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We have developed a method for calculating electron states in the surface region of a semi-
infinite solid taking full account of the three-dimensional nature of the lattice potential. The
Schrodinger equation is integrateD numerically in a region consisting of the last few atomic
layers and the vacuum, and optimally matched to a linear combination of Bloch (pseudo) wave
functions in the interior. The potential in the surface region is computed self-consistently
from the valence-charge density by solving Poisson's equation, using a local approximation to
the exchange and correlation contribution, and representing the cores by a model potential.
As an illustration of the practical applicability of the method, the electronic structure of the
(100) surface of Na has been calculated.

I. INTRODUCTION

Over the past fern decades there has been an
enormous advance in the understanding of the elec-
tronic structure of bulk solids. Comparable devel-
opments in the theory of solid-vacuum interfaces
have been hampered for two main reasons: First,
the loss of three-dimensional periodicity asso-
ciated with the formation of the surface introduces
additional theoretical complexities. Second, the
lack of a significant accumulation of reproducible
experimental data bearing on the surface electron-
ic structure until the last few years has inhibited
attempts at overcoming the formidable theoretical
difficulties.

Theoretical attempts to characterize the surface
region can be divided into two general classes. In
the first, the periodic potential of the bulk is as-
sumed to persist undisturbed up to a plane at which
it is abruptly terminated and replaced by a constant
potential representing the vacuum. This model has
been frequently applied in the calculation of bound

surface states. ' The difficulty with this approach
is that the actual potential smoothly rises from its
bulk structure to its vacuum value. The way it
does so may well play an important role in deter-
mining the existence and the energy of these sur-
face states, as mell as determining how the val-
ence electrons capable of participating in chemi-
sorption protrude into the vacuum. The abrupt
approximation has also been midely used in the
calculation of low -energy-electron-diffraction
(LEED) intensities. In this ease the approximation
might be expected to have greater validity since,
unlike the ease of the valence electrons, the LEED
electrons are primarily sensitive to the potentials
in the ionic cores, which may be presumed to be
unchanged by proximity to the surface.

In the second general class of approaches, the
main emphasis is placed on being able to calculate
the potential connecting the bulk with the vacuum.

In doing so, the three-dimensional lattice of ions
is replaced by a uniform abruptly terminated dis-
tribution of positive charge. The electronic charge
distribution and the potential are then self-consis-
tently obtained. ' This "jellium" model is a rea-
sonable first approximation for those metals which
are known to be free-electron-like in the bulk.
There are, however, many limitations on the ap-
plicability of this model. It is conceptually un-
suitable for use with semiconductors, and leads
to serious quantitative errors when applied to noble
and transition metals. The model fails to dis-
tinguish the properties of various crystal faces,
which are known to vary significantly even for those
metals to which it is a reasonable first approxima-
tion.

There have been a few attempts to incorporate
the discrete lattice potential into the self-consis-
tent calculation of the surface potential. The
earliest of these, due to Smoluchowski, considered
the positive charge to be uniformly distributed in
Signer-Seitz cells, giving a jellium interior with
a corrugated face. He assessed the trends in work
function dependence on crystal-face structure
primarily by assuming that the electron density
was smooth parallel to the surface and terminated
abruptly. He also considered the effects of allow-
ing the electron density to relax to an equilibrium
distribution determined by minimizing the Weiz-
saker formula for the electron energy as a func-
tional of the density. More recently, Smith used
a similar model for the positive charge and a more
sophisticated energy functional to calculate the
work function of the tungsten 111 face. He did not,
however, permit the electron density to vary paral-
lel to the surface.

Perhaps the most successful attempt to date to
include the effects of the lattice on surface proper-
ties was carried out by Kohn and Lang. Starting
with a self-consistent quantum-mechanical solu-
tion for the jellium model, they rigorously calcu-
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lated the first-order contributions of the lattice
yseudopotential to the surface energy and the work
function for a large number of metals. A nonper-
turbational study of the influence of the lattice was
carried out by Bennett and Duke using a one-di-
mensional Kronig-Penney model for the lattice po-
tential. Some of the difficulties entailed in carry-
ing out a three-dimensional quantum-mechanical cal-
culation have been discussed by Boudreaux. He
suggests a dielectric formulation for the yotential,
but does not present a prescription for calculating
wave functions which satisfy the relevant boundary
conditions.

The object of this paper is to present a tractable
procedure for carrying out self-consistent quan-
tum-mechanical calculations in which the three-
dimensional lattice is included nonperturbationally,
and illustrate its application. ' The procedure
treats the semi-infinite solid, which we believe
to be the most effective model for isolating the
properties of the surface.

Any such calculation has as its major tasks the
determination of the potential and the calculation
of the occupied wave functions. The potential of
the solid loses its three-dimensional periodicity
as we pass from deep in the bulk into the surface
region. This is a combined result of several ef-
fects. First of all, we are dealing with a semi-
infinite rather than an infinite lattice. Even if the
bulk electronic distribution extended unmodified up
to the surface plane, the long range of the Coulomb
interaction would cause the potential to lose its
periodicity in the normal direction. In addition, we
expect important modifications of the electronic
charge density in the surface region. These are
expected to occur primarily in the valence charge.
In most cases the core electrons will be sufficient-
ly tightly bound that they will undergo essentially
no modification in the surface region. This leads
us to approximate the contribution of the ionic
cores to the potential as a superposition of identi-
cal model potentials which are adjusted to fit
empirically determined bulk pseudopotential pa-
rameters. " We calculate the valence-electron
contribution self-consistently, using a local ap-
proximation for exchange and correlation.

