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Hybridized Nondegenerate 6d and Sf Virtual-Bound-States Model for Actinides Metals
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A simple model taking into account two hybridized and nondegenerate 6d and 5f virtual bound
states is presented here for describing the properties of pure actinide metals. The model
which describes the d-f hybridization by a simple mixing one-body Hamiltonian is treated in
the usual Hartree-Fock self-consistent scheme of Friedel-Anderson. The model can be made
consistent with previous band calculations and with specific-heat measurements giving a large
density of states at the Fermi level. It can then account for the absence of localized magne-
tism for the strongly d-f hybridized uranium, neptunium, and plutonium metals and for
the occurrence of magnetism only in the middle of the series for curium and berkelium.

I. EXPERIMENTAL INTRODUCTION

The present state of understanding of the mag-
netism of pure actinides has greatly increased in
recent years. ' ' Actinides are characterized by
the filling up of the 5f shell, while the 6d band is
occupied by one to three electrons and the 7g band
contains roughly two electrons. Actinides seem
like rare earths at first sight, but in fact the 5f
electrons are less localized than the 4f electrons
in rare earths and cannot be treated independently
of the 6d and 7s electrons.

Theplot of the atomic volume of actinidese' ~ along
the series allows us to make a first classification.
As shown in Fig. 1„actinium and thorium have al-
most the same atomic volume as the corresponding
lanthanides. But then from proactinium to plutonium
the atomic volume has values intermediate between
those of rare earths and those of 4d or 5d transi-
tion metals, the values being closer to those of
transition elements. The atomic radius increases
for americium and lies very close to the corre-
sponding trivalent rare earth, and, at last. curium
and berkelium in its fcc phase, ' have atomic vol-
umes similar to those of trivalent rare earths.

We will now review the different properties of
actinides. Francium and radium are normal metals
with one or two electrons in their 7s band. Actin-
ium is very similar to lanthanum with a 7s 6d con-
figuration and a valence equal to 3. Thorium has
a valence equal to 4 and roughly the atomic config-
uration Vs26d . In metallic thorium the 5fcharacter
is negligible, e while the Gd character begins to be
pronounced enough to give rise to a narrow band
with essentially a 6d character. ~ The electronic
constant y of the specific heat is of the order 4. 5
mJ/mole K, giving a density of states of -1 state/
eV atom for one spin direction characteristic of
transition elements. Thorium is also a regular
BCS superconductor with a transition temperature
equal to 1.33 'K at normal pressure, ' ' which does

not change very much withpressure. " It seems
that the 5f character appears around proactinium
and uranium and increases regularly along the
series according to the plot of the atomic volume
and to the specific heat' and magnetic susceptibility3
measurements which give the total density of states.

The electronic constant y of the specific heat is
found to be between 9 and 12 mJ/mole 'K2, giving
rise to a 2-states/eV-atom (for one-spin direction)
density of states for uranium metal. The constant

y is larger for neptunium, i.e. , roughly 14 mJ/
mole 'K, which gives a 3-states/eV-atom (for one-
spin direction) density of states. The values of y
for plutonium are very spread out' because of the
experimental difficulties: They are mostly around

14-15 mJ/mole 'K2, giving a 3-states/eV-atom
density of states, but much larger values are found
for both regular plutonium and +Pu isotope sam-
ples.

The magnetic susceptibility of actinide metals
has been measured from low temperatures to room
temperature, and all metals from proactinium to
plutonium have a temperature-independent magnet-
ic susceptibility, indicating that there is no appre-
ciable localized magnetic moment as shown in Fig.
2. In the peculiar case of plutonium, there was a
long controversy on the possibility of a small
magnetic moment. The resistivity measurements
on +-Pu single crystals' do not show any sharp
transitions as are found in rare-earth single crys-
tals near their magnetic transitions. Further-
more, measurements of the differential suscepti-
bility show that the upper limit of a net magnetic
moment must be dropped to around 0. 01p~/Pu
atom. 3 The lack of a localized moment at the plu-
tonium nucleus is found by Mossbauer work on3 z-

Pu and NMR work on g-Pu. It now seems well
established that plutonium has no localized mo-
ment. The magnetic susceptibility y is equal to 2. 7
x10 ' emu/mole for Pa, "3.8x10 emu/mole for
o.-U, '~ 5. 6x10 emu/mole for n-Np, and 5. 1
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FIG. 1. Plot of the molar volume

(in cm ) for the actinide series com-
pared with lanthanide, 4d and 5d
series,
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x10 emu/mole for n-Pu. ' In spite of possible
exchange-enhancement effects for the magnetic
susceptibility, we can have an idea of the density
of states by assuming that y is a simple Pauli para-
magnetic susceptibility. The corresponding den-
sity of states is 4. 1 states/eV atom (for one-spin
direction) for Pa, 5. 8 for o, -U, 8.6 for o, -Np, and

8. 1 for ~-Pu.
All the metals from proactinium to plutonium are

characterized by a very large density of states
coming from the specific-heat data and checked by
the magnetic susceptibility data. The density of
states is too large to be attributed only to a simple
6d character, and the absence of magnetism shows
that the 5f bands are certainly much broader than
in rare-earth metals. Moreover, we can show

that, with the 6d and 5f wave functions used for de-
scribing actinides, there results a strong hybrid-
ization between the 6d and 5f electrons s'' lt has.
been previously proposed that at least proactinium,
uranium, neptunium, and pultonium have a complex
band structure with a strongly hybridized d and fchar-
acter. An estimate of the hybridization can be found
in the computed value by band calculations of the
width of the "fband, "which is more exactly the
width of the f band hybridized with d band. It var-
ies along the actinide series, going from 2. V eV
for P-Pa and 3 eV for U to j.. 3 eV for Pu and 0. 7

eV for y-Am and y-Cm.
The small 5f character of proactinium and ura-

nium can also be seen from their peculiar super-
conducting properties. The superconductivity of
proactinium is not definitively established. Some
authorss s found it superconducting below l. 4 'K,

however, recent experiments showed no sign of

becoming superconducting in the resistivity mea-
surements down to 0. 98 'K, nor using a magnetic
method down to 0.89 K.' Uranium-~ seems now

to be not a bulk superconductor at normal pressure
but superconductivity appears when pressure is ap-
plied. The transition temperature increases rap-
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FIG. 2. Magnetic susceptibility (in 10 8 emu/g) vs tem-
perature for &-U, ~-Pu, O. -Np, and Q.-Am elements
(after Brodsky, Ref. 3).
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idly with pressure, reaching around 2 K between
10 and 20 kbar, according to the results of Gard-
ner and Smith. ~o Moreover, the electronic specific-
heat constant increases rapidly under a 10-kbar
pressure. "

The behavior of actinides changes completely at
americium as shown on Fig. 1. The valence of
americium is not definitively established, but it is
sure that the valence, which is equal to 5 or 6 for
neptunium and plutonium, becomes smaller for
americium. From Fig. 1, the value of atomic
volume for americium gives a valence close to 3
in spite of previous investigation of Zachariasena~
and Matthias et al. The heat of vaporization, 4

vapor pressure, and compressibility ' of ameri-
cium may be interpreted as indicating that it is
more likely to be trivalent. Moreover, americium,
as well as curium ' ~ and one phase of berkelium,
has the double hexagonal-close-packed structure,
which is also found in the beginning of the series of
trivalent rare earths. So, it is more convincing
to follow Hill~ and adopt a valence close to 3 for
americium. The magnetic susceptibility of
americium is constant above 100 'K and increases
belows 100 'K; but this low-temperature-dependent
susceptibility is probably due to neptunium mag-
netic impurities. ' Its value is 6. 7x10 emu/
mole and corresponds to a density of states of 10.3
states/eV atom. So americium has no magnetic
localized moment, but the question of its magne-
tism is not perfectly clear. It can be either a
Pauli paramagnet or a Van Vleck paramagnet if its
valence is strictly 3, leading to the 5f 6 configura-
tion. According to McWhan, 3 americium would
be a Van Vleck paramagnet with a J=O ground state
separated from an excited J=1 state by 3.000'K.

