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Recent measurements of the Compton profile of polycrystalline vanadium have been inter-
preted by means of a renormalized-free-atom model. The electronic configurat. 'on has been
varied, and it has been found that the configuration in vanadium must be close to Bd44s~ in
atomic notations, in agreement with earlier experience.

I. INTRODUCTION

During the last few years there has been a
rapidly increasing interest in inelastically scat-
tered (Compton) x rays. ' With certain simplifying
assumptions, the so-called impulse approximation,
the spectrum of the inelastically scattered x rays-
the Compton profile —is directly related to the elec-
tron momentum distribution of the scattering sys-
tem. Compton-scattering experiments are par-
ticularly sensitive to the momentum distribution
of outer weakly bound electrons, and therefore
provide an interesting way of testing the wave func-
tions used to describe, for example, the band elec-
trons in a metal. Measurements on a polycrystal-
line sample yield the Compton profile, defined as

z(q) = f dPP& p(p)),

where (p(p)) is the spherical average of the elec-
tron momentum distribution p(p). For a single
orbital x(r) the momentum distribution is given by

p(p) =
i x(p) i',

where

x(p) = (») '"fd r e "'x(r) (3)

defines the momentum transform. a Given a certain
wave function for a system one may evaluate the
corresponding momentum distribution and a the-
oretical Compton profile. A comparison of the ex-
perimental and theoretical profiles would then give
an estimate of the reliability of the assumed elec-
tronic configuration and wave function.

Most Compton experiments on itinerant-electron
systems have been centered on the simple metals.
Measurements have been performed successfully
on Li, ' Na, Be 3 Mg, ' and Al. ' With a few ex-
ceptions' ' the data have so far been interpreted
by means of the free-electron model for the con-
duction electrons and free-atom wave functions for
the core electrons. Measurements on the poten-
tially more interesting, but also more difficult
transition metals have recently begun. Isotropic
profiles are now available for Sc,' Ti,"V,' and
Fe.' ' The results have again been interpreted
in terms of either the free-electron model or free-
atom wave functions. None of these models is

satisfactory for a transition metal, and evidently
there is a need for a somewhat better description
of the electronic structure in analyzing the Compton
data. Particularly in the low-momentum region,
which is most sensitive to the saape of the outer-
most-electron wave functions, there are significant
deviations from free-atom behavior. In principle
one knows how to obtain a more accurate descrip-
tion. From a complete band-structure calculation
by means of, e. g. , the Korringa-Kohn-Rostoker
(KKR) method the wave functions (.„(r) and hence
the momentum transforms g.„(p) could be ex-
tracted. The momentum density is then obtained as

(4)

in which the summation includes all the states be-
low the Fermi surface. An evaluation of the
Compton profile in this ambitious way would ap-
parently be rather tedious. Although work on iron
along these lines is in progress, "we believe it
worthwhile to try a simpler approach. For this
purpose we will make use of an elementary model,
namely, the "renormalized-free-atom" (RFA) mod-
el, r -ss which makes a reasonable compromise
between a proper band-structure calculation and a
free-atom description. In a simple way this ap-
proach brings in the fact that the atom is not free,
but confined to a particular cell in a solid. In this
paper we will investigate the case of polycrystalline
vanadium, and we find that the model is capable of
predicting a qualitatively satisfactory Compton
profile. Hopefully the model will serve as a good
starting point for more sophisticated treatments
including band-structure and intra-atomic d-d cor-
relation effects. Finally, our calculation serves
as a test of the RFA model itself.

In Sec. II we describe the HFA model and derive
the formulas for the isotropic Compton profile.
In Sec. III we present numerical results for poly-
crystalline vanadium, and compare them with ex-
periment. A discussion of the result is also given
in Sec. III. Some useful formulas for the evalua-
tion of the momentum transforms of truncated
Slater-type orbitals are given in the Appendix.
The emphasis of the present work is on gross
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properties rather than details.