Once a starting approximation to the potential
is arrived at, the occupied wave functions must be
obtained from the solution of the Schrodinger equa-
tion. A key step in the calculation is to choose a
plane parallel to the surface such that to the left
the solid is indistinguishable from the bulk. Such
a choice can always be made consistent with the
degree of over-all accuracy one desires. In the
bulk solid, the solutions are appropriate linear
combinations of degenerate Bloch functions. These
must smoothly join solutions of the wave equation
in the region to the right of the plane, where the

potential is different from the bulk. In this "sur-
face region, " the wave functions retain periodic
symmetry in the parallel direction. We have cho-
sen to calculate these using the Laue representa-
tion, '~ in which a Fourier expansion in the parallel
coordinates is combined with the coordinate repre-
sentation in the normal direction.

To obtain the valence-electron charge density,
wave functions must be calculated corresponding
to a mesh of points in the occupied portions of the
bulk Brillouin zone. This charge density is used
to find a new potential in the surface region, and
this procedure is iterated to self-consistency.

As an illustration of the procedure outlined
above, we have carried out a calculation of the
electronic structure of the (100) surface of sodium.

The remainder of the paper is organized as fol-
lows: The wave-function calculation is described
in detail in Sec. II, and the potential calculation
in Sec. III. A discussion of the sodium surface
calculation will be given in Sec. IV. The general
applicability of the method to a broad range of
problems will be considered in the concluding
section V.

II. WAVE-FUNCTION CALCULATION

in this section, we will assume that the (pseudo)
potential in the bulk and in the surface region is
given. The bulk potential is characterized by its
Fourier components V~, where G is a reciprocal-
lattice vector. Taking z as the surface-normal
direction, the surface-region potential is charac-
terized by the set of functions V@„(z), where G„ is
the projection of G on the surface plane.

The wave functions we wish to calculate are
scattering states specified by choosing a particular
Bloch wave g„-(x) to be incident from deep in the
bulk (we suppress the band index). The asymptotic
form of the wave then consists of the incident wave
plus one or more reflected Bloch waves in the bulk,
and for the case of valence electrons no transmit-
ted wave in the vacuum. This formulation is pic-
tured schematically in Fig. 1. The reflected waves
have wave vectors k', with k', =k „and one of them
must have the same band index as the incident
wave. This wave will have 4,'= —k, . If states
from other bands are degenerate with the incident
wave, these will also occur in the reflected set,
and their 4 components must be found from the
band structure. We will ignore this possibility
for present purposes, since the generalization of
the single reflected wave case to that of several
reflected waves is simple. The incident and re-
flected Bloch waves are expressed as Fourier
series,

(x) Q y ~f (k- 5)' R (2. 1)

where the set of G's to be included in the sum is
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FIG. 1. Schematic representation of the vicinity of a
solid surface indicating the key elements if our treatment.
A plane shown by the dashed line separates the bulk,
where the potential is fully periodic and represented by
its reciprocal-lattice components Vg, from the surface
region. Here only two-dimensional periodicity is as-
sumed and the potential is expanded with arbitrary func-
tional form in the z direction for each component V&„(z).
Incident and reflected Bloch waves gg and gy are super-
posed with phase shift y and joined to a numerically in-
tegrated solution at z =0.

=2 Z V& &(~)u&;,(~). (2. 3)

The energy E in (2. 3) is that of the Bloch waves
obtained in the first step of the calculation.

%e wish to solve Schrodinger's equation in the
surface region using step-by-step integration.
This method appears to offer computational effi-
ciency. It also avoids the difficulties present in
variational calculations for scattering problems,
which are inherently nonlinear. ' To use step-by-
step integration, however, we must have starting
values, and these must be based on the boundary
conditions. Finding the means to satisfy the bound-
ary conditions and start the integration proves to
be the most difficult part of the wave-function cal-
culation.

For discussion of this and related points, we will
introduce the following notation: U(z) will be an
N-component-column vector whose components are
the uo„(z) introduced in (2. 2), in some particular
order. 4(z) will be the incident Bloch wave in the
same representation. Each of its components is
the sum of foe' "8 ~'" for all G which have the
same G„. 0"(z) will be the corresponding vector
for the reflected Bloch wave.

The a p~io~i over-all boundary conditions on
the wave function are the requirements that it re-
duce to the asymptotic forms previously discussed.
Thus the wave function must decay into the vacu-
um,

f/(z)-O as z-+ (2.4)

selected to give a representation of the wave func-
tion which is adequate for the desired accuracy.
This selection must be handled on a case-by-case
basis, and has been widely discussed in the band-
structure literature. Since we intend to deal with
pseudopotentials and pseudo-wave-functions, the
set should not be too large. Given VG and the cho-
sen basis set, the first step in the computation is
to find E(k) and the coefficients go by a standard
matrix eigenvalue calculation. Components of the
reflected wave are easily found from those of the
incident wave.

The wave function in the surface region can be
expanded as

u(x) =Z u- (z) e' "))-6"'" (2. 2)

where for consistency the set of G„must comprise
the parallel components of the set of G chosen to
represent the Bloch waves. The number of such
G„will be called N. When (2. 2) is inserted in
Schrodinger's equation, the result is a set of N
coupled one-dimensional equations,

(d
I ~ s+mz —Ik„—G„I —2)'g)z))sr- (z)

The numerically integrated wave functions must
match a linear combination of the incident and re-
flected waves in value and slope at the plane z
= z„which defines the surface region. Therefore,

U(z„) = e '""e(z„)+e""e'(z„), (2. 5)

-i /)8P+e&)g/8 (2
M zM

where y is the one-dimensional scattering phase
shift (yet to be determined), and the coefficient
of the incident wave has been chosen to make the
wave function real.

