer time. The results for the three
symmetry directions (0, 0, £), (0, £, £), and
(¢, & &) have been shown in Fig. 1 (¢ =k/k,,,). An
over-all good agreement is seen with the inelastic-
neutron-scattering data of Mgller and Mackintosh?®
and Cunningham ef al.” The density of states of

I 1 1
1 02 03 04 05

chromium has been shown in Fig. 2.
B. Green’s Functions

A staggered-bin averaging procedure is followed
in the machine computations of the Green’s func-
tions given by Eq. (32). The Green’s function is
separated into real and imaginary parts as

1 J,(Kls)
2y_ 2
A C R R R

i
+inl ‘/RD J, | s)&(wg’$ -w?) . (35)

First the expression 3, 5; J, &|s) 6(wg, , — w) is

7.0 T T T T T T T

5.0

4.0

3.0

2.0

G(w) (ARBITRARY SCALE)

FIG. 2. Frequency spectrum G (w) vs
w for chromium.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(W max)
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calculated and the histograms are obtained for the
various Green’s functions. To carry out the actual
integration for the real part of the Green’s func-
tions at low frequencies, the method of Sievers

et al.?® has been followed. We may write

w,

Reg, (w?) =S d
0

Wy + W
In -2 s
Wy = W

’ F(w')—F(w) F(w)
W -

w?-f 2w

36
where (36)

Flw)=(1/N) 2 Z) J,&|s)6(wg s - w)
s k

and w,, is the maximum frequency of the lattice.
The imaginary part in terms of F(w) is given by

Img, (w?)= (1/2w)F(w) . (37)

The whole frequency range is divided into 60
equal bins and the histograms are calculated at
the center of each bin. Since the mesh points have
finite size, the increment in the frequency used in
the actual integration should be finite. The value
of the increment in the frequency is chosen in such
a way that the spurious fluctuations appearing in
the Green’s functions are minimized. The value
0. 25 in the units of the bin width is found to be ap-
propriate in the present calculations.

C. Effects of Force-Constant Changes

It is of much interest to see the difference be-
tween the results of the mass-defect theory and

first approximation. All
the other calculations have
been made in a self-con-
sistent manner.

0.4 0.5

those of a theory which includes force-constant
changes in between an impurity and its neighbors.
The effects of the force-constant changes on the
phonon frequencies for the two (0, £, £)T, and

(0, 0, £)T branches have been investigated by vary-
ing both the central- and noncentral-force-constant
changes. The calculations have been performed for
four impurity concentrations, i.e., for 0.3, 0.8,
1.6, and 3.0 at.% W in Cr. As a representative
case, we present here some results for 1.6 at.% W
in Figs. 3 and 4 for the (0, ¢, £)7T, and (0, 0, £)T
branches, respectively. We find that the force-
constant changes greatly influence the frequency
shifts especially in the (0, 0, &) direction. The
qualitative effects of these two parameters x and

A" are similar but differ in magnitudes. The shifts
and widths of the phonons due to noncentral-force-
constant changes are seen to be larger in magni-
tude than those due to central-force-constant
changes. A positive force-constant change pro-
duces resonance at a higher frequency than that
produced by the mass defect, whereas the opposite
is the case for negative changes in the force con-
stants. The large negative shifts for phonons just
before the resonance frequency can be obtained by
using large, negative, force-constant changes but
the resonance occurs at the low-frequency side.
Large, positive, phonon shifts may be obtained in
the high-frequency region only by observing a reso-
nance at a high frequency, but it has the unfortunate
effect that the negative shifts greatly decrease in
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FIG. 4. Comparison of the fre-
quency shifts (no volume effect) for
-4 the (0,0,¢) T branch plotted against
reduced wave vector ¢ for the
Cr-1.6-at. %-W alloy: (~--) mass

defect; (—) negative central-force-
constant change (A\=-0,12x 10%7
sec™?); (-o-o-) positive central-force-
constant change (A=0.55 x10% sec™%);
(- - =) positive central- and negative
- noncentral-force-constant changes
"(A=0.70x 10¥ sec™?, A’ =—0.40% 10%
sec™?); (.-.-) positive central-force-
constant change (A\=0.55x 10% gec™?),
calculations made infirst approxi-
mation. All the other calculations
have been made on self-consistent
basis.