The elements after americium are magnetic and
are very close to the trivalent rare earths accord-
ing to Fig. 1. From Bansal, curium follows a
Curie-Weiss law with an effective magnetic mo-
ment ranging from 7.97 to 8. 1p.~ with a negative
Curie temperature of order —350 K. Marei has
also found that curium follows a Curie-Weiss law
with an effective moment of order of 8 p,~ and with
a Curie temperature of order of —300 'K. It is
interesting to note on the plots of Marei7 that the
magnetic susceptibility follows the Curie-Weiss
law at high temperatures and begins to depart from
this law around 200 'K. The nature of ordering is
not established for curium at low temperatures, al-
though the negative Curie temperature indicates an
antiferromagnetic ordering. Although the Curie
temperature is large and negative, and consequent-
ly the meaning of Curie-Weiss law is not very
clear, the 8p~ effective moment found experimen-
tally is remarkably close to the theoretical value
of the 5f ~ configuration. So the experiments of
Bansal and Marei indicated that curium is a mag-

netic actinide with a valence equal to 3 and a 5f
configuration as for gadolinium.

Berkelium has been studied recently by Peter-
son ef a/. All samples exhibit a face-centered-
cubic phase with a lattice parameter of 5 A. In
addition, several samples exhibited a double hex-
agonal-close-packed phase with lattice parameters
of a=3.42 A and c=11.07 A. Present data indicate
that the fcc phase is the high-temperature phase
with respect to the double hcp (dhcp) phase. The
corresponding molar volumes are 18.8 cm3 for the
fcc phase and 16.2 cm for the dhcp phase; the
atomic volume is roughly 14/0 smaller for the dhcp
phase than for the fcc phase. So the valences of
the two phases are different. The method of
Zachariasen gives a valence of 3. 5 for fcc and
3.9 for dhcp. These values are overestimated be-
cause the method of Zachariasen starts from
thorium for determining the valences. On the other
hand, the method of Cunningham and Wallmanna~

yields values of 2. 8 for fcc valence and 3.2 for
dhcp valence, but these values are underestimated
because the method of Cunningham and Wallmann
starts from curium for determining the valences.
Another way of determining their valences is to
compare the atomic volumes of actinides with those
of the corresponding rare earths. Since the atomic
volume of fcc Bk is the same as that of terbium,
we can attribute a valence equal to 3 for fcc Bk.
Since the variation of volume is of order 25-30/o
between trivalent cerium and tetravalent cerium or
between divalent and trivalent europium and ytter-
bium, we can attribute a valence equal to approxi-
mately 3. 5 to dhcp Bk. Consequently, the magnet-
ic moments of the two berkelium phases should be
different with a larger magnetic moment for the
fcc phase than for the dhcp phase. This difference
cannot be seen clearly on the experimental results
of magnetic susceptibility, because the samples are
generally made of admixtures of fcc and dhcp
phases and also because the samples contain large
amounts of californium, the next element after
berkelium. s However, on a first sample containing
fcc phase and a large amount of californium, the
magnetic susceptibility follows a Curie-Weiss law
with an effective magnetic moment of 8. 23',~ and a
positive Curie temperature of 64 'K. At140 'K, Bk
begins exhibiting ferromagnetic ordering. In the
two other samples containing the two phases, a
Curie-Weiss law is observed with an effective mag-
netic moment of 8. 52@,~ or 8.83'~ and a negative
Curie temperature of —72 or —33 'K; at low tem-
peratures, the magnetic susceptibility departs from
a Curie-Weiss law to exhibit a transition for anti-
ferromagnetism. So we can conclude that the mag-
netic moment of berkelium metal is of order 8.5p,~,
relatively close to the theoretically expected value
for the f configuration as terbium in the rare-
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earth series; but we cannot conclude on the differ-
ence between magnetic moments of the two phases.
Therefore, berkelium is a magnetic actinide with
an fcc phase close to the trivalent magnetic f8 con-
figuration of rare earths. Moreover, there is an
interesting phase transformation accompanied by a
valence charge, the phase with the smallest valence
existing at the highest temperatures, as, for ex-
ample, in cerium. The transition with a valence
change in berkelium would be obviously very inter-
esting to study experimentally in detail.

Experimentally, we can distinguish three groups
in the actinides series, as previously predicted by
Friedel. 6 (i) Transition metals with a pronounced
Gd character and a negligible 5f character: This
is the case of actinium and thorium, which is super-
conducting. (ii) Mixed Gd-5f metals with a, hybridized
d fchar-aeter and with a valence around 5: This is
the case of proactinium, uranium, neptunium, and
plutonium, which are not magnetic and have a large
density of states at the Fermi level. (iii) Rare-
earth metals with highly localized 5f electrons and
a valence close to 3: This is the case of ameri-
cium, curium, and fcc berkelium, and the last two
have magnetic moments corresponding roughly to
the 5f and 5f configurations, respectively.

II. THEORETICAL MODEL

The purpose of this paper is essentially to ex-
plain the absence of localized magnetism for acti-
nides before curium by taking into account a strong
hybridization between Gd and 5f electrons and con-
sequently to account for the experimentally ob-
served "delay" for the occurrence of magnetism
appearing in actinides by comparison with rare
earths.

In actinide metals, the 5f wave functions are not
very localized; consequently, there results an ixn-
portant overlap between two 5f wave functions cen-
tered on two neighboring sites and as a result a 5f
band with an appreciable width, in contrast with the
situation of rare earths. Both 5f and Gd electrons
are able to form bands in actinides, and the hy-
bridization comes from the asymmetric bondings
between 5f and 6d electrons. s'7 Many band calcu-
lations have been done in actinide metals and com-
pounds and are able to predict, in some cases, the
shape of the density of states.

Kmetko and Hill have deduced from nonrelativ-
istic band calculations an order of magnitude for
the half-width of the "hybridized 5f band" in acti-
nides, as shown in Fig. 3. The half-width goes
through a maximum of order 1.5 eV at uranium,
where there is a very strong d-f hybridization, and
then decreases till a small value of order 0. 35 eV
for americium and curium, where the hybridiza-
tion is certainly very small. Band calculations
of actinides have also been performed by use of a

Half - width
(eV)

I

Ac

I I

Th Pa U

I I I I

Np Pu Am Cm Bk

FIG. 3. Plot in eV along the actinide series of the
"hybridized f half-width" given by the band calculations
of Kmetko and Hill (Ref. 18).

symmetrized relativistic augmented-plane-wave
(APW) method, and substantial differences have
been found with respect to the nonrelativistic cal-
culations concerning the relative position of the
different bands. ' Anyway, the magnitude of the
hybridized 5f bandwidth, which we can roughly esti-
mate from the region of "5f asymptotes, "where
AP% calculations are inaccurate, follows qualita-
tively the same curve as that shown in Fig. 3. For
example, the region of "5f asymptotes" is of order
1.3 eV in thorium, 2 eV in uranium, and split in
two regions of 0. 5-eV width in plutoniuxn, while the
d fhybr-idization is, in any case, very small in
americium and curium. However, as pointed out

by Freeman and Koelling, 3 the APW calculations
are in fact inaccurate in describing the narrow 5f
bands and cannot explain at all the occurrence of
magnetism. So, in spite of the band character of
the d and f electrons, we adopt, for describing es-
sentially the magnetic properties of actinides, an
opposite point of view which is better for the de-
scription of magnetism and easier to handle
mathematically. The three main assumptions of
the theoretical model are the following.