The coupled equations (2. 3) require 2N constants
to uniquely determine their solution. However,
the conditions (2. 4)-(2.6) constitute 3N equations,
and introduce only one additional constant y, so
that the problem as formulated is overdetermined.
What has been omitted is the fact that Schrodinger's
equation for the bulk potential admits N- 1 addi-
tional solutions which have the same E, the same
k, , and which decay exponentially to the left.
These "evanescent waves" could be included on the
right-hand side in (2. 5) and (2. 6), and would in-
troduce just the needed number of additional coef-
ficient~. However, to include these waves is not
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consistent with our intention in distinguishing two

regions as we have. The evanescent waves are
generated by the physical surface —not by the
matching plane. If the matching plane is chosen
so that the potential to its left equals that of the
bulk to the desired accuracy, self-consistency de-
mands that the wave functions must have already
reached their asymptotic limit to a comparable
degree of accuracy.

The way to obtain a mathematically mell-deter-
mined set of conditions without the evanescent
waves is to replace (2. 6) with the requirement that
the mean-squared slope mismatch, which can be
represented as the squared magnitude of a complex
vector,

U„= QF„,~, (2.9)

The simplest boundary condition to satisfy is that
referring to the vacuum (2. 4). We choose the
starting point for the integration far enough out that
for z, & z & z4, the potential Vo„(z) can be neglected
for l5„ i &0, and adequately represented by a con-
stant plus a decaying exponential for 1G I

= 0. The
set of differential equations is then decoupled in
this region, and can be solved analytically. "
Choosing the appropriate decaying solution, the
ratios of the components of U~, U3, and U4 to
those of U& are computed. Using these ratios,
we can construct a vector E'4 for any vector U&,
and represent this process as matrix multiplica-
tion by the 4N~N matrix P,

;„)3d'i' ]„(2dC' dUE~= e '" +e"
dz dz dz

(2.7) F4=PUg .

Y'„,g
= S„F„. (2. 8)

The algorithm requires that Y„contain values of the
wave function at four adjacent points. It is thus a
4N-component vector formed by interleaving the
vectors U„, U„» U„» and U„3. The nature of
the algorithm is such that the Y„contains accurate
values of Ufor thepoints n —1, pg —2, and n —3,
but only a preliminary estimate for the point n.
We will need an ¹&4Nmatrix Q which picks the
leftmost accurate U out of 7,

be minimized. E„ is the kinetic energy arising
from the slope mismatch, so our condition can be
viewed as an energy-variational principle. This
type of approximation is well known in band-struc-
ture calculations, since it occurs in Slater's aug-
mented-plane-wave method. ' In that context, the
slope mismatch occurs between the sets of basis
functions used inside and outside spheres surround-
ing each atom, and it is minimized in the calcula-
tion. In our calculation, we monitor the mismatch,
and have the option of moving the matching plane
deeper into the bulk if it should become unaccept-
ably large.

The task of determining starting values for the
numerical integration is still not a simple one.
Boundary values are specified on both the right-
and the left-hand side, and those on the left-hand
side implicitly depend on the result of the integra-
tion. To carry out the integration, we introduce
a mesh of points z&, z&, . . . , z„with uniform
spacing h starting well into the vacuum and end-
ing at the matching plane. The integration algo-
rithm which we use is discussed in detail in the
Appendix. For the present discussion we need
only observe that the integration from z„ to z„,&

can be expressed as a stepping matrix S„operating
on a column vector F„representing the wave func-
tion,

With the matrix notation we have established,
the process of finding the phase shift and starting
values can be explained quite simply. For any set
of vacuum starting values U&, the wave function
which satisfies the vacuum boundary condition can
be found by a series of matrix multiplications:

We can clearly calculate the matrix T„without
reference to any particular U, . Initially, we cal-
culate T~ & and T„by the indicated multiplications.
Then for any phase shift we can find the U& which
will cause the amplitude-matching condition (2. 5)
to be satisfied by inverting T„,

P -&( -fe/z@ + .&tP/z@
) (2 12)

In computing the form to be minimized to achieve
optimal slope rnatch, the derivatives of 4, 4', and
U are computed from the differences at points ~1f

and M -1. Nothing is gained from a more sophis-
ticated approximation as long as the same approxi-
mation is used for all functions. The form so com-
puted is

Varying cp to minimize (2. 13), we find

P = ™n(('4-1 &N -1TN '4)
x(gz, , —Z'„,Z'„-'@„)]. (2 14)

Using this result, we apply (2. 12) and (2. 11) to
compute the wave function for the whole mesh.

Computer code to implement this procedure has
been developed and tested. Over-all numerical
stability seems excellent, which may be ascer-
tained by comparing both sides of (2. 5) at the end
of the calculation. With a surface region corre-
sponding to a few atomic layers, slope mismatch
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The potential seen by a valence electron consists
of a term from the positive-ion cores and a self-
consistent potential due to the other valence elec-
trons. The latter potential is made up of a Har-
tree term, obtainable exactly from Poisson's equa-
tion, and an exchange and correlation term, which
we will assume can be expressed as an energy-in-
dependent local function of position. One's ability
ity to treat the exchange and correlation potential
in such a manner has been extensively discussed
in the literature' and we have nothing further to
add on this point.