0.12 T T T T T
0.08 - n
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magnitude prior to the resonance frequency side
(a result which is in disagreement with the mea-
sured shifts).

We have performed all calculations for the pho-
non shifts in a self-consistent manner by substi-
tuting the frequency modified by defects in the
right-hand side of expression (26). In order to see
the difference, we have also made computations
in the first approximation, i.e., using the unper-

turbed phonon frequency in the right-hand side of
Eq. (26). Some differences are observed in the
results obtained in the first approximation and
those of a self-consistent one, but they are not
very large. The results of a first-approximation
calculation have also been included in Figs. 3
and 4.

A comparison of the calculated phonon shifts
shown in Figs. 3 and 4 with those of the experi-

0.12 T T T T T
0.08 - 4
0.04 - 4
FIG. 5. Calculated frequency shifts
_. 0o in (0, £, £)T, branch vs reduced wave
I vector ¢ for Cr—1. 6-at.%-W alloy
E (volume effect included) for different
’_,:_ -0.04 |- B . parameters: curve A (~), A=0.70
z % 10%" sec™?, A’ =0.0, and v;=3.5
> -0.08 | , | sec’’; curve B(-x-x), A=0,70x10
g c VAR N sec™?, A’ =—0.60%10% sec’? and v,
u / / ~IN =3.0; curve C(---), A=0.90x10%
g -0.12 F / \\\\,\x 1 sec?, A?=-0.60x10% gec?, and
w H 3o~ v;=3.2. Solid circles represent the
II A I - o measurements of Cunningham et al.
-0.16 |- g (Ref. 7).
1,
~-0.20 ! .
1 1 1 | 1
0 0.1 0.2 0.3 0.4 0.5

REDUCED WAVE VECTOR (9)
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FIG. 6. Calculated frequency shifts
in (0,0, £)T branch vs reduced wave
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vector ¢ for Cr-1.6-at.%-W (volume
effect included) for different param-
eters: curve A (=), A=0.70x10%
4 sec?, A’=0.0 sec’?, and y,=3.5;
curve B(-x-x-), A=0.70x 10%
sec™?; A’==0.60x10% gec™?, y,=3.5;
curve C (----), A=0.90x 10?7 sec?,
A’ ==0.60x 10% sec?, y,=3.5; curve
D (-0-0-), A=0.90x10% sec™?, A’
=—0.60x 10% sec™?, y,=2.0. Solid
circles represent the measurements
4 of Cunningham et al. (Ref. 7).

REDUCED WAVE VECTOR (f)

mental ones reveals that the calculated positive
shifts at high frequencies are not observed experi-
mentally. It suggests the occurrence of some
agency which is responsible for an over-all de-
crease in phonon frequencies. It may be the lat-
tice-expansion effect which will be discussed in
Sec. IIID.

0.4 0.5

D. Lattice Expansion Effect

The lattice of pure chromium has been seen to
expand when it is doped with tungsten atoms, e.g.,
for an alloy containing 1.6 at.% W, the percentage
change in the lattice parameter is approximately
0.22%. The phonon frequencies are expected to

0.12 T l T T T
0.08 N
0.04+ -
’:': 0.0 FIG. 7. Calculated frequency shifts
= ’ in (0, £, £)T, branch vs reduced wave
= vector ¢ for Cr—0.8-at,%-W alloy
; _0.04k B\i)/‘(:*—::x\\" 4 (volume effect included) for different
> 27" <SS parameters; curve A(—), A=0.70
o N e =S 21 qap? 4 f = -2
g *\ / / S x 10%" sec™, A*=0.0 sec™, and v,
% -0.081 A ~ C A === 1 =3.5; curve B (-x-x-), A=0,70
g \,, x 10¥ sec™?, A’ ==0.60x 1026 sec"?,
o =7 and'y{=3.0; curve C (---), A=0.90
-0.42F 7 x10%sec™, A’ =—0.60x 10%, andy,
=3.2.
-0.16 -
-0.20+ n
1l 1 1 ] !
0 0.1 0.2 0.3 0.4 0.5

REDUCED WAVE VECTOR (¢)
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0.12 T T T

0.08F

0.041

0.0

T 1

- FIG. 8. Calculated frequency shifts
in (0,0, £)T branch vs reduced wave
vector ¢ for Cr—0.8-at.%-W alloy