(i) We treat the one-impurity problem. This
means that we consider all the atoms forming the
actinide metal as independent impurities and that
we start from Gd and 5f localized levels for each
atom. 33

(ii) We treat the 6d and 5f localized levels by the
resonant scattering mechanism. This means that
we have two virtual bound states in resonance with
a broad 7s band. We neglect the orbital degeneracy
and the spin-orbit coupling in this first paper, and
we treat the two virtual bound states in the usual
Friedel-Anderson 6 framework using the Har-
tree- Pock approximation.

(iii) We treat the d fhybridization -by taking in
this first paper the simple phenomenological one-
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body mixing interaction term between 6d and 5f
electrons exactly as the mixing term used by Ander-
son for describing d virtual bound states.

Obviously, this simple model will not be valid for
describing band properties of actinides such as
transport properties or, for example, the effective
mass of d and f electrons, but it could account
fairly well for the magnetic properties of actinides
and especially for the occurrence of localized mag-
netism. Another trouble will certainly come from
the Lorentzian form of the densities of states which
deeply overestimates the tails of the band, espe-
cially for the d band. The validity of such a model
will be discussed in Sec. V when comparing our
results to the experimental data of pure actinides.
A first short account on this model has already
been presented. 3~

The Hamiltonian we use here is a natural ex-
tension of the Anderson Hamiltonian36 to the case
of two d and f virtual bound states with hybridiza-
tion and can be written

H= Hp+Hg+H2+H3 .
(i) The Ho term represents the kinetic energy of

the conduction electrons coming from the 7s band
and of the localized electrons coming from the 6d
and 5f levels:

p=~ &gCy~ Catty+ g ~ CdoCgfy+ y ~ CyfyCyty
(0)~ g (0) M

(2)
We use the usual notations of Anderson. E~ ' is
the position of the unperturbed d level, and Ef ' is
the position of the unperturbed f level.

(ii) The H, term represents the resonant scatter-
ing interactions with the conduction band and is
given by simple one-body mixing terms:

1 ~ ' Mcihdcdr + VM cdncka)
k', e

&cy*&a ) ~

k, fy

(iii) The H, term represents the part of the two-
body correlations between d and f electrons which
will give a nonzero result in the usual Hartree-
Fock approximation, i. e. , the approximation which
takes an average value over the occupation number
of d and f levels. So the Hz term takes into ac-
count the Coulomb repulsion between d electrons,
between f electrons, between a d and f electron,
and the exchange interaction between a d and f
electron. With the usual notations n„, and n&„ the

H& term is expressed as

H2 =
Udd nd tn„, + U&& n&,n&, + Udd (nd, n&, + nd, n& )

+ (Udf +df)(nd, nd, +n„n&, ) ~ (4)

The parameters U«, U&&, U«, and J«are given
by the following integrals:

H3=Z, (Veep, c«+ Vdt. c&*,cd, ) . (6)

At last, to solve the Hamiltonian (I), we use,
in addition to the Hartree-Fock approximation for
(4), two other simplifying approximations.

(i) Since we do not know precisely the relative
values of the four parameters entering (4), we

make the approximation which takes all the param-
eters of the Coulomb and exchange interaction
equal to each other:

U„„=Ugy
= Udf = J@= U . (7)

The approximation (7) overestimates the value
of Jz and treats equally the d and f electrons,
which in fact corresponds to an overestimation of
the d-electron contribution. This approximation,
which simplifies a little the calculations, is used
here because we do not know the precise values of
the different parameters U«, Uzz, U&, and J&.
However, we can justify the different terms of the
approximation (7) as follows: A precise knowledge

of the exchange integral J„z compared to the Cou-
lomb integral U@ sho~cld be crucial if the two d and

f levels were "degenerate" or close to each other.
On the contrary, in the physical case of actinides
described here, the two levels are well separated
from each other, so that the rough evaluation of

Jz made in (7) can be considered as a not too bad

approximation.
On the other hand, the second part of the approx-

imation U«= U&f U@ which corresponds to an
overestimation of the d contribution, is not too
critical and does not affect deeply the physical re-
sults, because the average value (nd, ) of the d oc-
cupation number is always relatively small com-
pared to 1 in the present physical case.

With the approximation (7), the Hamiltonian (4)
can be simply written

Hp= U(nd, +n&, )(nd, +nd, ) . (6)

(ii) The second approximation is to assume that
the Vz term entering (6) is constant, independent

of the spin and also of the relative positions of the
d and f virtual bound states. We will discuss the
validity of such an approximation in the Conclusion.

III. MATHEMATICAL TREATMENT

We treat the Hamiltonian (I) by the same method
as Anderson36 at zero temperature. The Green's

U..= ff l~.(-,) I'("/...) I~,(-.)l"-,"-.,
&~~= 1f Iud(»)l'(e'/~i2) Ie,(r2)l'd»dra,

U~ = ff I ed(ri) I'("/~i. ) I e, (r2) I'dry dr. ,

~df ff ed (ri) e~*(r2)(e /+12)Ad(r2)bd'(ra) dry dr2

(iv) The H, term is introduced for describing the

d fhyb-ridization in a phenomenological way by a
one-body mixing term:
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function G(E) for zero temperature is defined by

iim(E+is —H) G(E) =1 as s-0'. (9)

The system of equations for the matrix elements
of the Green's function is, in the Hartree-Fock
approximation,

(E+is —Z~)Gyy(E) —E~ V~),G~(Z) —Vp~G~(Z) = 1,
(z+is —z„)G~(E)—Z v G ~(E) —v~G~~(E) =o, (10)

(Z+ is —).)) G@(Z) —V)~G'„y(E) —V~ G~~(Z) = 0 .
The system of equations for G&z(E), Gzz(Z),
G&~(E) is obtained from (10) by permuting the index
d and f.

In Eqs. (10), we have introduced the new ener-
gies for the d and f levels:

z'„= z,"'+U„(n, , )+ U~ (n, , )+ (U~ —J„)(ng, ),
(11)

Z))=Z&0&+
Uy~ (~~ )+ U@ (n~ ~)+(U)v ~@) (+g)) ) )

which, in the approximation (7), are simply func-
tions of the total number of d and f electrons for a
given spin a'.

E„'=E„'+Un

At last, the diagonal matrix elements for G(Z)
are given by

( )
z —Eg+iry

(z —z,'+ir, ) (z- z,'+ir, ) —
I v„, I'

(16)z- E;+fr,
(E —E~+ir~) (E —Eg+ iI'g) —

I Vgg [

The extra density of states coming from d and f
states is given by

p, (z) = p~(E)+ p,.(z)

= —(I/v) im [G'„(Z)+G;,(Z)] .
In the simple case V@=0, we find

1 ( I'y'")-.)(z z)"r "(z z)"~ )
The expression (18) is the sum of two Lorentz-

ians centered on E', and Ez with half-widths I'~

and I'&, which corresponds to the trivial extension
of the Anderson result to the case of two virtual
bound states which do not interact with each other.

