
J. F. DE VLIN AND G. A. SAWAT Z KY

~ J. S. Smart, J. Phys. Chem. Solids 11, 97 (1959).
E. Kren, P. Szab6, and G. Konczos, Phys. Letters

19, 103 (1965).
J. M. D. Coey and G. A. Sawatzky, J. Phys. C 15,

2386 (1971).
D. J. Breed, K. Gilijamse, J. W. E. Storkenburg,

and A. R. Miedema, J. Appl. Phys. 41, 1267 (1970).
S. H. Charap, Phys. Rev. 126, 1393 (1962).

PHYSICAL REVIEW B VOLUME 6, NUMBER 1 1 JULY 1972

Specific Heat and Susceptibility in Chromium Methylammonium Alum above the
Critical Temperature

Paul H. E. Meijer
Catholic University of America, Washington, D. C. 20017

and ~ational &ureau of Standards, Washington, D. C. 20234
(Received 24 June 1971)

The specific heat and susceptibility of chromium methylammonium alum is calculated above
the critical temperature.

'

The method is based on a high-temperature expansion of the par-
tition function in the presence of a crystal field, using a Laplace transform. The results are
worked out in first (for the susceptibility) and second (for the specific heat) order in the cou-
pling Hamiltonian. The summation over the four different sublattices is worked out for the
two different crystallographic phases which seem to occur above and below 170 K. The lack
of rotation symmetry of the crystal field in its local reference system, which was found by
paramagnetic resonance, is taken into account. The result for the susceptibility is given ex-
plicitly in Eq. (4. 18a) as a function of a reduced temperature.

I. SHORT DESCRIPTION OF PREVIOUS WORK

The first application of the statistical mechanics
of a magnetic system to the chrome alums was de-
scribed by Van Vleck' and applied by Hebb and
Purcell. The first studies of the methylamine
homologue of this series were done by De Klerk and
Hudson and subsequently by Gardner and Kurti4
who found a Neel temperature at 0. 020 K. In all
this work powders were used. The general mag-
netic behavior was studied in single crystals by
various authors' and a careful temperature-scale
investigation on single crystals was done by Ambler
and Hudson. They found that the Noel tempera-
ture was T„=0. 016 K. In order to explain this be-
havior, O' Brien calculated the criticai tempera-
ture for a four-sublattice system. In her paper she
also calculated the entropy and susceptibility above
the critical point, although she simplified the crys-
tal field (CF} term and dropped, in the last steps,
the exchange contribution. This was augmented by
Durieux who incorporated this term.

The goal of this paper is to provide experimental
physicists, in their search for more accurate tem-
perature scales, with the susceptibility and specific
heats as predicted on the basis of the best avail-
able experimental parameters. The display of the
formalisms used is quite explicit in order to pro-
vide a framework for future work on~,different com-
pounds.

It is a peculiar habit in magnetic thermometry
to add all correction terms in the denominator. Al-

though this is not wrong, since we are dealing with
a small correction that can be written either way,
it gives the false impression that the Curie-Weiss
constant is basically correct and only needs small
changes. The Curie-Weiss constant may have
meaning below T„but above the critical tempera-
ture the constant is the consequence of the influence
of the second term in the I/kT series. This term
is subsequently followed by a third-order term.
It would therefore be more logical to present data
in the same fashion. The denominator habit is even
used for powdered specimens, where the constants
have little meaning.

Unfortunately, we do not quite practice what we
preach since in this paper we shall use a hybrid
expansion. Each coefficient in I/kT is itself a
function of the temperature. However, this function
is determined by the CF parameters only, which
are known to a high degree of accuracy.

This paper takes into account the complete CF
Hamiltonian. It is shown that the presence of
Baker's E term has a small influence of the order
of 1% near T,. It also sets up the calculation in
such a way that subsequent terms can be calculated
directly. This is done by the resolvent technique
using the Laplace transform of the partition func-
tion.

II. INTRODUCTION TO THE METHOD

In previous papers' '" a high-temperature ex-
pansion for a system with dipole-dipole forces was
worked out. So far only cases without CF were
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considered. The presence of a CF will introduce
a temperature dependence in the coefficients of the
high-temperature series. To determine these func-
tions of the temperature we use a Laplace trans-
form of the partition function which leads to an ex-
pression in which the Stevens operators' appear
in the denominator. A general method, a method
of partial summation, is described elsewhere by
which one can obtain an expression linear in the op-
erators. The inverse Laplace transform can be
calculated independently of the trace operation.
Finally, one has to, as before, compute the lattice
sums.