In treating the ion-core potential we shall replace
the exact ion-core-electron interaction by a model
potential which is both energy independent and a
local function of position. The success of the em-
pirical pseudopotential has been amply demon-
strated" for calculating bulk properties, and the
principle of pseudoatom transferability in the area
of compound semiconductors and liquid metals has
received strong empirical support. We believe the
same transferability is valid between atoms in the
bulk and those in the surface.

In light of the above assumptions we may write
the potential energy as seen by an electron in the
surface region as

V(x) = V„(x)+V„,(x )+ V...(x), (s. 1)

where V„(x) is the Hartree potential, V„,(x) is the
exchange and correlation potential caused by the
valence charge, and V„„(x)is a model pseudopo-
tential for the electron-ion interaction. We shall
discuss each of these terms in considerable detail
below.

The Hartree potential V„(x) satisfies the equa-
tion

is typically less than 1%. It appears that the tran-
sition from the coordinate representation in the
surface region to the expansion based on a finite
set of z-direction plane waves in the bulk is typ-
ically a more serious source of error than the
neglect of the evanescent tails.

To compute the valence-charge density in the
surface region, the squared amplitude of the wave
function must be computed as a function of the in-
cident wave vector, and integrated over the occu-
pied portion of the half of the Brillouin zone with

4, &0. This integral is, of course, approximated
by a sum on a finite mesh, and symmetry is used
as much as possible to reduce the portion of the
zone which must be considered. The symmetry is
less than that of the bulk, and portions of the zone
which are equivalent in the bulk but have different
0, 's give different contributions to the surface-
region charge density.

III. POTENTIAL CALCULATlON

V'V„(x) = -4vp(x), (3. 2)

where p(x) is the electron density and we have
adopted atomic units. This equation is easily
solved by Fourier transformation parallel to the
surface. Writing

V„(x)=Z e' ii'"i V$ (z),
6))

p(x) =Q z il II p5 (z)
II

and substituting (S.3) into (3. 2) one obtains

d2
G', —,V"-,„(z)=4vp, „(z),

(3.Sa)

(3.Sb)

(3.4)

where G =
I G, I and we have suppressed the vector

notation because of the dependence of V~z„(z) and

p~„(z) on only I G„ I.
The solution to (S.4) is best discussed separate-

ly for the cases G„=O and G„IO. For G„=O, (3.4)
takes the form

. V, (.)=4.p, ( ).H

dz (s. 5)

We are interested in solving (S. 5) to the right of the
matching plane (see Fig. 1) subject to the following
boundary conditions on the plane:

Vo(zz) = Vo (S.5a)

dV' (z„)=O, (s. sb)

where the constant Vo is adjusted to assure con-
tinuity. These conditions are apyroyriate when the
matching plane is chosen as in Fig. 1 as a center
of inversion symmetry for the planar average bulk
potential.

While equation (3. 5) subject to boundary condi-
tions (3. 6) constitutes a routine numerical prob-
lem, a number of points are worth mentioning in
connection with its solution. First, our knowledge
of p, (z) will be restricted to a discrete set of
equispaced points in the surface region, i. e. , the
set used in Sec. II to solve the Schrodinger equa-
tion. These are the same points at which we will
want to know VOH. The total integrated valence
charge density is fixed by the number of atom
layers in the surface region and their valency. In
general the po(z) calculated from the Schrodinger
equation, which serves as input to (3. 5), will not
have precisely the correct total amount of charge.
In order to ensure proper charge neutrality we
would like to scale pp(z). This is particularly im-
portant at the initial stages of the iteration towards
self-consistency. Close to self-consistency we ex-
pect the charge to be very close to its correct val-
ue with little or no scaling required. This scaling
can be done in the process of solving (S. 5). Sub-
stituting W = d Vo/dz into (3. 5), one obtains
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d W(z)
=4vpo(z), (3.7a)

w(z. ) =o . (s. 7b)

dV"'= w(z),
dz (3. 8a)

We can solve (3.7) by step-by-step numerical
integration using quadratic interpolation for po(z).
We now scale the resulting W(z) uniformly so that

W(z„) = -4&q, ,

where z„ is a point sufficiently far into the vacuum
that the approximation p(z„)=0 is valid (z4 of Sec.
II), and Qr is the total positive charge per unit
area residing on the ion cores in the surface re-
gion. Using the scaled W(z) in

vacuum region. This is because these uncertain-
ties are quite small when referenced to the Fermi
energy and cause only small changes in the way the
individual wave functions tail into the vacuum.
Having discussed our choice for the exchange and
correlation potential we turn to the more technical
question of how we obtain VG„'(z) from po„(z). The
direct approach would be Fourier synthesis of
p~„(z) to obtain p(x), the calculation of p'/ "(x), and
then its subsequent Fourier decomposition. While
this method is direct it can be very time consum-
ing. What one would like is an analytic procedure
from which one can obtain V~„'(z) directly from
p~, (z). Such a procedure is easily obtained for the
p' z choice for exchange and correlation. In that
case

V,"(z.) = V, , (s. 8b)
F[p (z) +Q p (z) e f 6[[' x]J]1/3 (3.11)

one can again integrate numerically to obtain a
Vo(z) consistent with charge neutrality.

Turning to the case of G 40, we can best solve
(3.4) by Green's functions. One finds

V =Fpo(z)' '[I+K p (z)e' "'*"]' ' (3 12)

where

p (z&) e-G((Iz -z' I dz& p, „(z)= p, „(z)/po(z) (3.13)
II

zm

+g e- G~~R -zm (3 9)0 II

where we have added to the particular solution of
the inhomogeneous Eq. (3.4) a solution of the
homogeneous equation. The potential V~„(z) satis-
fies the physical requirement of exponential decay
into the vacuum, and depending on A~, can assume
any value at z = z . Given (3.9) a simple algorithm
can be used to generate V~ from a knowledge of
p~, at an equidistinct set of points.