In the general case V& 40, the expression of

p, (Z) takes also the form of a sum of two Lorentz-
laXls:

Ep = Eg '+ Un ~,
with

n~= ng, +ng~ ~

(12) 1I' I, r,""- )(z-z) ~ (z-~),~)

In (12) and in (13), we have omitted the average
symbols ( ~ ~ ~ ) for (n~, ) and (nz, ). We will do so
also in the following.

In solving Eq. (10), we write

The centers E& and E2 and the two half-widths I",
and I'~ are the real parts and the opposite of the
imaginary parts of the poles of the Green's-func-
tion (16) solutions of the equation

lim Z — . = —fr~,~ ~~I I'

s 0+ &
E+SS

lim Z . = —ir&,
~ ~jul

s-0+ a E+&S

Vd)) Vf))

0+ y E+SS

(14a)

(14b)

z; = —,'(z', + z;)+ —,'~[-,'(~ z
~

+ Rez)]"',

Z; =-,'(Z;+ Z;) ——,'&[-,'(~ z
~

+ Itez)]"' .
(21)

E —E(z —ir +E' —iI' )

+(z,'-ir, )(E', -ir,)-
~
v„~'=0. (20)

The values of E; and E& are given by

where I'„and lz are the classical half-widths of the
d and f virtual bound states and are given by

r, =v(i V„i')p,(E,),

where p, (E~) is the density of states of the conduc-
tion band, which is assumed to be constant, and

E~ is the Fermi energy.
In the expressions (14a), we have neglected, as

usual, s the real part which corresponds simply to
an energy shift. In the expression (14b), we have
taken a potential with a spherical symmetry which
leads to zero value for the integral (14b), because
the angular parts of V and V~~ are thus propor-
tional to spherical harmonics of different ) values
and consequently orthogonal.

The values of I'& and I'& are given by

r, = —,'(r, + r, ) ——,'[-,'(~ z
~

—Itez)]"',

r, = —,'(r, + r, )+ —,'[-,'(~ z~ —Rez)]'",
where I z I and Rez are the modulus and the real
part of the complex number z.

=(z;-z;)'- (r, —r, )'+4~ v„~'

-2i(r, - r, )(z'„-z;), (23)

and & = + 1 has the same sign as the imaginary part
of z, i. e., —2(I'„—rz) (E' —E&).

In order to write (22), we had previously re-
marked that, in the approximation (7) used here,
F, and I'3 are independent of n, and consequently of
the spin o; because l, and I'2 depend only on the
difference Ez- E„'. Moreover, E; and E~ depend on
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ii p(E) (arbitrary units)
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FIG. 4. Theoretical d and f extra density of states for
a typical set of parameters I'&=10 I'f, Ed' -Ef' =I'„, and
three different values of V„f=0, 0.3 I„, I'„, which show
the effect of the hybridization.

z, only by the first factor 2(E—', + Ez) in (21), and

we can write

Eg=Eg '+ Uz ~,
(24)

E„'=E2 '+ Un, .
E&

' and E~ ' are functions of E„' ' and Ef ' by the
same expressions (21) as Eq and Ea are functions
of E'„and Ef.

The effect of d-f hybridization is easy to see on
the density of states. For V« = 0, we have obvi-
ously E', =Ef, E', =E'„, l",=Ff, and l, =l„. When

I V«l increases from a zero value, the two cen-
ters E& and Ea are "pushed away" from each other
and the two widths I'& and I"~ become more and
more "equal. " This effect can be observed in Fig.
4, showing the density of states for a typical set
of parameters U, I'„, I'f, Ef, E„', and increasing
V«values.

The main physical effect is essentially the varia-
tion of the two widths when V« increases. In

particular, if we take two Lorentzians with I'f
much smaller than I ~, which will physically cor-
respond to the case of actinides as discussed later,
the hybridization drastically increases the narrow-
est Lorentzian. It is consequently easy to predict
right now that magnetism will be more difficult
to obtain in the presence of the d-f hybridization.
In fact, we have started from this physical idea to
build up the model used here, because the d charac-
ter and consequently the d fhybridization -are cer-
tainly more important for actinides than for rare
earths.

A more quantitative idea of the effect of the hy-
bridization is shown in Fig. 5, where we have
plotted I', and I'2 vs Ef ' —E„' ' for different values
of V„f and for I'~= 10I'f. The effect of hybridiza-
tion is more important when the two levels are

f and l /I)']i f

io

V„= O.3 r,

V~, = 0.3 rd

E/o) E( )/Cf

FIG. 5. Plot of I'~/I f (thick line) and I 2/I f (thin line)
vs (&'f' —E& )/T'f for I &=10 I'f and three different values
of V„f=0, 0.3r„, I'„.

closer to each other So., when the 5f character
increases, as is the case along the actinide series,
the width I', of the narrowest level, or the width
of the "hybridized f band, " increases first, goes
through a maximum when Ef '=E„' ', and then de-
creases to reach F~ when the 5f level is very much

occupied. When the hybridization is not too large,
i.e. , V„z & —,'(I', —Fz), the values of I', and F~ for
Ef ' = E„' ' are different, as is shown in Fig. 5 for
Vg f 0. 3I'„. On the contrary, when the hybridiza-
tion is large, i.e. , V,/& —,'(I', —Fz), the values of
I"& and I'~ for Ef' '= E„' ' are equal, as is shown in
Fig. 5 for V«= l„. Moreover, the more the V«
value is large, the more the relative variation of
I'& is important. The theoretical Fig. 5 can be re-
lated to the Fig. 3, in order to make consistent
the model with the results of band calculations and
consequently to have an estimate of the values of
the parameters involved in the theoretical model.

We think that the V«value is large, if we con-
sider, in Fig. 3, the rapid decrease of the band
half-width between its maximum at uranium and its
value for americium and curium. However, this
feature can be considered only as a tentative indi-
cation rather than a definite proof for a large Vgf
value, and, in fact, we will prefer to deduce the
large value of the hybridization in actinides from
their magnetic properties, as will be discussed
later on. Furthermore, the values of 1 „and I"f
can be estimated by comparison with Fig. 3 in the
following way: The maximum value —,'(F~+ Fz) of I ~

corresponds to the uranium band half-width, which
is of order 1.5 eV, while the limiting value I'f of
I', when there is no longer any hybridization is
probably very close to the americium band half-
width, which is equal to 0. 35 eV in Fig. 3. So we
deduce that the ratio F~/I'z is of order 10 and that
I"f is equal to two- or three-tenths of an eV, while
I"„is equal to 2 or 3 eV. We will use this estima-
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(25b)

+g~ + SftJ Ãffy + Pl~ P

n@, —~, =A(n&, —n2 )+—ln
T' sine n&,
I"~ sinpn2,

(26a)

(26b)

tion of the parameters when applying the theoreti-
cal model to the case of actinides.