The general method of calculating the exponential
of a Hamiltonian with several noncommuting pieces
is to use the time-ordered expansion (see, for in-
stance, Ref. 14):

Neo e ()(X@+3!)-) ( 1)n B

~ ~

4 p p

T [K (P ) ~ ~ ~

x K,(P,)] d6, ~ ~ dP„, (2. 1)

where P= 1/kT and T, is the time-ordering opera-
tor. The author tried to use this in an earlier ar-
ticle" to calculate the second-order dipole correc-
tion to a spin system in a CF, but this method is
not very well suited for explicit calculations. In
most fi.eld-theoretical work the commutator is a c
number which simplifies the method.

If we break up the Hamiltonian in two parts, the
on-site part Ko and the intersite part K, , then

Ko Kg +Kg

3C] 3CD + 3Cex (2. 2)

1 1 1
1+3C&t -Ko —K( t -Ka t-z, -x,)' (2. 4)

This leads to a sequence of terms each containing
the factor (t —K()) '. To evaluate this factor we used

where 3C, is the Zeeman term, 3C, is the crystal
field term, 3CD is the dipole-dipole interaction, and
3C,„is the exchange interaction. The spin depen-
dence of the second part of the Hamiltonian is given
by

K)=Z Z S, P;) S),
i f &g8

where I',
&

is the tensor shorthand for the dipole-
dipole and the exchange interaction. The super-
scripts z and p are summed over x, y, and g. If
we replace the density operator p, where p(8) = e
by its Laplace transform (also called the resolvent
operator)

R(t)= J, p(P)e'(dP=1/(t-K), (2 8)

where t is the variable conjugate to 8, then the de-
nominator can be expanded in terms of 3C& using the
tautology

a partial summation, explained elsewhere. ' To
illustrate this we assume that K =K,= Bs)Oao,
where 03, is the Stevens operatoria and BI, is an
energy parameter, and write

=1+t" 3CC+t
1 2 2

C C

hence,

1/(t —K,) = (t+ K,)/(t '-K',),

(2. 6)

(2. 5b)

where 3C, = 9B~. In the presence of the E term,
which introduces a Stevens operator O~~, one has
to go up to the fourth power in 3C,.

The thermodynamic properties of the system can
be calculated from the partition function Z which
is an expansion (in T ') in the interionic coupling
and exact in the crystal field interaction according
to

Z = Trp = Trg '(R) = g '[TrR]
= g ' [Tr (R() + R, + R, + ~ ~ ')]

-1 (~0+ ~1+98+ ' ' ') ~ (2. 7)

where Z signifies the inverse of the Laplace trans-
form, R„ is the resolvent of order n in the coupling,
and g„signifies the trace of R„.

III. EXPERIMENTAL DATA ON CHROMIUM
METHYLAMMONIUM ALUM

The lattice constant of chr omium methylammonium
alum (CMA) was measured by Haussiihl' at room
temperature. The edge of the unit cell is 12. 2 A

(compare Table IV of Ref. 16). To reduce this value
to the lower helium temperatures, where they are
unknown, one could use the reduction of parameters
observed in cerium magnesium nitrate by Schiferl'
which amount to about 1/p from room temperature
to 4 K. Unfortunately there is an uncertainty in
this estimate, since Baker observed in his para-
magnetic-resonance work a transition at 160-K
from cubic to tetragonal.

From this latter work we take the following con-
stants in the spin Hamiltonian: D= —958, E= —92,
b, = (D + SE )'~ = 971, all in 10~ cm ). The g factor
is 1.976 and isotropic. The CF is oriented in four
different directions corresponding to the four body
diagonals of the cube used to describe the fcc lat-
tice. Hence it is easier to use a simple-cubic mag-
netic unit cell, four times larger than the fcc unit
cell. The Baker F. parameter means that there is
a slight tetragonal distortion, i. e., the x and y di-
rections in the local coordinate system are not
quite equivalent. The x (or y) axis points along a
face diagonal of the main cube.

(1+( Kq+( Kq+t Kq+' ' ') ~ (2. 5a)
C

Since 3C, is proportional to the unit matrix for S= —,',
it is useful to write the series as
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First we consider the Boltzmann factor of the
CF term only. The Laplace transform of this factor
ls

1 1

t —R, f —BOpp —2 E(022+ Og g)

f+ BO2p+ 2E(022+ Oa-2)
g2 9B2 3@2 (4. 1)

where B = 8 pp 3D and E = 8~2 using Stevens's' nota-
tion. This formula is restricted to S= —,

' only. For
a general evaluation of the inverse of operator poly-
nomials see Ref. 13.