II. RENORMALIZED ATOMS AND COMPTON PROFILE

The renormalized-atom approach was first used
by Chodorow, "and extended by SegallaP for Cu. In
this scheme one utilizes the free-atom Hartree-
Fock wave functions, truncates them at Rp of the
Wigner-Seitz sphere, and renormalizes them within
this sphere thereby preserving charge neutrality.
In this way the solid is constructed from individual
atoms, which are prepared in approximately the
form in which they actually enter the solid before
placing them together. Watson and co-workers~6
have recently shown that the renormalized-atom
model yields quantitatively correct estimates of
important band-structure characteristics as well
as an explanation of the cohesion in the transition-
metal series. For example, the renormalized-atom
energies &„and e~ provide an excellent estimate of
the energetic position of the center of gravity of the
d band and the conduction-band minimum, respec-
tively. In the following considerations we will dis-
regard hybridization effects.

A. s Electrons

When a free atom is placed in a solid it is known
that the core states, which have exceedingly small
amplitudes at Rp, are practically unchanged. Apart
from a normalization factor the crystal wave func-
tion for the conduction-band minimum and the cor-
responding free-atom wave function are then ex-
pected to be quite similar in the core region. This
is because in the region the wiggles in the two wave
functions are merely a consequence of the orthog-
onality to the core states, which for most purposes
could be considered identically the same for the
crystal and the atom. Figure 1 shows the radial
part R„(r) of Clementi's@ free-4s-atom wave func-
tion for vanadium, computed within the Hartree-
Fock scheme and with the electronic configuration
3d 4s . The same figure also shows the 4s func-
tion truncated at the Wigner-Seitz radius Rp= 2. 82
a. u. and renormalized to one within the sphere.
Beyond its last maximum the renorma1. ized 4s func-
tion decreases slowly towards the cell boundary.
The slow variation of the associated charge density
in the outer region of the cell is apparently in ac-
cordance with the idea of almost free conduction
electrons in vanadium. The over-all shape of the
renormalized function is therefore quite reason-
able. The wave function satisfies, however, only
approximately the Wigner-Seitz boundary condition
R„(R~)=0. For this reason we have also tried an
improved version of the 4s function as indicated in
Fig. 1. Beyond its last maximum at R „, the func-
tion is set equal to a constant R4, (R,„) and properly
renormalized. The boundary condition is then sat-
isfied in a simpl. e way, but it was noticed subse-
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FIG, 1. Free-atom 4s wave function for vanadium
(dashed curve) and the same function truncated at the
Wigner-Seitz radius and renormalized to one within the
sphere (full curve). The horizontal line indicates a
simple way of satisfying the Wigner-Seitz boundary con-
dition, as discussed in the text.

(p) (2v)-8/R f d r e fl T'

q ( r)- (6)

where region of integration in Eg. (6) is over a
Wigner-Seitz polyhedron. In the conventional cell
approximation

4i (r) = ~ 440(r)~
the transform in Eg. (6) simplifies to

0 &(p) = Oo(K.), (6)

with p —k=R„. Some caution must be exercised in
evaluating $0(K„). The region of integration must
not immediately be replaced by the Wigner-Seitz
sphere. To preserve normalization of P(p) in Eg.
(6) we write

quently that this improvement led to numerically
insignificant changes in the computed Compton
profile. This may be taken as an indication that
the violation of the Wigner-Seitz boundary condition
in the renormalized-atom approach is not very
severe. For this reason the RFA function in Fig.
1 is a good representation of the true crystal. wave
function at k = 0, and the two functions are almost
identical, not only in shape but also in magnitude,
within the core region. ~~

8. Momentum Transform and Compton Profile for s Electrons

We will now proceed to the evaluation of the ex-
pression for the isotropic Compton profile for the
(unhybridized) 4s band. For this purpose we have
to consider the momentum transform of a Bloch
function, which for cubic structures is given by

g k (p) = & ~
y g, g„4 k (p). (6)

In this equation N is the total number of atoms,
and the transform g'-„(p) is defined as
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0';(p)=(2v) '" f dr e '" ' [40(r) —40(@0)]

+ (2m) '~'0, 5g, (0(RO). (9)

The spherical approximation may now be performed
for this integral. ~3

The momentum density per atom is given by

p(p) = 2 &".&
y 1,K„I &o'(K )

I
(1O)

where k runs over all occupied states and the factor
of two comes from summation over spin. If we as-
sume a spherical population of s states the spher-
ical average of p(p) is easily taken. The Kronecker
5 in Eq. (10) is replaced by the condition

~ K„-p ~

& P~ and we obtain (see Fig. 2)

(p(p)) =2K &.(P)
~
C(K.)l'. (i is.)