The exchange and correlation potential V„,.(x)
can be handled with comparative simplicity as long
as we make the local density approximation. Since
the aim of this paper is largely exploratory we
adopt the simplest "reasonable" form for the ex-
change and correlation potential, '

V„.(x) = F[p(x)]"' . (s. Io)

This form has ample historical precedent in self-
consistent band calculations, and with the added
flexibility of having F adjustable can be used to
achieve close agreement over a limited density
range between (3. 10) and more complicated local
expressions for exchange and correlation, such as
the Wigner interpolation formula. '6 The question
then arises as to the validity of (3.10) in the vac-
uum region where the density has dropped consid-
erably from its bulk value. There is no question
that (3. 10) ceases to be valid in the tail of the elec-
tron density. Fortunately, the uncertainties in the
form of the potential far into the vacuum have very
little feedback on the charge density —even in the

What we require at this point is an efficient
polynomial expansion of (1+y)'/ . In the case of
nearly-free-electron metals, where p(x) does not
vary by more than 50% in the bulk, a Taylor ex-
pansion of (I+y) /3 is rapidly convergent. For
example,

(3. 14)

has a maximum error of 0. 2/o over that entire
range Using (.3.14) in (3.12) it is a trivial matter
in this case to collect terms and obtain directly
V~„'(z). By way of illustration (from our calcula-
tion for sodium), if we retain two nonzero IG„I's
one finds

( ) = ~po( )"' [1--'(p,,( )'+p„( )')],
(S. 15a)

V",'( )= po( )'"(l p„( )[I-l p„( )]j,
(3. 15b)

V",'( )=&po(z)"'[l p, ( )- p„( )'] (3 15c)

In the case where the charge density varies great-
ly, as in semiconductors, the same type of pro-
cedure can be used except that a Chebyshev approx-
imation to (1+y)'/ must be used instead of a Tay-
lor expansion to achieve an efficient polynomial
representation. '

As previously stated, we are going to use a
model pseudopotential to describe the ion-core
potential. Perhaps the simplest of these is the
Ashcroft model potential. ' It combines the advan-
tages of great simplicity, extensive use, and rea-
sonable success when applied to the s-p-bounded
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V(r)

"c
done for the electron charge density.

Until now we have concentrated mainly on the
potential in the surface region. This is because we
shall be assuming that the potential in the bulk is
known from empirical pseudopotential calculations.
There is still the question of consistency between
the potential generated in the surface region and
that adopted in the bulk. This problem is handled
at two levels. First, having the bulk pseudopoten-
tial at a limited number of reciprocal-lattice vec-
tors we can generate a mixed or Laue representa-
tion for the bulk potential,

V, (x)=Z Vde"" =Be" * V'-(~) (S. 19)
G1

FIG. 2. Radial dependence of the Ashcroft model po-
tential for an isolated ion. The potential is zero inside
the core radius r~ and Coulombic outside.

metals. This potential is shown schematically for
the pseudoion in Fig. 2. The potential is Coulom-
bic outside a radius R, and zero inside. It can be
thought of as being generated by a repulsive core,

v„„( ) = q/ft, ,

=o, /xf (S. ae)

where Q is the valence charge on the atom, and a
shell of positive charge Q distributed on the sur-
face of a sphere with radius R, .

The Fourier transform of the core potential is
easily obtained in closed form. For the body-
centered lattice it is

Vzozz( ) Q [
2 ( + )2]1/2

n

&& z, (G„[H —(z —~„)'j"')

&& e(P (& & )2) &i (sz S}z (S. 1V)

(S.18)

This can be inserted into Poisson's equation (S.4)
and the resulting potential obtained just as was

where a is the lattice constant of the body-centered-
cubic lattice, z is the position of the core centers
projected onto the z axis, J1 is the first-order
Bessel function, and b=-, (a, a, 0). The function
6(z) is 1 for z &0 and 0 otherwise. A close exami-
nation of the exponential term indicates that it de-
pends only on G„and simply produces alternations
is the sign of Va, ", '(z) between adjacent cores for
those G, for which I (a/2m)G„I is an odd integer.

For calculating the Coulomb potential from the
core charge all we need is the Fourier transform
of the core charge,

where

VB (g) =Q iGzz VB (s. 2o)
Gz

Continuity between V~„(z) and V o (z) at the sur-
face plane can then be assured with the help of the
adjustable constants Vo and Ag„which enter in solv-
ing Poisson's equation. While this assures contin-
uity of the potential across the matching plane,
unless the model potential in the surface region is
chosen to be reasonably consistent with the bulk
pseudopotential, the shape of V-„„,(z) on either side
of the matching plane will be very different.

The detailed means one uses to bring about at
least partial consistency will vary depending on the
kind of solid one is dealing with. For the case of
sodium the following procedure, which should be
valid for all materials with weak pseudopotentials,
was used. The self-consistent pseudopotential in
the bulk was calculated using a dielectric function
consistent with our assumed form for exchange
and correlation in the surface region. '9 This leads
to the following relation between the pseudopoten-
tial coefficients and the model potential:

321
where

(S.22)

One then chooses a core radius R to give a best
fit to the empirical yseudopotential parameter.
Once 8, is chosen, the Va's generated from (S.21)
are used in the bulk calculation. By this means
potentials for the bulk and surface region are gen-
erated which are highly consistent with each other.