For the lowest-order term gp, which gives the
zero-field heat capacity in zeroth order, i. e., with-
out interaction between the spins, we find

The exchange is small and has not been measured
directly. The conclusion that the exchange is small
has been drawn from the fact that calculations with
dipolar interactions alone give good agreement with
the observed critical temperature. Owing to the
fact that predicting the critical parameters from
the fundamental constants of a magnetic substance
is far from perfect, particularly in the presence of
dipolar forces, the precise value for the exchange
constant g thus obtained is open to debate. It is far
more satisfactory to determine v from the devia-
tions from either the Curie law, or from the ideal
heat capacity, above T,. In order to establish how
much of the heat capacity is due to crystal field in-
teraction, how much to dipolar interaction, and how

much to exchange, it is of utmost importance that
the CF effect be taken into account without any ap-
proxima. tion, that is, without dropping the E term.

IV. CALCULATIONS: ZERO FIELD

q ($(&) Tr[S (of) (f Z (r )) 1 S ((&)]

q:"'& = Tr[(t -X,("&)-'S,s& S,& &] .

(4. 5a)

(4. 5b)

The values of the elements of the first tensor are
independent of j and the values of the elements of
the second tensor are independent of i. This is the
consequence of the homogeneity of the substance,
and is violated only if we either use a space-de-
pendent external field or deal with a nonuniform
spontaneous magnetization. The fact that the sites
are not magnetically equivalent is taken into ac-
count by using the above formulas for each sublat-
tice separately. This is the reason for the super-
script I' (=I, II, III, IV) on the crystal field Ham-
iltonian. In order to evaluate the resolvents on one
common system of axes we have to perform a rota-
tion from each of the CF axes (unprimed) to the
axes coinciding with the edges of the cube (primed).
The transformation is explained in Fig. 1 for the
case where the symmetry axes of the (cylindrical)
crystal field is along the [111]direction (label I).
The three other orientations are indicated as the
corollary to the next Eq, (4. 6). The transforma-
tion is given by

iltonian can be matched in two ways to the spin ap-
pearing in the coupling terms. This term has to be
summed over all site labels i and j. The quantities
P are tensors and incorporate both the exchange and
the dipole interaction. The notation implies sum-
mation over the tensor and vector components, such
that each factor S' 'P' 'S' ' is a scalar in config-
uration space. One can cycle and regroup the
terms and introduce two new tensors Q, and (()2

given by

Jp=Tr =2

2 D2+ 3E2
(4. 2)

If one takes the inverse transform, the result for
the zero-field partition function is the same as in

S„=,—'(- q „S„.—q, S,, + 2e, S,,),
S, = (~„/W2) S„.—(&„/W2) S, ,

S,= (I/&3) (~„S„.+ ~, S,.+ e, s,,),
&,=1, 1, 1 in case I

(4. 5)

Z=2(e" +8 "), (4. 3)
=1, —1, —1 in case II

with the only difference that 6 is replacing D= 3B.
(Note that the 5 used in Ref. 7 is equal to —21).)
Hence the partition function for H= 0 and no inter-
action undergoes only a trivial change if Baker' s
E term is introduced. (The first-order term J, is
zero; see Appendix A. )

More interesting is the calculation of the second-
order term in the interaction. This term contrib-
utes

= 2 Tr[(t —X,), 5; P, 5 (& —3C,),' &, I', & (& —&.) ']
(4. 4)

as obtained by iteration of the process used in Eq.
(2. 4). The factor of 2 stems from the fact that
each pair of spins in the Zeeman term of the Ham-

FIG. 1. New z axis is the body diagonal; the new z
axis is along the face diagonal perpendicular to the z axis.
The cube is not drawn. Compare Ref. 9.
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B2 Bra

(1 —i) B+ —,
' (-1+i)E —aiB —a iE

= —1, 1, —1 in case III

= —1, -1, 1 incaseIV.
We transform K„or actually R, [see Eq. (2. 3)], to
the primed coordinates. The denominator in Eq.
(4. 1) remains the same, and we obtain

t+ BOa(&+ a E(Oaa+Oa, a)

- t+Bao Oa()+(Ba) 'Oa)+Baa Oaa

+Ba, -')oa, -)+Be aoa, .a), (4 7)

where Ba'a ' = g E and the other B' "s are given by

Qgg g (ps))a] (4. 11)

Since each sublattice is simple cubic, we have

g(p ~)a-g(p ~) =g(p-)a
and the diagonal elements of Q, can be summed,
with the result

Q)"+ Q)'+ Q)' = 15t(t —& ) (4. 12)

Note that this expression does not contain B' ' and
hence is independent of the sublattice. The tensor
Qa depends on the absolute value of the B's only and
they are all the same, hence the sum over all sub-
lattices simply introduces a factor of 4.