For n 4 0 we have

F.V) =~.[f'—(K. f)']/4K-&,

if PG(K„—P~, K„+P~), and zero otherwise. N„ is
the number of reciprocal lattice points in the nth
shell, and p~ the Fermi momentum for the s elec-
trons. For n=0 we have

1p P Pp
F.(~) =

0, p&p .
Elementary integration finally gives the expression
for the isotropic Compton profile as

~,.(4) =4 &
I C(K.)l'G. (~). (i2)

For nc0 we have

0, q &n+Pz

G.(~) = G(~), qF(K. f., K.+f.) -(»)
G(K. -P.), ~ K. -~.

~. (q) =[~0/(»)'](P~- e') (i8)

for q ~P~ and zero otherwise. Apart from a factor
the Wigner-Seitz model predicts exactly the same
profile for q~P~. The higher terms in Eq. (12)
reflect the variation of (0(r) within the Wigner-
Seitz cell, and give rise to a tail in J4, (q) for
q ~Ps.

C. d Electrons

Clementi'sai atomic 3d functions, which have
been used in our calculations, are to 96% contained
in the Wigner-Seitz sphere. This is in contrast to
31/z for the 4s function. We may then conceive of
the 3d electrons as forming a very narrow band.
As we are looking for gross properties rather than
details we will neglect all overlap (or renormaliza-
tion), and consider the d electrons only in the ex-
treme tight-binding approximation

g-(r) =& ' g e'" ' XM(r —0 ),
where y„(r) is an atomic function centered at lat-
tice point 0 . For the momentum density per atom
we then find

pr$)=2 4, I&)(P)l'Z„-~y"., K„, (i8)

where the auxiliary function G(x) is defined as

G„(x)= X„((p',—K'„)(K„+p, —x) —-', [(K„+p, )' —x']

+ K„[(K„+P ) —x ]j/4K„. (14)
For n = 0 we have

Go(e) = 2 (P ~ e')-,

if q P~ and zero otherwise.
In the approximation that the 4s electrons form

a uniform electron gas the Compton profile would
be

FERMI
SHPERE

where k runs over all occupied states, and

IR, (P)l =(2/7r)l J drY A, (r)j, (pr)( (i9)

p

Kn pF( p ( Kn+pF
2 2 2Kn+ p —pFcos (n') =-

2 K„p

FIG. 2. Geometrical construction for taking the
spherical average of the momentum density. In the Seitz
approxiITlation the momentum density within each sphere
centered at K„ is equal to a constant l Pp{K„)l, and zero
outside. The integration is carried out over the surface
segment of a sphere of radius p, which intersects the
sphere B.

Equation (18) includes summation over spin. R, (r)
is the normalized radial part of the wave function.
For a completely filled zone one can always find a
vector R„such that the condition p —k= K„ is sat-
isfied. Eq. (18) then simplifies to

p, (p) = 2[(2f+1)/4~]l ft, (p) I', (20)

i.e. , the momentum density of the isolated atom.
This result is of course expected for closed-core
shells.

For a partially filled zone, as for the d states
in vanadium, the summation in Eq. (18) has to be
performed. In the general case this is not easy.
If we assume, however, a spherical occupation we
obtain„ in the same way as for the s electrons, the
averaged momentum density



R ENORMAI IZ ED- FR EE -ATOM MODE I AND THE. . . 2159

(p, (p)) = I2(2l+ 1)/4m] ~R, (p) ~' Q(p),
where

(21)

III. RESULTS AND DISCUSSION

The Compton profile of polycrystalline vanadium
has recently been measured by Paakari et al. '
using 59. 54-keV y rays from an 'Am source.
The experimental data (before smoothing) are given
in Figs. 3 and 4 for different values of P„where
p, is the component of the electron's initial mo-
mentum along the scattering vector. In the case
of the vanadium measurements, P, -0.9q. The
percentage error at some points are: 2. 5% at

e(u) =Z &.(&). (22)