To compute the average numbers of d and f elec-
trons, we have to derive the usual self-consistent
equations. The occupation numbers are given by

n~ = ——Im G~(E) dE,
z

(25a)
po

n~ ————Im
~

Gy~(E) dE .
a po:

Ne give the results of the calculation as a func-
tion of n, =n„, +nz, and of n~ —n&, ."

have automatically n„, &n„, , because of the peculiar
form of the self-consistent equations and especial-
ly of the approximation (7) used here. So the re-
search of the magnetic solutions of Eq. (30) gives
all the magnetic solutions of the system (26). So
the approximation (7) gives simplifications in

handling mathematically the equations, without al-
tering too much the physical results.

IV. DISCUSSION OF MAGNETIC SOLUTIONS

We discuss the different possible solutions of the
set (26) of self-consistent equations, and we are
especially interested in the possibility of magnetic
solutions according to the different values of the
parameters. There are six parameters I'&, I"„,
U, V~&, and the relative positions of the d and f
levels compared to the Fermi level, i. e.,

The occupation numbers n&, and nz, are Ep~= E~ ~ —Ep, (0&

t-1 E10+ U+-~„=—cot
L y

(27a)

y Epp+ Un,
+pfy cot

with
E]0=Ey EP j

(0)

(27b)

(28a)

(0& (26b)

The coefficients A and B are independent of the
spin and are given by

(EI ~ —E&@~) (E&~~ —Eptp~) + (1 —I'&) (I'& —I'2)

lsl
(29a)

1 (Epg+Un, 1 (Epp+Un,
( )n, = —cot ' + —cott . 30

We shall first solve Eq. (30) and then put n, and

n, in Eq. (26b) to directly compute n~, and n&„be-
cause the difference n„, —n&, depends only on n „
for a fixed position of the d and f levels.

It is also interesting to note that, if yg&, @n&, , we

(29b)

So Eqs. (26), using Eqs. (27)-(29) and also (21)-
(23), give four self-consistent equations for n~, ,

n„, , n&, , and n&, which give the values of these four
numbers. In principle, we obtained, by integration
from —~ to E~, only the occupation numbers at
T = 0; but since 1"& is much larger than 4T at room
temperature in actinides, and a fortiori so are I'„,
I'» and I'» the effect of temperature will be small
and we will not consider it here.

The set of self-consistent equations can be prac-
tically computed easily by first taking Eq. (26a),
which gives n., as a function of n, :

In fact, there are five dimensionless parameters
obtained by dividing five parameters by the last
one, for example, U. So in general the discussion
is very long, but we are interested in the applica-
tion of our results to the physical case of pure
actinides. We shall consider that the actinide se-
ries is described by the filling up of the 5f shell,
so that Ep& decreases from large positive values
to negative values along the series. On the con-
trary, the position Ep~ of the atomic 6d level will
be considered here to remain constant with a posi-
tive value in order that the occupation number n~

be relatively small compared to 1 in the actinide
series. Thus the only considered case corre-
sponds to Ep~&0, and the case E«&0 will not be
studied here. Also, the ratio I'p/I'& can be taken
much greater than 1 and constant in the actinide
series.

Therefore, we first study in detail the different
solutions inside the classical Anderson diagram
according to the relative values of pl'z/U and Epz/
U for fixed Ep~, Vp&, and I'~/I'& values (Sec. IV A)
and then we discuss the occurrence of magnetic
solutions when we make varying V~&, I'„/I'&, and

Ep~ (Sec. IV B).

A. Anderson Diagram (Eof/U, nI'&/U) for Self-

Consistent Equations

The classical method of solving Eq. (30) con-
sists in plotting ~, as a function of n, and then n,
as a function of n, ; the points of intersection of
the two obtained curves are the solutions of Kq.
(30). There always exists a, nonmagnetic solution
n, = n, = np given by

g Epg+ Unp g Epp+ Ung
grip = cot

p
+ cot

3

~ increases continuously when Ep& decreases from
+ ~ to —~ with a fixed E«value.
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In some cases, there are one or several mag-
netic solutions n, ~n, , in addition to the nonmag-
netic solution. The solutions of the self-consis-
tent equations are discussed in the classical An-
derson plot in a plane with the coordinates E0&/U
and ml F/U for constant values of I'~/I"I, V,z, and

E0~ (& 0). Figure 6 shows the Anderson diagram
for I'~/I' F-—10, E0~= I"~, and V~&=0.

We can distinguish several regions in Fig. 6:
For E0F/U roughly larger than 0 or smaller than
—1 or also for U smaller than a critical value Up,
we obtain a nonmagnetic solution as in the Ander-
son case, either because the 5f level is almost
completely empty or occupied, or because the
strength of the Coulomb repulsion is too small.
For E0&/U between roughly 0 and —1 and for U
& Up, there is one magnetic solution as in the An-
derson case. For E0F/U close to 0 and U& U, on
one side and for E0&/U close to —1 and U& U2 on
the other side, we have two regions with two mag-
netic solutions, which is different from the nonde-
generate case of Anderson.

The mathematical equations of the limiting
curves separating the different regions of Fig. 6
are obtained as follows:

(i) The boundary curve of the magnetic region
with one magnetic solution, i. e., the boundary be-
tween the nonmagnetic solution and the magnetic
solution between U~ and Up on one side and Up and

U2 on the other side, as well as the boundary be-
tween the magnetic region with one magnetic solu-
tion and the magnetic region with two magnetic
solutions for U larger than U& or U2, is given by
the classical condition for the appearance of a
magnetic solution from a nonmagnetic solution.
Mathematically, this condition can be obtained by
taking small variations 5n, and 5n., from a nonmag-
netic solution n0 given by (31) and by writing 6n,

= —5n, &0. We obtain the classical condition

U Sin mn&p Sin mn2p

W 1 g
I'2

or also, as usual,

UP0(EF) = 1

(32a)

(32b)

2 ~ 2 ~ 2U s1n mn»p s1n wn2, p

r, ' r,
~ 2 ~ 2

X

2 2

~ ~
«~ 1 t

Sln 7Tpgt~p Sln 7TS2 p+ I"
2

Ol

U P 0(EF) P,O(EF) = 1

(33a)

So when Ep& decreases from + ~ to —~, we can
have three different possible situations according
to the different values of U.

(i) If U& U0, the solution is always nonmagnetic,
whatever the value of Ep&.

(ii) If U0& U& U, for the first transition en-
countered when Ep& decreases or if Up& U& U2 for

where p0(EF) is the extra d and f total density of
states for one-spin direction.

(ii) The boundary curve between the magnetic
region with two magnetic solutions and the nonmag-
netic region for U larger than U, or U2 is deter-
mined by another condition. One has to write down

that two magnetic solutions appear together. In

the nonmagnetic domain, the two curves n, (n, ) and

n, (n, ) have only one intersection point, while in the
magnetic domain with two magnetic solutions, the
two curves have five intersection points. So the
boundary is determined when the two curves n, (n, )

and n, (n, ) are tangent to each other in two points

n, p and n, p corresponding to the magnetic solution

n, p4n, p, as shown in Fig. 7. This condition is
written, with obvious notations,

xl jU ](

U "-U)

=U

i-magnetic —solution region.
2-magnetic —solutions regions.

U=U„

FIG. 6. Diagram of the self-
consistent solutions in the plane
(01'&/U, E,F/U) for E&=I'~
= 101"I, V&&

=0. Large hatching
corresponds to the region with
one magnetic solution; compact
hatching corresponds to the re-
gions with two magnetic solu-
tions. The thin line corresponds
to the boundary of the one mag-
netic solution region, the
dashed line corresponds to the
boundary between zero and two

magnetic solutions regions, and

the thick line gives the position
of the first-order transition.