If the two sites are not located on the same sub-
lattice, we have

11 —(I + i) B+ -.' (I + i) E —,'iB+-.' iE gtl Q 3 (r) Q Q(I IRN) Q(P II&' )a (4. 13)
(I+i) B ——,'(I+i)E 2iB+ 3 iE

IV —(1 —i) B+ —,
'

(1 —i) E 1 1—~gB —
g

and B,'"&„=(Ba("„&)+.

We now have to evaluate the tensor Q, .
ponents are

Q) = (5t —6Ba()+6Baa+6Bfa) (t —LF)

Q)" = (5t —6BN& —6Baa —6Baa) (t —& )

Qf'= (5t+ 12Ba()) (t —& )

Q)'= Q', "= 6i (Baa —Baa) (t —& )

Qf = Qf"= Re(Ba)) (t —& )

Q)'= Qf' = im(Bai) (t —&')

iE

Its com-

(4. 8)

where the dipole sums have to be taken between
each point on I' and the points on I'. A rotation
of the x, y, z axes will induce a cyclic permuta-
tion of the three sublattices, with respect to a
fourth. Hence, the nine terms created by the I'
and n summations will be equal in sets of three.
In each set we choose the z direction:

82 4(3qa) 3 ~ Qi "~(Prr')
r y

(4. 14)

= 36
3(5t+ 12Bao) g (P, )a~a = 9'3 ]3 P r'r'

y

(4. 15)

where the factor of 4 is from the sum over I". The
sum over 1"' introduces a factor 3 since the B
component is the same for each sublattice, and

for each value of I' in turn. In order to evaluate
the other tensor, Qa, we first compute the product
of two resolvent operators R, and then substitute
in Eq. (4. 5b):

&a=Q," &=i5[3(B"' t)'+Bai'Ba)"'*-

+4B' 'B' '*] (t —& )

Q
(cN) 0

Hence the matrix Qa is diagonal and proportional to
unit matrix. This result is simple, because we
are dealing with a rather low spin value. In gen-
eral, it will contain operators such as 040, etc. ,
which are excluded here on the basis of the tri-
angular rule.

The next step is to insert these tensors in Eq.
(4.4):

Qa(& p() Q
(& p&(&a&= 6 g Qea p(&" p& a

ely0 N,Dr

(4. 10)
Now we discuss separately the two cases a = P and
nW p. In the first case we obtain, if the two sites
are located on the same sublattice,

&a= 2 ~r (3(fa I.Q,
""~.(P"")'+QP & (P"")'

To evaluate the case where no p we notice that at
least one of the P ' becomes odd in either x, y, or
z. This will lead to a cancellation of the lattice
sum both on the same sublattice as well as on two
different sublattices.

To collect the results, we obtained two contribu-
tions to the second-order Laplace transform; one
containing the lattice sum between points of the
same sublattice,

8a= 12(15) t(3(Ba(& —t) +Bai Ba~+4Baa Bag)

x K(P'")'](t'-&') ', (4 16)

where the quantity in curly brackets is given by

j=3(3E—t) +3B +aE

and another part that contains the lattice sum
(gP'")~« taken with respect to different sublattices:

8; = 9(5t+4E)( J(ZP'")'„, (t' —a') . (4. 17)

To obtain the contribution to the partition function
we have to take the inverse Laplace transform.
This is done by using the formulas given in Ap-
pendix B.
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The result for the same sublattice is
Z

&2&
= 3(—,'225) (sinh(a p) (-!3/Sa —2E [(b p) —1]/a2

+ 9p/6)+ cosh(hp) (p/Sb, —2E p/g2

+»'«')) [Z(p ")']
and for two different sublattices, it is
Z

&2&
= 9(sinh(b, P)(4E [3+ (~P) ]/Sb2+ 3(E' —5B )P/g2

+ 2E [{&P)'—1]/&'+ 45P/6)+ cosh{AP) [4EP/6'

3-(E' 5-B') P'/t2'+ 2EP/t '+15P']) Zy ")

V. CALCULATIONS: SMALL FIELD

We return to a system of axes referenced to the
CF, z being the symmetry axis, and consider one
set of ions. Let us first consider the field to be in
the z direction. Yhe resultant resolvent is given
by the following matrix:

(t+ D —,' H)/5, —

(t-x, -z, ) '= (t —D —2 H)

E W&/5,

(t D+ —
2 H) 5,

Ev 3/5

0

&t+D+-,'H&/!! )
(5. 1)

where 5,= t —,'H —& —a(2B+t)H.
For the sake of elegance we could also express

this in Stevens operators. One needs new operator
polynomials:

02&&: 5j' jg(3j' + 3j 1)

0,2= —,'(j,j' +j' j,) .