-0.04

-0.08

FREQUENCY SHIFT (THz)

-0.12F

—

-0.16

-0.20+

(volume effect included) for different
parameters: curve A (—), A=0.70

x 102 sec?, A’ =0.0 sec™?, and y,
=3.5; curve B (~X-x-), A=0,70

X 10%" sec?, %' ==0.60 x 102 gec"2,

- and y;=3.5; curve C (---), A=0,90
% 10%" gec™, A’ =—0.60x 102 gec™?,
and y;=3.5; curve D(-0-o0-),

1 =0.90x10%"sec™?, A’=-0.60x 10%
sec™? andy;=2.0. Solidcircles repre-
sent the measurements of Cunningham
et al. (Ref. 7).

1 1
0.2 0.3
REDUCED WAVE VECTOR (#)

decrease on account of this expansion. A detailed
knowledge of the Griineisen-mode parameters
(y;=—~8lnw,/81nV) is required to estimate its ef-
fects. In general, the mode y; varies with the fre-
quency; i.e., it has a structure with respect to the
phonon frequency and in order to know it, one
should possess a good deal of information about the
interatomic potentials in the crystal. One may
start by assuming a model potential such as a

0.4

0.5

Morse potential or Rydberg potential and try to
study the structure of mode y’s after evaluating-the
unknown parameters of the potential by utilizing
some experimentally measured thermodynamic
properties like heat of vacancy formation or iso-
thermal bulk modulus etc. But this type of calcu-
lation does not seem to be very reliable. However,
the value of the mode y’s for a particular branch

in some symmetry direction at k=0, i.e. , the

0.12 T T T T T
0.08 -
0.04 -1
FIG. 9. Calculated frequency shifts
w in (0, ¢, £) T, branch vs reduced wave
é 000 A B C . vector ¢ for Cr~0.3 at.%~-W (volume
- & ; T=E= o effect included) for different param-
"i" _0.04}k S | eters; curve A (=), A=0,70x 10%
@ sec™?, A’ =0.0 sec~? and y4=3.5; curve
5 } { } B (-x=x=), A=0.70x10%" sec"?, A’
& -0.08 |- } H { { } { -  =-0.60x10% gec™? and v;=3.0; curve
3 H C (---), A=0.90x 10% sec™?, A’
& =—0.60 x 10% sec™?, and v,=3.2.
“ 0.2} 71 Solid circles represent experimental
measurements of Cunningham et al.
~0.16 - 1 Ref. 7).
-0.20 - -
1 ] ] ] !
0 0.1 0.2 0.3 0.4 0.5

REDUCED WAVE VECTOR (#)
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TABLE I. Mass-reduced force constants for pure

chromium and their changes due to tungsten at room tem-

perature in units of 10%® sec,

Changes due to tungsten atom

Force Curves
constant Chromium Parameters Curve A Curve B Cand D
a;? 44.91 AP 7.00 7.00  9.00
B 0,27 Ard 0.0 ~0.60 —0.60
a,® 41.54

2ay: first~neighbor central force constant.

. change in first-neighbor central force constant due
to impurity atom.

¢By: first-neighbor noncentral force constant.

% ¢. change in first-neighbor noncentral force constant
due to impurity atom.

®ay: second-neighbor central force constant.

elastic-constant Griineisen parameter, may be
calculated by a knowledge of the pressure deriva-
tives of second-order elastic constants or of the
third-order elastic constants. But for chromium
metal, no such experimental data are available.
In the absence of any reliable information about
mode y’s, we resort to the procedure of taking
the mode y’s as parameters which remain the
same for all frequencies in one symmetry direc-
tion for the interpretation of experimental phonon
frequency shifts at different impurity concentrations.

IV. COMPARISON WITH EXPERIMENTS

Out of the available experimental data for the
four impurity concentrations, i.e., 0.3, 0.8, 1.6,

K. M. KESHARWANI AND B. K. AGRAWAL
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and 3.0 at.% W in chromium, the most suitable
set are the Cr-1.6-at.%-W alloy data. More de-
tailed information exists for an alloy containing
3.0 at.% W, in which the phonon widths have also
been measured, but the measurements have not
been made for (0, £, #)7, branch up to the Bril-
louin-zone boundary. Further, high-concentration
effects might be observed in this alloy. The data
for Cr-0.8-at.%-W alloy are incomplete because
the phonon shifts are available only in the (0, 0, &)
direction. A better choice would have been the
very dilute Cr—0. 3-at.%-W alloy but, unfortunate-
ly, the results are seen to be in much variation
because the experimental errors are comparable
with phonon shifts.