IV. APPLICATION To N~

Ln order to examine the practical applicability
of our method to real materials we have carried
it out for the (100) surface of Na. We considered
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FIG. 3. Surface reciprocal lattice for the (100) face
of Na. The interior square is the surface Brillouin zone,
and the outer square is the projection of the bulk Bril-
louin zone. The circle is the projection of the Fermi
surface, and the shaded octant indicates the set of inci-
dent wave vectors used in the charge-density integration.

this a good first choice for two reasons. First,
bulk Na is known to be well described by a weak
pseudopotential and to have a nearly spherical
Fermi surface. " Second, this surface has been
studied by Kohn and Lang using a perturbation
scheme for the lattice potential, and they found
that the work function was changed significantly
by the inclusion of the lattice.

Bulk Na is a bcc metal with lattice constant
8. 091 a. u. and Wigner-Seitz radius y, = 3.99 a. u.
The atoms on the (100) surface form a simple
square lattice. The surface projection of the
reciprocal lattice is a simple square mesh. One
could define an associated surface Brillouin zone
which is shown in Fig. 3. It should be noted that
this is not the same as the projection of the three-
dimensional Brillouin zone onto the surface, which
is also shown in Fig. 3. While the Fermi surface
is completely inside the first bulk Brillouin zone,
its projection overlaps the boundaries of the sur-
face Brillouin zone. There is no discontinuous
behavior of the wave functions we calculate at the
surface Brillouin-zone boundary. However, we
note thai an attempt to solve the coupled differential
equations (2. 3) perturbationally would break down

near this boundary.
The symmetry of the terminated lattice is such

that one need only consider incident Bloch states
whose wave vector lies in a one-e ghth section of
the Fermi hemisphere, the projection of. which is
shown in Fig. 3. For a k in this section, the most
important bulk reciprocal-lattice vectors in the
secular equation are (0, 0, 0), (1, 0, 1), (0, 1, 1),
and (1, 1, 0). These G's, projected onto the sur-

face plane, give a set of G„'s consisting of (00),
(10), (01), and (11).

Initial experience with this set revealed sizeable
slope discontinuities at the matching plane. We
found that this resulted from the fact that our wave
functions in the surface region had their z depen-
dence calculated, in principle, in complete detail,
while the bulk wave functions each had only a sin-
gle z-direction Fourier component. We found this
problem could be rectified by adding bulk G's to
give additional Fourier components in the z direc-
tion. Our final set included, in addition to the pre-
viously mentioned four, (0, 0, +2), (1, 1, +2), (1, 0,
—1), and (0, 1, —1). With this expanded set, we are
no longer calculating the bulk wave function in a
symmetric fashion, and we might be tempted to in-
clude more G's such as (2, 0, 0). This, however,
would introduce another G„, and to avoid slope-
mismatch problems with this component, even
more G's seem unavoidable. When the basis set
is sufficiently enlarged to yield convergence for
the band structure, this asymmetry will have no
effect.

Another difficulty with our restricted initial
selection of G's is that while for k's near the
Fermi surface they clearly dominate other 6's in
the wave function, for small k's other G's are al-
most as important. Our approximation causes us
to underestimate the G„0 components of the
charge density. As a crude but plausible means of
correcting this defect, we have calculated weight-
ing factors for each point in the k-integration mesh
used to calculate the charge density. These fac-
tors were chosen so that the contribution to each
component of the bulk charge density from each 4
point calculated with the restricted basis would
agree with the perturbation-theory result from the
full basis.

The k integration was carried out in cylindrical
coordinates, with point positions and weighting
factors chosen by a product of appropriate Gauss-
Jordan quadrature formulas. Two different mesh
sizes were employed to verify convergence, one
containing 24 points and the other 30 points (equiv-
alent to 240 points in the complete Fermi hemi-
sphere).

The Ashcroft model potential for Na was fit to the
bulk empirical pseudopotential Vf fo 0.OV9 by
choosing a core radius of 1.6. (All numbers quoted
are in a.u. unless otherwise specified. ) This is
somewhat different from the radius of 1.67 origi-
nally calculated by Ashcroft'8 because we have
taken account of the exchange-correlation correc-
tion to the screening in the Slater approximation.
The ions were positioned maintaining the bulk lat-
tice spacing all the way to the surface, although
this is not demanded by the method. Means of
calculating surface relaxation are discussed in
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FIG. 4. Charge density (left axis) and self-consistent
potential (right axis) averaged over the x-y plane as a
function of g. The thoro pairs of small brackets along the

abscissa indicate the positions of the ion cores of the last
two atomic layers. Note that right axis scale is 10
a.u.

Sec. V.
Self-consistent calculations were carried out

with two and with three atomic layers in the sur-
face region. A mesh-point spacing of 0.4 was
used in the numerical integration, and the first
mesh point was V. 2 into the vacuum beyond the
outermost point of the last layer of cores.

To begin the calculation, we guess a physically
reasonable charge distribution in the surface re-
gion. The distribution is the product of the bulk

charge density found from linear-response theory
times a function which cuts off smoothly as it
passes into the vacuum, 1-tanhP(z —zo). zo is
placed at the equivalent jellium edge, and 8 is ad-
justed to reproduce the surface dipole found in the
appropriate jellium calculation. This charge dis-
tribution is used to calculate a starting approxima. —

tion to the potential by the methods described in
Sec. DI.