1.5 0.5 0 0.5 E d/Uod
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n (y/i

n

FIG. 7. Two cases for the appearance of magnetic
solutions shown in a plot of n, vs n~: (a) appearance of
one magnetic solution from one nonmagnetic solution
[condition (32) in text], and (b) appearance of two mag-
netic solutions together fcondition (33)].

the second transition encountered when Eof de-
creases, the transitions from a nonmagnetic state
to a magnetic state are always second-order ones
and are given by the condition (32), as explained
in the Appendix. The second-order transition line
is given by the thin line.

(iii) If U, & U for the first transition encountered
when E«decreases or if U~& U for the second
transition encountered when Eof decreases, one
goes from a nonmagnetic solution to two possible
magnetic solutions, and both the stable magnetic
solution and the point where one goes from a non-
magnetic to a magnetic state are determined by the
computation of the total energy as explained in the
Appendix. From the calculation of the total ener-
gy, a first-order transition is found when going
from the nonmagnetic region to the magnetic region
by decreasing the Eo&/U value. The first-order
transition line is given by the thick line in Fig. 6
or also Figs. 8 and 10. This line starts from Eof
= 0 and Eof= —U for infinite U values and reaches
the second-order transition line at U equal to U,
and Uz.

The first and second cases are similar to the
classical case of Anderson which has been applied
to transition impurities in noble metals. '. The
third case is similar to the case of orbitally de-
generate virtual bound states which has been ap-
plied to rare-earth metals and especially to the
phase diagram of cerium metal. I.et us now dis-
cuss which case corresponds to the actinides se-
ries. The exact values of Uo, U„and U~ depend
on the parameters V«, I'~/I'z, and Eo~, but for
Vgf 0, we can say that Uo is of order &I'f while U,
and U& are of order pl „and, as will be studied in
detail later on, the effect of V« is to increase the
values of Uo, U, , and U&. Physically, we can un-
derstand the difference between the two cases by
comparing the relative importance of the 'f mag-
netic moment" (n&, —n&, ) and the "d magnetic mo-
ment" (n~, —n„, ) which always exist together be-

cause of the peculiar form of the self-consistent
equations. For the case studied here of Eo„&0 and

V« ——0, the f magnetic moment is generally much

larger than the d magnetic moment. At the mag-
netic transition, it appears essentially an f mag-
netic moment, but the order of the transition in the
Ha, rtree-Fock approximation is determined by the

relative importance of the d magnetic moment
compared to the f magnetic moment, as already
explained in the similar ease of a twofold orbitally
degenerate virtual bound state. ' Moreover, the
importance of the d magnetic moment is essential-
ly dominated by the importance of the ratio wl"~/U.

Thus two cases can be considered: If U is
smaller than pI"„, the d magnetic moment is very
small and the transition is a second-order one as
if the two levels ft and fk were alone exactly as in

the nondegenerate virtual-bound-state ease of
Friedel and Anderson. ' Qn the contrary, if U

is larger than pI'„, the d magnetic moment is im-
portant and the transition is a first-order one be-
cause the variations of the occupation numbers n„,
and n„, are important at the magnetic transition,
exactly as in the twofold orbitally degenerate vir-
tual-bound-state case applied previously to rare-
earth metals. "

In actinide series, to our knowledge, the mag-
netic moment, when it appea, rs, has only an f char-
acter. So in this theoretical model, we have to
consider that the d magnetic moment is negligible
and consequently that zI'f & U& zI'„. Consequently,
we are in the case Uo & U& U, and Uo & U& U, and the
transitions are always second-order ones. As far as
we know in the present experimental situation, the
first-order transitions obtained in this Hartree-
Fock approximation have no physical meaning, in
contrast to the case of rare earths.

At last, from the above discussion, we can also
conclude that, since the d magnetic moment re-
mains always small in the interesting physical
case, the relative importance of the different pa-
rameters U„~, Uff, U«, and J«has not a real
physical importance, which justifies the approxi-
mation (7).

B. Discussion of Self-Consistent Equations with

„/ f, and Eod

The effect of the hybridization term V„f is clear-
ly shown in Fig. 8, showing the magnetic diagram
(wl z/U, Eoz/U) for different V«values, and in Fig.
9, showing the plot of the occupation numbers pgf,

and n„, vs Eoz/U for different values of V«and U.

In Fig. 9, we can observe the nonmagnetic domains
for large positive or large negative Eoz/U values
and the magnetic domain between them. We have
also chosen two different U values, one smaller
than U, and Uz and giving second-order transitions
for V«= 0 and the other one larger than U, and U~
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and giving first-order transitions for V«=0. We
can notice that for a small U value (U= 0. 51 ~) the f
magnetic moment is much larger than the d mag-
netic moment in the magnetic domain, while for a
large U value (U= 2I', ) the d magnetic moment can
be of the same order as the f magnetic moment.
So clearly the case of a large U value giving rise
to first-order transitions has to be avoided for de-
scribing the experimental situation of actinides se-
ries with the theoretical model, as was already
pointed out.

When Ep& goes from + ~ to —~, n&, varies from
0 to 1 and n~, varies from n to n~q (n«& n), given

1,Ep~+ Un~pn«= —cot
m

1 „1 Ep~+ U+ Unqp
tlgg = co

xl /U Js

Anderson case

ocl

0.5

p s

15 0.5

f d

p.5 E IU
of

FIG. 8. Effect of V«(V«=0, 0.31"&, I'&) on the mag-
netic diagram (&I'&/U, @of/+ for EM = 1"d =10I'y. Th
dashed line corresponds to the simple one virtual-bound-
state Anderson case. The thick line is the first-order
transition and the thin line the second-order one.

Finally, the effect of V«shown in Figs. 8 and 9
can be summarized as follows.

(i) The increase of V~& gives an increase of the
critical values Up, U&, and U~ and leads to a gen-
eral "collapse" of the magnetic domain on the axis
EQf/U, as shown in Fig. 8. Consequently, the mag-
netic domain decreases as shown in both Figs. 8
and 9. Moreover, the transitions become smooth-
er with increasing V„& values because of the in-
crease of U& and U&, on the right-hand side of Fig.
9, we see that the magnetic transitions which are
first-order one at V«=0 become second order and
at last disappear with increasing V«values.

(ii) The increase of V~& gives also a shift of the
magnetic domain toward larger E«values, which
physically corresponds to the relative removing of
the two hybridized levels Ej and E&.

(iii) A strong d fhybridization -tends to bring the
numbers n«and n&, closer to each other. This ef-

feet is observed on the variation of n«vs Ep f p

which presents a maximum for large V«values,
while it decreases regularly from nap to nd1 for
zero or small V«values.

(iv) At a fixed EOI value, the numbers of elec-
trons n„, and n&, are generally rapidly increased by

the hybridization as shown in Fig. 9. Moreover,
although the magnetic domain is moved toward
larger ED& values, the total number of d and f elec-
trons increases generally at the first magnetic
transition. This effect will be described later on

in detail and used for describing actinide metals.
We have taken till now a constant ratio I ~/I'&

much larger than 1. It is interesting to show that
changing the ratio I'~/I'& modifies only slightly the

physical results. The magnetic diagram is shown

in Fig. 10 according to different I'~/I'& values vary-
ing from 1 to + , in the case of a zero V+ value.
The limiting case I'~/I'&- ~ corresponds to an An-

derson diagram shifted along the Eo&/U axis by the

quantity (I/v) cot ' (Eo~/I'~), which is simply the

number of d electrons found as constant in this
limit whatever the Ep& value. In this limit, the
transitions are obviously always second-order ones
as in Anderson case.