The experimental measurements®” for the shifts
of the phonon frequencies in the two symmetry di-
rections (0, &, £) and (0, 0, £) have been fitted by
varying the two force-constant-change parameters
x and )\’ after including the lattice expansion ef-
fect. The mode y is also varied to have best fits.
The results for the four different concentrations
are presented in Figs. 5-12. In each figure, the
results for the three different sets of the perturba-
tion parameters, i.e., for x=0.70x10%" sec?, A’
=0.0 sec’?; A=0.70%x10%" sec®?, A'=-0.60x10%
sec?; and x=0.90x10% sec™?, A’=-0.60x10%
sec? are exhibited. The force constants in pure
chromium and the fitted force-constant changes in
the Cr-W alloys have been shown in Table I. We
will now consider each alloy separately.

0.02[

0.01

0.0

-0.01

-0.02

-0.03

FREQUENCY SHIFT (THz)

-0.04

-0.05

-0.06 |-

] | 1

in (0,0, £#)T branch vs reduced wave
- vector £ for Cr—0.3-at.%-W alloy
(volume effect included) for different
parameters; curve A (=), A=0,70

% 10%" sec™?, A’=0.0 sec’?, and y,
=3.5; curve B (-x-x~), A=0,70

x 10%" sec™?, A’ =—0.60x 10% sec"?,
and 71,=3. 5; curve C(---), A=0,90
x 10?7 sec™?, A’ =~0.60x 1026 gec?,
- andy;=3.5; curve D (-0-o0-), A
=0.90x 10?7 sec™?, A’ =—0.60x 10%
sec?, and y;=2.0. Solid circles
represent the measurements of Cun-
ningham et al. (Ref. 7).

it

0 0.4 0.2 0.3

REDUCED WAVE VECTOR (#)

0.4 0.5

FIG. 10. Calculated frequency shifts



FIG. 11. Calculated frequency
shifts in (0, £, £) T, branch vs reduced
wave vector ¢ for Cr—3.0-at.%-W
alloy (volume effect included) for dif-
ferent parameters: curve A (=), A
=0.70x 102" sec™?, A’ =0.0 sec~?, and
v4=38.5; curve B (-x-x-), A=0,70
X 10% sec™?, A’ =—0.60 x 102 sec?,
and v_{=3.0; curve C (---), A=0.90
x 10%" sec?, A’ ==0.60x 102 sec"2,
and y;=3.2. Curve with solid circles
represents the measurements of
Mackintosh and Mgdller (Ref. 6). Ex-
perimental errors have not been .
shown.
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A. Cr-1.6-at.%-W Alloy

From Figs. 5 and 6, we note that a high value of
¥;» i.e., 3.5, is seen to be appropriate for ob-
taining large, negative, frequency shifts in the
high-frequency region. We obtain a reasonably
good fit in the whole frequency range in the (0, &, £)
direction. The very large negative shifts near the
resonance frequency can be obtained by decreas-

ing the noncentral-force-constant change but the
agreement becomes worse in the region just above
the resonance frequency. An increase in the cen-
tral force constant does not improve the results
as the maximum negative shifts are greatly re-

duced. From Fig. 6, we observe that in the (0, 0,
£) direction, there is good agreement with experi-
ment’ except in the very-high-frequency region
where the calculated shifts are seen to be larger.