The potential was made the center of attention in
the iterative convergence scheme. The compo-
nents V~ (z) with G„40 converged quickly and stably
using simple iteration. This was not the case for
Vo(z), since this component is an extremely sensi-
tive function of the electron distribution. For ex-
ample, an input potential with a work function
slightly below the converged result yielded after a
single cycle of iteration an output potential with a
work function considerably too large. Thus the
"feedback" is so strong that simple iteration is
completely unstable. We dealt with this problem
by the standard technique of constructing a new

input Vo(z) by adding (1 —o) times the previous
input Vo to & times the corresponding output Vo.

We found that an z of around 0. 1 critically damped
the instability. On the last few iterations, we in-
creased a to as much as 0.4. This ensured con-
vergence of those details of the potential which do

not feed back too strongly on themselves. We
terminated these iterations before the unstable fea-
tures could run away. An average of 6-9 runs
was adequate to obtain convergence to 1/o. This
entire procedure required 2 min of computing
time on a Honeywell 635 computer.

In discussing the results of the calculation, let
us first consider the G„=O components of the po-
tential and charge density. These are shown in
Fig. 4 for the case in which two atomic layers were
included in the surface region. We first note that
the potential of the next-to-last atomic layer is
very similar to that of the bulk. Only in the last
layer does the rising surface barrier distort the
bulk potential. Outside the last core, the potential
rises rather quickly, but then slows its rise and
finally approaches its vacuum asymptote of 0. 213
rather slowly. The charge density rises smoothly
from zero in the vacuum to a peak midway between
the first and second atomic layers. In the bulk,
one would expect a peak at this location whose
height was 8/o above the average due to the lattice
potential. The peak we find here is 14% above the
average, and the enhancement is due to the first
Friedel oscillation. Examination of the jellium
calculation shows that this oscillation occurs at the
same location and has an amplitude of 8%. Thus
the two effects appear to superpose linearly.

In order to display the three-dimensional behav-
ior of the potential, we have plotted it on the cross-
hatched plane shown in Fig. 5. In this sketch,
representing an outermost unit cell of the solid,
atoms 1 and 2 lie, respectively, in the first and
second layers. The left-hand edge of the cross-
hatched plane is its intersection with the matching
plane in the two-layer calculation. In Fig. 6, the

FJG. 5. Sketch of a unit cell containing the surface
layer (atoms 1 and 3) and the next layer (atom 2). The
cross-hatched plane is the location of the plot shorn in
Fig. 6.
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V. DISCUSSION OF FURTHER APPLICATIONS
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FIG. 6. Three-dimensional self-consistent potential
for the Na (100) surface. The potential is plotted verti-
cally along three lines in the cross-hatched plane shown
in Fig. 5, whose proportions have been distorted for
clarity. The location of the core of the atom labeled 1 in

Fig. 5 is indicated by the heavy line along the foreground
abscissa, and the left boundary is the matching plane.

potential is plotted along three equally spaced
lines lying in the cross-hatched. plane, whose pro-
portions have been distorted for clarity. The
prominent peak in the foreground is the repulsive
core potential of the atom labeled 1. A marked
difference can be seen in the rate at which the vac-
uum barrier rises as one passes from a position
just outside atom 1 to one midway between atoms 1
and 3. Quantatively, the effective electric field in
the plane 1 A outside the cores varies from 3.3 to
l. 4 V/A as one moves between these two positions.
Another indication of the strength of the three-
dimensional structure in the potential is the fact
that a 0.4-eV variation in its value exists over the
plane 2 A outside the cores. Inside the first atom-
ic layer, the structure of the potential is essential-
ly equivalent to that of the bulk.

The work function is the difference between the
vacuum potential and the Fermi energy. Because
of the known near-sphericity of the Na Fermi sur-
face and nearly-free-electron band mass, we cal-
culated &~ simply by finding the lowering of the
band minimum relative to the bulk average poten-
tial (which is our zero reference), and assuming
free-electron dispersion. We find 2. 71 eV for the
work function. This is to be compared with a value
of 3.06 eV found by Kohn and Lang for the jellium
model and with their perturbation-theory estimate
for the (100) Na face of 2. 75 eV. We consider this
result and ours to be essentially in agreement.
Experimental data is available only for polycrys-
talline samples, for which a value of 2. 7 eV is
found. Since crystal-face anisotropy of the work
function is usually portional to the packing density
of the face, ~ and since the (100) face is an inter-
mediate density face, it is plausible that its work
function be nearly equal to the polycrystalline
average.

As in any elaborate self-consistent calculation,
computing time requirements place an upper bound
on the complexity of the systems that can be
studied. The gratifyingly short time require-
ments of our Na calculation suggest that the method
should be useful without modification for a fairly
large number of materials and surfaces.

The chief factor entering into the determination
of the computing time is the number of 6 wave
vectors which are needed in the wave-function cal-
culation. As the number N of 6,'s increases, the
most time-consuming step is ultimately the series
of matrix multiplications needed to construct the
matrices T„and T„,for the phase-shift deter-
mination. The time required for this operation
increases as N . We believe that the set of 6„'s
which are necessary for the accurate determina-
tion of the phase shift will generally be consider-
ably smaller than the set we wish to include to get
an accurate representation for charge density.
In order to exploit this situation, we have devised
a perturbational scheme for integrating the less-
important equations in (2. 3) after our nonperturba-
tional procedure is applied to the main components.
Computation time for this only increases linearly
with the number of 6, 's beyond the basic set.