The functions E„(p) are the same as in Eqs. (lib)
and (llc), but with p~ replaced with a "Fermi mo-
mentum" po for the d electrons. The spherical ap-
proximation of the occupied region of the zone is
not as drastic as it may look. The Bloch functions
are assumed to be d like everywhere in the zone,
and the function Q(P) mainly serves to count the
number of electrons in the band. The properly
normalized profiles computed with the two expres-
sions in Eqs. (20) and (21) have been found to be
practically the same. Other choices of the occupied
region would presumably lead to the same result
since the 3d momentum density varies rather slow-
ly with p. Within the extreme tight-binding scheme
it is consequently a good approximation to use a
superposition of the momentum densities of the
free atoms also in the case of unfilled bands, as
was done in Refs. 10-14.

P, = 0.0; 3. 5% at 1.5; 5. 5% at 3.0; and 8% at 6. 0.
In Sec. II we have discussed an elementary

model for transition metals, consisting of a 4s-
band overlapping a narrow d-band. Hybridization
effects were, however, not included. By means
of the formulas derived in Sec. II we have calcu-
lated the Compton profile of polycrystalline va-
nadium. In these calculations we have used Cle-
menti's ' analytical Hartree-Fock wave functions,
computed for the atomic configuration 3d'4s~. In
order to determine the electronic structure of the
vanadium metal, the s and d content have been
varied until a reasonable agreement with experi-
ment was obtained. In this way it was concluded
that a configuration with one electron in the 4s band

and four in the d band (or very close to that) gives
the best fit to the measured points. A 3d34s~ oc-
cupancy, for example, would give a completely un-

realistic profile. The results of the numerical
calculations are displayed in Figs. 3 and 4. In-
cluded are also the contributions from the electrons
].g 2s 2p 3s 3p6 as computed from Clementi's '
wave functions. In view of the elementary model
we have used the computed Compton profile is
quite satisfactory. In particular, the deviations
from a free-atom description at low momenta are
well accounted for.

The d""s' configuration derived above is con-
sistent with most solid-state experience and has
been found to yield successful and nearly self-con-
sistent results for a number of transition metals.
For example in the augmented-plane-wave calcula-
tions by Snow and Waber~' the computed character
of the occupied bands favors an occupancy nearer

5.0

40-

30-
I

10-

(3d) (4s)

FIG. 3. Experimental and calculated
Compton profiles of polycrystalline van-
adium. The dots refer to experiments;
the statistical error is indicated for some
points. The solid curve is calculated
from a superposition of free-atom core
functions and a renormalized 4s atomic
function. The electronic configuration is
chosen as &s 2s 2p 3s 3P 3d44s . The
dashed curve is the Compton profile with
the 4s' contribution subtracted, and the
dot-dashed curve with the 4s~ and 3d4 con-
tributions subtracted.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 P 8.u
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FIG. 4. Experimental and calculated Compton profiles at
low momenta. The notations are the same as in Fig. 3.

to 3d44s' than 3d 4s for vanadium. Mattheiss '
has also cal.culated the energy bands for vanadium
using two different starting potentials generated
from the atomic 3d 4s2 and 3d 4s' configurations.
The effect of the differences in these potentials is
quite dramatic and reemphasizes the uncertainties
inherent in band-structure calculations for tran-
sition metals, at least for those which are not self-
consistent. With our promising results for the
Compton profile a potential derived from the re-
normalized-atom wave function of this paper should
therefore be useful in connection will full band-
structure calculations on vanadium.

Our results for the renorma, lized-atom approach
reconfirms the theoretical analysis of Paakari
et aE.' For p, &1, the contribution to the Compton
profile from the s band is almost negligible. With
the remarks in Sec. IIC in mind the analysis in this
region may therefore be based entirely on free-
atom wave functions. In this way Paakari et al.
found that the medium and high parts derive from
four 3d electrons plus core.