FIG. 12. Calculated frequency
shifts in (0,0, £)7 branch vs reduced

wave vector ¢ for Cr-3.0-at.%-W
alloy (volume effect included) for dif-
ferent parameters: curve A (—), A
=0,70 X 1027 sec?, A’ =0.0 sec™?,

and v,=3.5; curve B (-X-x=), A
=0.70 x 10?7 sec 2, A’ =—0.60 x 1026
sec™?, and v;=3.5; curve C (---),
A=0.90x10*" sec?, ' =—0.60

4  x10% sec?, and v;=3.5; curve D
(~0~0-), A=0.90x10%" sec™?, A’
=0.60x10% sec"?, and y,;=2.0. The
curve with solid circles represents
the measurements of Mackintosh and
Mdller (Ref. 6). Experimental errors
have not been shown.
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FIG. 13. Calculated phonon widths
in (0, ¢, £)T, branch vs reduced wave
vector ¢ for Cr—3.0-at.%-W alloy
(volume effect included) for different
parameters: curve A (=), A=0.70
x 10¥ sec™?, A’ =0.0 sec™?; curve B
(+x=%=),  A=0.70% 10% sec™?, A’
==0.60 x10% sec"?; curve C (---), A
=0.90x 10%" sec™?, A’ =—0.60 x 10%
sec’?, Curve with solid circles rep-
resents the measurements of Mack-
intosh and Mgller (Ref. 6). Experi-
mental errors have not been shown.

0.2 0.3
REDUCED WAVE VECTOR (9)

The agreement in the high-frequency region could
be improved by assuming a small value of y;,
i.e., ¥;=2.0 as shown in Fig. 6, but it greatly
reduces the maximum negative shifts.

B. Cr-0.8-at.%-W Alloy

In this alloy, a reasonable agreement of the the-
ory with the experiment® is observed in Fig. 8 in
the experimentally measured (0, 0, £) direction.
For completeness, we have also presented the re-
sults for the (0, £, £) direction in Fig. 7. The re-
sults in the very-low- and high-frequency regions
could be improved by utilizing smaller values of
¥;, but then the large negative shifts are not ob-
tained. The results for y;=2.0 have also been
shown in Fig. 8.

C. Cr-0.3-at.%-W Alloy

The worst disagreement between the theory and
the experiment6 is observed in this very dilute al-
loy. The measured shifts for Cr-0. 3-at.%-W in
the (0, £, £)T, branch are very large and are diffi-
cult to understand (Fig. 9). However, in the (0,

0, £)T branch the situation is not so bad. The mag-
nitudes of the calculated shifts are comparable
with the experimental ones. The calculated

shifts in the low-frequency region are larger than
the measured ones whereas they are smaller in the
high-frequency regions. A smaller value of y;

= 2.0 may improve the situation somewhat in the
low-frequency region but it fails miserably in the
high-frequency region (Fig. 10).

D. Cr-3.0-at.%-W Alloy

From Figs. 11 and 12 we observe that there is
an over-all reasonable agreement between the the-
ory and the experiment’ but there are discrepan-
cies between the maximum and minimum frequency
shiits. A high value of y; is favored by the com-
parison made in (0, £, £)T, branch but a lower value
of ,(=2.0) can be seen to improve the agreement
in the low- and high-frequency regions. For this
alloy, the phonon widths have also been measured
by Mgller and Mackintosh.” We have calculated the
phonon widths and have compared them with the
experimental data in Figs. 13 and 14. The widths
have also been calculated for other alloys contain-
ing different impurity concentrations (0.3, 0.8,
and 1.6 at.% W) but as the experimental data are
not available, we have not presented the results
here. From Figs. 13 and 14, we observe that al-
though the maxima in the phonon width curves ap-
pear at the appropriate places, the magnitudes
are very small. It seems difficult to obtain such
large phonon widths by this theory.

V. DISCUSSION

Although an over-all good agreement with the
experiment has been reached discrepancies still
exist in certain frequency regions. We should
emphasize the main approximations which have
been used in the present calculations. Firstly, a
nearest-neighbor perturbation model for impurity
has been assumed in the present calculations.
Since chromium is an antiferromagnetic transition
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FIG. 14. Calculated phonon widths
1.20} 1 in (0,0, £)T branch vs reduced wave
vector ¢ for Cr—3.0-at.%-W alloy
(volume effect included) for different
N 1.00 parameters: curve A (=), A =0,70
e x 10%" sec™?, A’ =0.0 sec™?; curve B
To.sob 1 (x=x2),  A=0.70x10? sec?, A’
5 =—0.60x 102 gec™?; curve C (---),
z A=0.90%10*" sec?, A'=-0.60
0.60} - x 10" sec™?. The curve with solid
circles represents the measurements
8 c of Mackintosh and Mdller (Ref. 6).
0.40 5, T Experimental errors have not been
shown.
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metal, the exchange interactions between the near-
est and next-nearest neighbors are expected to be
larger. The replacement of a chromium atom in
the host lattice by another transition-metal atom
(tungsten) may produce a perturbation which might
extend up to second neighbors and even up to more
distant neighbors. Thus, there lies a possibility
of improvement in the theoretical results by start-
ing with a more extended perturbation model. How-
ever, a more important point to be noted is that
here one has to work in a situation where no infor-
mation is available about the mode-Griineisen pa-
rameters. A structure in the mode y’s with re-
spect to phonon frequencies may remove the ob-
served discrepancies in some frequency regions.
At present there is no theory which can account
well for the lattice expansion effect.