Finally, we can discuss very briefly the influence
of Epg We have not treated here the case Ep„& 0,
because it corresponds physically to the case of a
large d magnetic moment. For E«&0, the effect
of Eo, is essentially to shift along the E,z/U axis
the magnetic diagram with respect to the magnetic
diagram of the classical Anderson case by a quan-

tity of the order of the number of d electrons.
This is shown in Fig. 8, where we can compare the
magnetic domain for E«= I'„ to the magnetic do-
main in the Anderson case for Ep~-+ ~. Since the
variation of n~ is small when we make varying E«
around a mean positive value —for example, E«
= I'~—the physical results are not deeply changed

by a not too large variation of Eo~.

V. APPLICATION TO PURE ACTINIDES

In Sees. II-IV, we have developed a model
for one impurity with two d and f virtual bound

states. Now we apply our results to the case
of pure actinides by making the crude approxima-
tion which considers the actinide metals as a col-
lection of such independent impurities. This ap-
proximation gives certainly a too simplified picture
for actinides where the band character of 6d and 5f
electrons is important, but it is not too bad, be-
cause in the study of magnetic properties the main
effect comes from the density of states.

To compare our theoretical results to experi-
mental data, we have to identify each actinide and

to choose the values of the different parameters,
in the following way.

(i) Each actinide is identified by its total number
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FIG. 9. Plot of g&, and g&, (full line)
and n&, and nz, (dashed line) vs Epy/U for
E& = I'„=10I'& and for two U values: U
= 0.5I'„(left-hand side) and U= 2I'„(right-
hand side). The effect of V&& is shown by
choosing three values: V„&=0, V+=U,
V~@=2U.
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N=5Z, n~, +VX,ny, . (35)

The number of conduction electrons or Vs elec-
trons is taken to be constant and equal to 2. So,
along the series, E«decreases regularly and N
increases continuously in order to fit the integer
values of each actinide, from I for actinium to 9
for berkelium. For each actinide, we can define
a spin magnetic moment given by its projection
along the z axis (in the Hartree-Fock approxima-
tion):

M 5 (l1$ lip ) + V (Bf Bf ) (36)

M is expressed in (36) in Bohr-magneton units.
In a similar way, we can define the total density

of Vs 6d and 5f electrons which increases along
the series from 3 in actinium to 11 in berkelium.
In our simplified model, which does not take into
account the orbital degeneracy, the total number of
d and f electrons is simply given by

of d and f states from the expressions (IV) by the
formula

(ii) As already deduced from the comparison
between Figs. 3 and 5, the ratio I'~/I'& can be taken
of order 10, I"& of order ~z or, o eV, and I"„of
order 2 or 3 eV in the actinide series, in order to
make the virtual-bound -state model consistent with
band parameters. In the following, we take I'&

=0. 2 eV and I'„=2 eV, and we have to notice that
changing slightly the l „and l

&
values around these

values does not affect the physical results, as
shown in Sec. IV.

(iii) Other parameters which can be chosen to-
gether are the position Eo~ of the 6d level and the
U value. %e had first assumed that the position of
the 6d level does not vary along the actinide series.
There are relatively many ways of determining Eo~
U by fitting some of the experimental data of acti-
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which have been previously made. This chosen
value of E«by fitting n„, gives the maximum of r,
just at uranium when V„& is large. The agreement
for the magnitude of the widths between Figs. 3 and
5 was obviously contained by definition in the
choice of I „and I"&, but the agreement for the po-
sition of the maximum width was not obvious and
makes the model consistent with the results of
Fig. 3.

Moreover, the chosen value of U= I'„ is satisfy-
ing because it leads to second-order transitions
even for V„&=0 and to a small d magnetic moment.
The choice of a constant U value along the series
is rather difficult to justify theoretically because
on one side the atomic U&& Coulomb integral in-
creases along the series and on the other side the
reduction of the atomic Coulomb repulsion by the
correlations is not well known and certainly not
constant along the series. ' However, in our
model we can also obtain the same physical re-
sults with a larger U value but then choosing a
larger V«value.

(iv) The last parameter is V~&, which is not
well known and is again estimated by comparison
with the band structure or experimental data. The
comparison between Figs. 3 and 5 had previously
indicated that V„& is certainly large in actinides
and especially for U, Np, and Pu, in order to ac-
count for the known experimentally d fhybridiza--
tion. So here, after having chosen U= I'~= 2 eV,
we take three typical values for V«. V„&=0, V+
=0. 8U, and V„f= U.

%'ith the preceding values of the parameters, we
have plotted in Fig. 11 the numbers n&, and n~, of
f and d electrons, the total number N of d and f
electrons given by (35), and the magnetic moment
M given by (36), as a function of Eo&.

In Fig. 11, we see that, without hybridization,
neptunium, plutonium, and americium would be
magnetic, and magnetism would appear just after
uranium, in a situation similar to that of rare
earths, where magnetism appears at the beginning
of the series. On the contrary, to account for the
experimental situation, i. e., the observed "delay"
in the appearance of magnetism which occurs only
for elements after americium, we have to assume
inside the present model a very strong d fhybrid--
ization V„&= U=2 eV.

However, in Fig. 11, for V„z= U, which is the
chosen value for the strong hybridization, the val-
ues found theoretically for the magnetic moments
are roughly 2p.~, to be compared to the Bp.~ ex-
perimental values for curium and berkelium.

Finally, Fig. 12 shows the plot of the different
deduced values for the density of states for one-spin
direction along the actinide series. The line la-
beled 1 gives the density of states deduced from the
electronic constant of the specific heat, as re-

viewed by Lee et al. ' The line labeled 2 gives the
density of states deduced from the magnetic sus-
ceptibility assuming no exchange-enhancement fac-
tor, as reviewed by Brodsky. The line labeled 3
gives the theoretical total density of states for one-
spin direction taken as the sum of the d and f den-
sity of states given by (3V) and of a Vs density of
states estimated to 0. 5 states/eV atom. In Fig.
12, we can see that an agreement is found between
the experimental curve 1 and the theoretical curve
3. The satisfactory agreement between lines 1 and

3 is a direct consequence of the choice of the I'~ and
I'& parameters resulting from the work of Kmetko
and Hill, but since the AP% band calculations are
inaccurate in describing the 5f bands, the agree-
ment of Fig. 12 gives a new information beyond the
work of Kmetko and Hill concerning the value of the
density of states at the Fermi level. The discrep-
ancy between .lines 1 and 3 on one side and line 2

on the other side can perhaps be attributed to an
exchange-enhancement effect with a factor of 2 or
3. Precise data on the density of states of plutoni-
um and of the elements which follow it would be in-
teresting for continuing the comparison with the
theoretical model.

VI. CONCLUSION

]i p(EF)
(states I eV atom)

10

Magnetism

I

Ac

I I I I I I I

Th Pa U Np Pu Am Cm Bk

FIG. 12. Plot of the total density of states at Fermi
level pl&) (in states/eV atom) for nonmagnetic actinides,
as explained in the text: 1) (&&) is deduced from specific-
heat data, 2) (0) from magnetic susceptibility data, 3) (0)
from theoretical calculation with same parameters as in
Fig. 11 and V@ = U.