(5. 2)

(5. s)

x [t —4 H —& +(O&0 ——
2'03&&) (te 2B) H]

+ —,
' E(022+ 02 2)j/

x [t' —(-,
' H' —2 ') —(t + 2D)' H'] . (5.4)

This is a complicated expression for handling by
the method used heretofore. In the susceptibility
calculation, however, we need only the terms up to
the second order in the magnetic field; hence, we
prefer to use perturbation theory in the parameter
H.

The general expression for the energy eigenvalues
of a spin Hamiltonian as a function of the powers of
IJ is

The coefficients are determined by the need to be
orthogonal to the lower-order polynomials. ' (Con-
trary to the tensor operators, which are all prop-
erly normalized, the Stevens operators seem to
have a rather arbitrary proportionality factor. ) The
resolvent expressed in these operator polynomials
ls

(t -X.-&,) '= f[t+ BO~+H(2O, Q+ &2 032)]

the incorporation of Baker's E term, there M)ill be
such a contribution. The roots of the eigenvalue
equation are

&&, = a+ (-,'+ D/6) H+ (3E /2a') H

A. 2
= —6+ (2 —D/t& ) H —(SE /2A ) H

&&2
= 6 —(,'+ D/t&. ) H+ —(3E/2& ) H

&&4
= —6 —(2 —D/6) H —(SE /2t& ) H

(5. 5)

Xi = ti[4+ (D/&)'- (D/&) tanh(P~)], (5. 5)

and for the so-called temperature-independent part,

&&2
= —3(E2/~2) tanh(p~) . (5. 7)

Since they represent the magnetization in the z di-
rection produced in response to a field in the z di-
rection, these quantities are actually the zz com-
ponent of the susceptibility tensor.

In order to obtain the xx component, we assume
the field to be in the x direction and evaluate [see
Eq. (5. 1)] the secular equation:

[(&D& ) ——,
' H ]' —(D —A)'H'+ 2EH (D y,'E)-

—SE (D —A) +9E =0 . (5. 8)

Bather than to search for the roots of this equation,
we note that the matrix

The resulting susceptibilities are, for the tempera-
ture-dependent part,

E = E(~~+ E ( & a+ E( & a:a+ ~ ~ ~ BO20+ 2E (022+ 02 2)+ S„H„

The second term gives rise to the 1/T term in the
susceptibility, and the third to the so-called tem-
perature-independent paramagnetism of Van Vleck.
In the case considered by O' Brien this contribution
is absent if the field is inthe z direction: Now, with

can be used for perturbation theory provided we
first diagonalize the center part. This is necessary
on account of the degeneracy of these two diagonal
elements. We obtain, after interchanging the sec-
ond and third rows and columns,
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—,
' WSH„ Xr —Ur XCF Ur (5. is)

—,
' WSH„

0 —,'V SH„ -)
The matrix is now in such a form that we can first
diagonalize each "diagonal block" and subsequently
look for the influence of the magnetic field in the
x direction. If we do that and apply the same uni-
tary transformations to the matrix as a whole, we
find

x, = +-,'(y+z)+ a[—,'(2&+y+z) +x ]'~ (5. 9)

with & =+1. The other two roots are given by the
same equation with & = —I. For small values of
H„, these reduce to

x, , = b. ~ y —x /2A,
(5. iO)

A.g, 4
= —6+z+ x /2&,

and with this result we can calculate the suscepti-
bilities

3DE D DE

(5. 11)
(5. 12}X~"= 4 [(D+E) /6 ] tanh( ph) .

In order to determine X" one can use a simple
transformation by which the crystal field param-
eter E goes into -E. Since there are no off-di-
agonal elements of the susceptibility tensor in the
CF system of reference, this completes the calcula-
tion of the site susceptibility.