VI. CONCLUSIONS

It has been observed that even small changes in
the force constants due to impurity atoms greatly
influence the phonon frequencies in crystals.

These frequency shifts measured by inelastic neu-
tron scattering experiments can be well understood
on the basis of the low-concentration theory after
including the effects of the force constant changes
plus a correction due to the expansion of the lat-
tice when doped with impurity atoms. High values
of the Griineisen-mode parameters in the two sym-
metry directions have been found to be essential

to understand the measured, large, negative, fre-
quency shifts prior to resonance frequency. How-
ever, large discrepancies have been observed in
some frequency regions. A detailed knowledge of
the structure of mode ¥’s in the symmetry direc-
tions is very much needed to improve the present
situation.
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The lattice dynamics of bec lithium have been studied on the basis of a two-parameter model
potential proposed by Krasko and Gurskii. A calculation of phonon frequencies, specific heat,
and Debye temperature gives a reasonably good agreement with the experimental results.

I. INTRODUCTION

The lattice dynamics of metals have received
remarkable theoretical and experimental attention
in present years. The neutron diffraction tech-
niques have produced a wealth of data on the vibra-
tion spectra of solids, requiring a serious confron-
tation between theory and experiment. Out of these
solids Li, an alkali metal, is the simplest from the
theoretical point of view. The ionic size is very
small compared with the interionic separations.
The conduction electrons can be considered almost
free. The Fermi surface is believed on both the-
oretical and experimental grounds not to be far
from spherical. The metal undergoes a Martensit-
ic type! of phase transformation into a hexagonal-
closed-packed form. This transformation produces
a lot of difficulties to the experimental and theoret-
ical investigators. This is cne of the reasons for
the lack of literature on this metal.

For the first time, Toya? calculated the phonon
frequencies of Na using the Hartree-Fock method.
Dayal and Srivastava® made a significant improve-
ment on his results by introducing a slight modifi-
cation. Several calculations on the pseudopotential
approach®~® have added considerably to the physi-
cal understanding of the crystal dynamics of met-
als. Recently Wallace!®™'2 has calculated the pho-
non frequencies, binding energies, and Griineisen
parameters for Na, K, and Li using Harrison’s
modified pseudopotential with considerable success.
Gupta and Tripathi!®!* introduced an exponential
term in the Harrison pseudopotential and calcu-

lated the phonon frequencies and binding energies
with good agreement. Introduction of an exponen-
tial term in their potential makes convergence of
their series more rapid than those of Wallace.
However, these calculations have either given re-
sults in slight disagreement with the experiment,
or involved extensive fitting of parameters to the
measured frequencies. Also these model poten-
tials need an extra exponential term*~!° to cause
the series to converge rapidly.

To overcome these difficulties a model poten-
tial was proposed by Krasko and Gurskii, 16 which
was used to calculate the crystal stability of some
simple metals.!” It was, therefore, thought worth-
while to treat lithium metal on this model. The
values of model parameters are taken from the pa-
per of Gurskii and Krasko. !® It is seen that our
theoretical results are quite reasonable, which
confirms the realistic nature of the proposed mod-
el potential.

II. GENERAL FORMULATION

The equations of motion for the atoms in a mon-
atomic bcc crystal and the reduction of these
equations to a dynamical matrix whose eigenvalues
are proportional to the squares of the normal-mode
frequencies lead to a 3X3 determinantal equation
of the form
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where M is the mass of the atom and I is the 3 X3
unit matrix. The elements of the dynamical ma-
trix D,g are usually represented as a sum of three