So far we have only discussed scattering states,
but the possibility exists that some systems we
wish to treat will have true bound surface states
which lie in a gap of the bulk crystal and decay
exponentially into the oulk. ' The method we have
described can be adapted quite easily to calculate
such states. Only for an energy equal to the eigen-
value will a wave function integrated from the vac-
uum into the bulk be strictly decaying. If, for a
given k„, the amplitude of a wave function at the
matching plane which was started at a fixed ampli-
tude in the vacuum displays a sharp minimum as a
function of energy, we conclude a bound state ex-
ists at the energy of the minimum. The actual cal-
culation is slightly more involved because of the
multicomponent nature of the wave function. The
vector U& which is the eigenvector of T„T„with
the smallest eigenvalue &0(k, E) gives the best set
of starting values, and ) 0 itself is then the squared
amplitude at the matching plane. This method is
clearly practical only for identifying states that are
sufficiently strongly bound to be well localized with-
in the surface region.

With the techniques already developed and the
extensions outlined above, our methods should be
applicable to all s-p-bonded systems amenable to
pseudopotential treatment. This class includes
nontransition metals and semiconductors. It also
includes ordered adsorbed layers which are com-
mensurate with the underlying lattice.
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A quantity of considerable interest beyond the
electronic structure itself is the surface energy.
The total energy of a system is the sum of the one-
electron energies minus the electron-electron in-
teraction plus the ion-ion interaction. The change
in the one-electron energies produced by the for-
mation of the surface can be obtained directly from
the phase shift introduced in Sec. II and the bulk
E-vs-k relation. The interaction energies in the
surface region can be found directly from the cal-
culated potentials and charge densities. Since all
of these quantities are already calculated in the
course of determining the electronic structure,
calculation of the surface energy requires a
negligible amount of additional computer time.

Uy to this point we have not discussed the man-
ner in which the positions of the ion planes in the
surface region should be chosen. While for the Na
calcalation we simply used the bulk spacing, there
is nothing in the method that requires this. The
spacing should, in fact, be determined to mini-
mize the surface energy. Doing so will enable us
to study the interesting phenomenon of surface
relaxation and to find the equilibrium spacing of
ordered adsorbed layers. The energy can also be
studied as the last layer is rigidly slid around
parallel to the substrate to determine preferred
bonding sites.

The method we have introduced, including the
extensions discussed in this section, appears to
be useful for the study of surface properties of a
wide variety of materials. An important class of
materials to which the method is not directly ap-
plicable is transition metals and their compounds.
Studies of means of extending the scheme to these
cases are currently underway.

un-2

1
un- 3 (A4)

The 4N&&4N stepping matrix S, in (2. 8) is
$11 8 12 " S1N

n

+1 g22 . . . g2N
n

S =
n (A5)

@1 gN2 . . . gNN
tf'

where the indicated elements are each 4 &&4 sub-
matrices. The factors on the left-hand side in the
differential equation (2. 3) are denoted by an effec-
tive wave vector squared for each component,

(~„')'= ~I „-G'„~'+2V,(z„)-2Z. (A8)

Then the diagonal submatrices are

where y~ and f, re. fer to the jth mesh point. In
principle, (A2) is used once and (AS) is iterated to
consistency using the predicted value to compute f„
on the first iteration. In practice, we have found
that a. single application of (AS) yields very ac-
curate and stable results.

In the following, we will use integer superscriyts
to refer to G„wave vectors and subscripts to denote
mesh points. The 4N component vector Y in (2. 8)
is

APPENDIX: DIFFERENTIAL-EQUATION INTEGRATION
SCHEME

The cross coupling of the set of differential
equations (2. S) presents a special problem. The
second derivative uG „at mesh point n depends on
the values of all the u~ at that point. This rules
out the accurate Numerov scheme which is popular
in atomic and band calculations. However, an
equally accurate two -step ("predi ctor -corrector")
scheme due to Milne can be used. Its general
form for the equation

1++h z' 2h g„g1 2

2+Bh g

1+4h~„' 2

—I+*& g„' z 0

(AV)

P) 2VCI

~h'V"
12 n

—h v"
~h V"
B n-2

"h'v" O4 g-2

~h'V". 012 ff.- 2

The off-diagonal submatrices are

dp=f(x y)
d g

is the predictor

n
0

y„,~
= y„+y„z —y„z + I/4h (5f„+2f~- g + 5f~- z) ~

(A2)
followed by the corrector

y~= 2y„g —y„z+ I/12h (f +10f„g+f„z), (AS)

(A8)
where V „'~ is V-„(z„); K = O'„—G, . The top two rows
in each submatrix implement the algorithm, and
the last rows of the diagonal submatrices simply
move already computed values down in the Y vec-
tor. Note that components of Y„referring to the



SELF-CONSISTENT ELECTRONIC STRUCTURE OF SOLID SURFACES

(
d2

d, —(~')'+a'e ")u'(z)=o, (A10)

nth point are "predicted" values, while those
referring to the preceding three points are "cor-
rected" values.

The Nx4N matrix Q introduced in (2. 9) has all
zero elements except

(A9)

The decoupled differential equations in the vac-
uum have the form

in (2. 10) is given by

01

01

xp 0

0

0

0

0 xp
2 (A13)

where y is the limit of (A6) for s-+ ~, and —,'n and
) are the amplitude and decay rate of the exponen-
tial tail of the G„=O component of the potential.
The desired solution is"

0 1

0 0
0

u'(z) =Z,„„[(2n/x)e ""],
where J is a Bessel function. The ratios

~,' =u'(z, .)/u'(z, )

(A11)

(A12)

N
~ g4

N

r2"

are computed, and the 4NxN matrix I' introduced
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