To obtain the net susceptibility, a rotation from
the CF system to the simple-cubic system of the
magnetic cell is needed. !fwe indicate the trans-
formations used in Eq. (4. 6) by Uz', , we find for
the magnetic-moment matrix in the single cubic
system

0 x y

y x 0

where
x= W3 (D+ E) H„/ 2&,

y = SE(D+ 6+ E) FF„/ 2b, (D+ 6)
and

z = (D+ b —SE)H„/26,

and h is defined by Eq. (4. 2), as before. This
matrix, however, can be completely solved by re-
writing it using half the sum and half the difference
of the first and fourth, and of the second and third
rows and columns, respectively, which breaks it
up into two 2x2 matrices. The resulting eigenval-
ues are

X = ~ Xi+ ~(Xg+ &X) ~ (5. 15)

The xx and yy components are different. This
means that the total symmetry, i. e., averaged over
the four sublattices, may be noncubic. If that sym-
metry were cubic, and we shall see that below a
certain temperature this is no longer the case, we
should have to modify the rotations I, II, III, IV.
The rotations of the axes in (4. 6) can be described
by Eulerian angles:

g, = —g„=g„,= —g,v=cos '(1/WS) =55

@I @II @III @IV

We can obtain cubic symmetry by taking 4 II = O'III
= 2minstead of zero. This means that in these two
cases the x and y axes are transformed into y and
—x and such a rotation over the third Euler angle
will make X„„=X„=X„.It is not clear from the
existing information ' whether this rotation cor-
responds to the actual situation in CMA. In the
articles quoted, only the zz components were cal-
culated, hence the author does not know what these
authors considered for the orientation of the x and

y axes and moreover their results did not depend
on such a choice. The author considers it more
satisfactory, from general considerations of sym-
metry, to make another choice for the angles 4,
viz. , 4'= —,'m+n( —,'m) with n= 1, 2, 3, 4. There is no
easy way to distinguish between the two cases.
From Baker's work it became evident that below
170 K the crystal does not have cubic symmetry
any more but becomes slightly tetragonal, and that
the angle between the CF axis (which he calls the
rhombic axis) and the tetragonal axis is not exactly

where Xcr is the (diagonal) magnetic-moment ma-
trix in the CF system. The three nonzero elements
of XcF are the components calculated above. We in-
troduce X,= —,'(X„+X,) and bX =X„—y„ to obtain equa, —

tions similar to Durieux's. His P=kTX„his Q
= kTX, and ~X is absent in his case, since he did
not introduce the E term.

For the case 1 = I, we find

4X.+ 2X. - ~X -2(X.-X,- ~X) —2X.+2X.- ~X

—2(x.- x. —&x) 4x.+ 2x, —&x 2x. + 2x. —~x1

—2(x.+ 2x. —&x) —2x.+ 2x. —&x 4x.+ 2x. + 2&x

(5. 14)
The result for the other three orientations [as de-
fined below (4. 6)] is found by multiplying each row
and column by the corresponding e; the diagonal
elements do not change sign, of course. The off-
diagonal elements occur with plus and minus signs
twice. The zeroth-order susceptibility has a zz
component equal to
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X3, = (sin 8) Q+ (cos 8) P+ —,'(sin 8) R, (5. 16}

X,3= —,
' g(cos3 8 —1) Q+ —,'(cos 8+ 1)R+ —,'(sin 8) P,

QX33 3(»n 8 cos 8) (q P ,' R)— ——

where P= „XQ=-,'( „X+X), and R=X„—X, (&=+1)
(That is, p and Q are Durieux's constants multi-
plied by p. ) The angle 8 depends on the tempera-
ture range: Above the transition, cos8 = 1/&3, as
was used in Refs. 7 and 8, and below the transition
one has to use cos8 = —,'.

We have introduced the interaction matrix P,f
(o,P=x, y, B) between the sites i and j. The exchange
part we consider diagonal and independent of x, y,
and z and zero for all sites j not nearest neighbors
of i For this t.ype of lattice, assuming it is nearly
fcc, the dipolar part has zero off-diagonal elements
after summation over j and its diagonal elements
between sublattices I and IV have the property that

2 P„=EP,, —,Z P„. —
tf if tf

The same relation holds between sublattices II and
III. The other two pairs have similar equalities:
I-II and III-IV with the factor ——,

' in front of the xx
component rather than in front of the zz component
and I-III and II-IV with the factor in front of the yy
component. We shall use these relations in the

55' but seems to be closer to 60 . We shall side-
step this point for the moment by introducing an
unspecified angle 8. Again we raise the question
about the orientation of the z and y axes of the CF.
We analyzed Baker's results (Appendix C) and came
to the conclusion that the four angles 4 are def-
initely not equal, and were close to 0, 0 and —,'z,

If these are the exact values of the angles, we
have to modify the results obtained by O' Brien and
Durieux for the susceptibility in the first order of
the interaction.

To calculate this susceptibilitity contribution,
we distinguish, as before, between two cases. If
both spins of a pair are on the same sublattice, the
dipolar contribution is now only approximately zero
since each sublattice is near cubic rather than cub-
ic. However, the deviation is so small that the
corresponding dipole sum almost vanishes and we
shall continue to take it as zero. There i- also a
contribution from the exchange interaction between
atoms of the same sublattice. Since this is a next-
nearest-neighbor contribution, we discount it (in
the absence of information).