In conclusion, the simple model of two hybridized
and nondegenerate d and f virtual bound states can
first be made consistent with previous band cal-
culations and with the experimental data, giving a
large density of states at the Fermi level and then
can account satisfactorily for the occurrence of
localized magnetism only in the middle of the se-
ries after americium. But the experimentally ob-
served change, from the d-f hybridized metals such
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as Pa, U, Np, and Pu to the magnetic rare earths
like metals such as Cm and Bk, which occurs
around Am is much more abrupt and rapid than the
slow theoretical change, as can be seen either in

the variation of the f bandwidth by comparison of
Figs. 3 and 5 or in the high values of the Cm and

Bk magnetic moments.
The theoretical too smooth change around ameri-

cium is directly connected to some of our approxi-
mations: the constancy of V«and U valus along
the series, and the Lorentzian shape of the d virtu-
al bound state. A less-smooth shape of the d den-
sity of states such as that of a narrow band without
tails or that of a, "hyperbolic" virtual bound state
which decreases much more rapidly than the Lor-
entzian function, would improve the physical pic-
ture of actinides.

The theoretical model does not consider the or-
bital degeneracy and the spin-orbit coupling. The
orbital degeneracy is important only for the de-
scription of magnetic elements. In the case of
magnetic metals (in the middle of the f series as
is gadolinium), curium has only a spin magnetic
moment well described by (36), but berkelium has
a spin and orbital magnetic moment which can be
described only by taking into account the orbital
degeneracy, in a model similar to that previously
used for rare earths. In the case of alloys with
actinides impurities, plutonium and neptunium im-
purities are often magnetic, and neptunium appears
generally more magnetic than plutonium, which is
clearly connected to the orbital degeneracy of the

5f level.
The spin-orbit coupling is very important phys-

ically for aetinides, where it is of the order of 1

eV. ' A spin-orbit coupling which is larger than
I'& splits the 5f level into a j= —, level which is filled
up till americium and a j= +& level which is filled
up after americium. Physically, the hybridization
is important for the first series corresponding to
the filling of the j= —,

' level, because the d character
is sufficiently large, while it becomes relatively
small in the second series, which is very close to
the rare-earth series. In this new approach, am-
ericium should not be magnetic, probably not be-
cause the density of states for the unique 5f level
is too small to satisfy the condition (32), but more
exactly because the j = —', level is almost completely
filled up and the other one almost empty. This
improvement of the model has been developed with
more details elsewhere, o and it leads to a better
agreement with the experimentally observed values
of the magnetic moments for curium and berkeli-
um.

A very natural application of our model is the
study of alloys with actinides impurities, and in
particular, as discussed elsewhere, the super-
conductivity of lanthanum-based alloys with acti-

nides impurities. The decrease of. the supercon-
ducting transition temperature of lanthanum with

small amounts of actinide impurities ' has been ex-
perimentally found to be very small for thorium
and uranium, very large for neptunium and plutoni-
um with a maximum at neptunium, and at last very
small for americium. So neptunium and plutonium
impurities are magnetic in lanthanum, which is
checked by the occurrence of a Kondo effect for
La-Pu alloys or also by magnetic moment experi-
ments, ' while the other impurities are not mag-
netic. This behavior can be qualitatively explained
by taking into account in a very simplified way the
spin-orbit coupling and by considering the filling
up of a j = -', level widely separated from the empty

j=~ level by a large spin orbit, which leads to a
nonmagnetic americium. Moreover, the effect of

V« is much smaller because the d character of
lanthanum is smaller than in pure actinides, which
leads to magnetic neptunium and plutonium impuri-
ties. So the superconductivity of lanthanum acti-
nide, which has already been reported briefly,
supports the two ideas of a large spin-orbit cou-
pling and of hybridization increasing with the d
character.

Therefore, the model presented here can account
for the "delay" in the occurrence of magnetism in
actinides, and further work is in progress in the
directions mentioned in the conclusion to improve
the description of actinides.
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APPENDIX: DETERMINATION OF ORDER OF
NONMAGNETIC-MAGNETIC TRANSITION

The order of the transition from the nonmagnetic
state to the magnetic state and also the F~& value
where magnetism appears are determined by the
calculation of the total energy of the system.

The energy of d and f electrons is

In the expression (Al), we have subtracted the
Coulomb repulsion, according to the Koopman the-
orem. But here we a,re studying the problem of one
actinide impurity in the presence of the conduction
band. So the system of f and d electrons localized
on the actinide impurity is not isolated and linked
to the system of conduction electrons. In order to
keep the total number of electrons constant, we
have to take into account the transfer of localized
electrons into the conduction band just at the Fermi
energy E~. So the thermodynamical potential to
be minimized is
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FIG. 13. Plot of the number off electrons Ng=np+gg, (top of the figure) and of the energy in arbitrary units (bottom
of the figure) for Epd = I'd = 101~, Vd&=0, and two different U values: U=0. 51d (on the left-hand side) and U= lOI'd (on the
right-hand side) vs E&&/U. The thin line corresponds to the nonmagnetic solution, the thick line to the magnetic solution,
A to the condition (32), B to the condition (33). On the left-hand side, there is a second-order transition in A, and on
the right-hand side there is a first-order transition in C for Epy= (Epy)p.

~ =~p —&Ep=Z, J ~ (E —EI, ) p, (E) dE —Un, n, ,
(A2)where

N=Zi, (np, +n~, ) . (A3)

Making the same calculation as previously done
for rare earths, "we obtain

8 =Epy Z nt +Epa Zns + Un n

Fi G——Z (n —sing@„)
a

- —r (n —singe~,
)

. (A4)I,
I"

2

In the expression (A4), we have introduced a
cutoff energy Q always much larger than I

&
and

I"&, corresponding to the bottom of the conduction
band, in order to avoid the unphysical divergence
due to the Lorentzian shape of the density of states
as previously explained. "

It is easy to show that, when Eo„and Eo& are both
varying, the total differential of 8, either obtained
directly from the derivation of the Hamiltonian (1)

itself or computed from the derivation of (A4), is
given by

d 8 = ny dED~+ nd dEod, (A5)

where n& and n„are, respectively, the number of
the f and d electrons:

y nyt+nf nd nd +n

So the result obtained for one virtual bound
state' is easily extended to the case of two virtual
bound states. If Eo„ is fixed and only E«variable,
the derivative of the total energy with respect to

Ep& is equal to the total number of f electrons:

dEOj fy

(Av)

So in order to have the transition from nonmag-
netism to magnetism, we have to plot n& and 8 as
a function of Ep& around the conditions (32) and (33)
as shown in Fig. 13 for typical parameters: Either
U is smaller than U, , there is no magnetic region
with two magnetic solutions, and the magnetic so-
lution is always the most stable one, the transition
is a second-order one given by the condition (32),
as in the Anderson case. Or U is larger than U~,
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the typical plot of nz and S is shown in Fig. 13 on
the right-hand side. The points A and B given,
respectively, by the conditions (32) and (33) cor-
respond to changes of the sense of variation for
E«and are turn points of the curve of 8 vs EQf.
The transition is a first-order one at the position
(EQf)0 shown in Fig. 13 and the two areas separated

by the nz (Eo&) curve and the value of (Eoz)0 are
equal in Fig. 13, as previously explained for rare-
earth metals.

The E«value of the point A for the second-order
transition and the (Eo&)0 value for the first-order
transition are described by the thin and thick lines,
respectively, in Figs. 6, 8, and 10.
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