In summary, the renormalized-atom approach as
used in this paper has been shown to yield a quite
satisfactory Compton prof il.e for vanadium. There
are, however, several apparent improvements to
be made. It is known that the Compton profile is
sensitive to electron-el. ectron correlations. From
electron-gas data'2 it is expected that the profile
deriving from the 48 band, and which indeed is very
free-electron-like, should be broadened by a few
percent. The discontinuity at the Fermi surface
would remain, but a high-momentum tail. would be

The author is indebted to Dr. T. Paakkari, Dr.
S. Manninen, Dr. O. Inkinen, and Dr. E. I.iukko-
nen for communicating data for vanadium prior to
publication. The correspondence with Dr. O.
Inkinen has been particularly helpful.

APPENDIX

Clementi's2' atomic wave functions are given as
linear combinations of Slater-type orbitals x"«
Taking the momentum transform as defined in Eq.
(6) integrals of the type

I„(a,p) = f"dr r" e "sin(Px)/p
0

(Al)

appear for s functions. By partial integrations we
obtain the recurrence relation

—R"e- [(nR —n) j,(pR)+ cos(pR)). (A2)

The recurrence is started with

1 —e '"[&Rjo(pR) + eos(pR)]
0 2 +p

2 (AS)

and I, = —BIO/sn. In the limit R - ~, Eq. (A2) re-
duces to the well-known recurrence formula for
the transform of free Slater orbitals of s sym-
metry.

added. The inclusion of correlation effects in the
4s band would therefore bring us closer to experi-
ment. On the basis of a strong interaction model
for d bands in transition metals, Hubbard27 has
proposed the possibility of dramatic correlation
effects for the d electrons. Although such inter-
esting effects would presumably show up in Compton
profile measurements on transition metals it is at
present hard to evaluate them quantitatively. Be-
cause of these uncertainties about the d band we
have refrained from computing correlation effects
also in the s band. The present calculation could
also be improved by including band-structure ef-
fects and hybridization. It is expected, however,
that hybridization would lead to small changes in
the isotropic Compton profile. In fact, if both the

upper and lower hybridized bands are occupied,
the effect is none, since hybridization has the
character of a unitary transformation. If only the
lower band is occupied, the effect is small, because
the mixing of the s and d bands i.s effective only in
a small region where these bands cross. Finally,
the present work could be improved by using wave
functions from a 3d 1s' free-atom calculation. Un-

fortunately such wave functions are not available
in the literature.
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The diffusion rate of mercury was measured in the tin single crystals along both the a and c
axes and is described by diffusion constants: D~o= 30'&22 cm /sec, D~0=7. 5'&6 4 cm2/sec, Qg
=26.8 + 0.5 kcal/mole, QD =25.3 e 0.6 kcal/mole. This behavior does not differ greatlyfrom
the tin self-diffusion and in the light of present understanding of diffusion in polyvalent hosts,
it seems most likely that the mercury is dissolved substitutionally and is diffusing by a va-
cancy mechanism. No good theoretical justification could be given to explain why mercury
should prefer substitutional sites in tin, but be at least partially stable in interstitial-vacancy
pairs in lead, although the possibility of van der Waals forces is discussed. Mercury diffu-
sion is compared to diffusion of other impurities in tin and a new mechanism is suggested to
explain the large anisotropy of diffusion of gold and silver between the tin a and c directions.

I. INTRODUCTION

In recent years diffusivity measurements have
been made on a variety of impurities in polyvalent
metals, including tin. From these measurements,
it seems that gold, silver, ' copper, and possibly
zinc' diffuse interstitially in such systems. Since
mercury has the same valence as zinc, but a dif-
ferent size and electronic structure, a measure-
ment of its diffusivity might shed additional light on
the relative importance of these factors in deter-
mining the stability of interstitial impurities. This
research was undertaken in conjunction with an in-
vestigation of the diffusivity of mercury in lead
both because of the availability of the nuclide Hg

and also to provide similar information about the
solvent's role in determining the nature of the dif-
fusing defect, The work was done with single crys-
tals to simplify the interpretation of results.

II. EXPERIMENTAL DETAILS

Serial sectioning on a precision sliding microtome
was used to determine the penetration profiles of
Hg in oriented tin single crystals after constant-
temperature anneals of known duration. The crys-
tals were grown to the desired [001] and [110]or-
ientations using Cominco 99.9999% tin and high-pur-
ity graphite boats. They were then cut to length on
a Servomet spark cutter and etched to remove dam-
aged material. Laue backref lection photographs