If the spins are on different sublattices, we have
to evaluate the interaction between six pairs. We
consider a pair where the x and y axes are parallel
(or antiparallel) to each other. We introduce the
matrix X(8, e) which has the elements

X„=X33= —,'(cos38+ 1) g+ —,'(sin 8) P+ —,'(cos 8 —1)R,

X&3&
= (Q+ -,' R) sin 8 + P cos 8 . (5. 16a)

The susceptibility in the z direction is given by the
sum of Eqs. (5. 16a) and (5. 1V). The quantity P is
given by the sum of (5. 6) and (5. V) and the quanti-
ties Q and R are determined by the sum of (5. 11)
and (5. 12) with +E inserted. We find, introducing
the factor p.~g which we left out so far for con-
venience,

X"= (-, g»B) (3Q+P —,R)+6 (-,gP—B)

x [Qv, ) (3@+-,'R+P)'
- (Z v, +ZP, ) (q+ ,' R -P)']- (5. 18)

for temperatures below the crystallographic tran-
sition (170 K). The summations are over one sub-
lattice only. For CMA g& v, ~= 2v.

In order to be able to make a direct comparison
with experiments we inserted the expressions for
P, Q, and R, using Baker's parameters, in this
equation. The result is

X"=0.6079x10 [A+V. 294Vx10 v(B —C )

+ 1.7857 x10 C ],
A = 24. 96466 8 —0. 2576~ P tanh4 p+ 13.4525 tanhh P,

(5. 18a)
B= 20. 15326,P —5. 0550' Ptanhb P+ 18.2628 tanhAP,

C = —6. 84764P —12.79966PtanhEP+ 56. VV29 tanhhP,
where 4P is a temperature scale using the reduc-
tion factor 0. 1273 K.

For temperatures above the transition tempera-
ture,

X 3 (gPB) (2@+R+ P)+ 3 (gpB) (Zvgg)

final calculation and express all sums in g P"be-
tween I and IV.

To obtain the contribution to the susceptibility of
the set of pairs mentioned above, we matrix multi-
ply X(8, e), P and X(-8, q). The two other sets are
found by multiplying X(8, &) and X(8, —e) on one hand,
and X(8, c), P, and X(-8, —e) on the other hand.
This gives three pairs, and the other three give
the same total result. Hence, if we sum over all
six pairs we find a matrix y (» whose zz component
iS

X&f&=2(3(Zv,.&) [(Q+-,'R) sin 8+Pcos 8]

—(Zv;&+ZP';&) sin 8cos 8 (Q+ —,
' R —P) j .

(5. 17)
In the above expression we have broken up the

interaction tensor in two parts: P,f, the dipole in-
teraction proper, and g, f, the exchange interaction.
The factor of 2 arises from the same considerations
as mentioned before [co'mpare Eq. (4. 4)]. The
zeroth-order term has to be described in the same
way:
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x(2q+ R+ P)

-~g (g»» )'(~v;, +&F) (0+ lR -&)'. (5. 19)

The exchange part of this formula corresponds to
Durieux' s equation if one takes R = 0.

APPENDIX A: SPECIFIC-HEAT CONTRIBUTIONS
LINEAR IN THE DIPOLE INTERACTION

If the CF is absent there is no contribution linear
in R~, the dipolar part of the Hamiltonian, nor is
there one linear in the exchange, since the trace of
each spin matrix is zero. In the presence of the
crystal field this remains true since the field con-
tains no linear (or, more generally, odd) terms in
the spin operators. The trace over an odd number
of spin operators is either zero or pure imaginary.
In the last case there is always a term in the sum
that gives the opposite, i. e., complex-conjugate,
value, since the Hamiltonian and its powers are
Hermitian operators. Hence, the sum of all terms
will again have a zero trace.

There is also a general reason why the term lin-
ear in the dipole interaction should be zero. If it
were not, then the dipolar sum, which converges
only conditionally, would introduce a shape-depen-
dent specific heat. This is not possible on thermo-
dynamic grounds, at least not for zero external
field.

APPENDIX B

(t ' - a') ' - a-' sin hz, (B2)

(t —a ) - —,'a (- sinhz+z coshz), (B3)

(t —a ) - —,'a '[(3+z ) sinhz —3zcoshz] . (B4)

To find the expression with t in the numerator we
use tf(t) —F(0)-F'(P). All functions have the prop-
erty that F(0) = 0, hence we can use simple differ-
entiation, again using z = aP:

t/(t ' —a')'- —,
' a '(z sinhz),

t /(t —a ) - —,'a ' (sinhz + z coehz),

t/(t —a ) -
g

a~ (- z sinhz+ z coshz),

(B5)

(B6)

t /(t —a ) - —,'a (z —1)(sinhz+zcoshz), (B8)

t /(t —a ) - —,'a (3zsinhz+z coshz) . (B9)

The necessary inverse Laplace transforms can
be evaluated using the expression"

r()e) p
0-1/2

f(t) = s g z - F(P) = »»' — I„,»g(aP),
(t —a ) 2a

(Bl)
where t is the variable used in the Laplace trans-
form and a is a constant. The right-hand side con-
tains the new variable g and I is the Bessel function
of imaginary argument. The first three are
(z =ap)

APPENDIX C

In this appendix we evaluate the formulas neces-
sary to analyze a part of Baker's data in order to
determine the positions of the C F x-y axes in the
sublattices relative to each other. Our main con-
cern is to determine the "third" Euler angle Cg for
each system. By the third angle we mean the angle
of rotation after the rotation around the node line
has taken place, i. e., the rotation around the "new"

axis.
The formula needed to describe an arbitrary ro-

tation in S', S, S space is given by the following
matrix R:

h(1+ cos»») e'' " —sine e ' (cos»» —1)e' '"-g~ )
f

—,'sage " cosg sing e'»t»

f f

2

—,'(cosg —1)e' ' ' —sing e' o
—,'(cosg + 1)e' ('c»)

where»1» is the angle of rotation around the original
g axis and 6) is the angle around the node line or
'"new" y axis. Note that this expression is not uni-
tary since the operators S' and S are not normal. -
ized. It would be far handier to normalize these
operators, but we refrain from doing so on account
of the possible confusion with the rest of the litera-
tu re.

We select one of the four CF z axes as the z axis
of our reference system, that is, we take our z axis
along one of the four body diagonals. The orienta-
tion of the x-y axis can be ignored for the time
being. In this system the other three body diagon-
als are oriented as follows: They make equal an-
gles with the z axis and the angle 8« is given by
cos8« = 3 ~ Their projections on the x-y plane, which
is a (1, 1, 1] plane in the cubic lattice, make angles
of 120' with each other. The orientation of one of
the projections may be taken to be the x axis. Our
first task is to transform the Hamiltonian that de-
scribes the CF of our reference system, which is
given by

R=BOg)+ ,'E[(S') e' i+(S-) e ' i],
where 4)», is the angle that determines the orienta-
tion with respect to that x axis into the Hamilto-
nians that describe the other three crystal fields.
This is done by a rotation P» (i = 2, 3, 4) which puts
the node line perpendicular to the plane of projec-
tion, followed by the actual projection, which is a
rotation of cos '(-', ) aroundthenodeline, and finally

by a rotation of 4», around each of the new z axes.
It is this last angle that we want to determine from
the spin -resonance experimental data. The result-
ing Hamiltonians for the three CF systems are

K' ( 3 B+ g Ecos24»)Osp

+~g( B 8 Ee g»P ~ ~1 Ee-g»g ~ )O

+ (2B+ Ee p»+ ~&g E e» g») O—gg e s»g» y c.c.
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(i=2, 3, 4) .

In the experiment the field was rotated in the x-y
plane, hence we would have to solve these Hamilto-
nians, as well as the Hamiltonian referring to the
i = 1 system, after adding the appropriate Z eeman
term. Since this introduces large off-diagonal ele-
ments it is much easier to make use of the fact that
the magnetic field energy was much larger than the
CF energy in the experiment and to exert a 90' ro-
tation in each of the Hamiltonians, using again ma-
trix R. In this rotation we take (=0; 6 =2p, and

the third angle is called 4„since it represents the
angular dependence of the resonance field. The
result of this transformation is

~=X,+ [,—'8 —'—, E cos(2C, )]

—cos(2CH) (28+ / Ee" & +-,'E e" &+ c.c.) Oz,

+ off-diagonal elements .

All curves in the experimental data [Baker's Fig.
1(a)] have a periodicity of 180' but they all have dif-
ferent phase angles and different base lines, except
for a few coincidences. From the figure we de-
termined the positions of the base lines of the dif-
ferent curves. The numerical values can be com-
pared with the coefficient +6B —

g Ecos24, in the
previous equation. From this we conclude that the
angles 4,. are not zero, and that two are equal and
one is different. We estimate that one is zero and
the two others are 90'. This choice is partially
suggested by the high-temperature cubic symmetry.
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