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General equations for the elastic constants associated with a crystal model in which the
energy is given by two-body atom-atom interactions and volume-dependent terms are derived
for monatomic solids. It is shown that noncentral interactions which require a choice of initial
coordinate system do not necessarily give rise to an energy function which is invariant to
homogeneous rotations. For central two-body forces, generalized Cauchy relations are de-
fined. Explicit applications of these equations are given for short-ranged central forces in an
hcp lattice and noncentral forces in the fcc lattice.

I. INTRODUCTION

A considerable effort has been expended on lat-
tice-defect calculations using two-body interatomic
forces and computer-simulation techniques. Elas-
tic-constant data are commonly used as experi-
mental input for developing the interatomic poten-
tial for a particular material. The majority of
this work has been applied to cubic structures and
has used central forces to approximate atom-atom
interactions. The equations relating elastic con-
stants and interatomic potentials for these cases
are well known and of long standing although some
subtleties pertaining to these equations are not
well understood. In the present paper, the general
relations between elastic constants and two-body
forces are developed, and the detailed relations
are then given for central forces in hexagonal ma-
terials and for noncentral forces in fcc monatomic
materials.

II. THEORY

The bond energy per unit undeformed volume in
a monatomic crystal is given by a sum over two-
body atom-atom interactions:

E, = (1/2n 0) Z„y(r™), (1)

where 00 is the undeformed atomic volume, Q(r")
is the potential-energy function for two atoms sep-
arated by the vector r™,and the sum is taken over
the position vector of all lattice atoms relative to
an atom at the origin. For small displacements,
a Taylor expansion of E, yields

E,= „Z y(r")
i

+' '„u,"
2no 0 Br7 0

'

1 s'y(r™)
+ m m ug uI+''ym /yam

where x& is a Cartesian component of r, a is the
undeformed value of r, u is the displacement
vector u =r -a, and summation is implied by

repeated indices. The evaluation is at the unde-
formed lattice positions. For a homogeneous de-
formation, the nine strain parameters c.„=su,"/
ea, are constant, i. e., are independent of I, and

u; =a& n&, . Thus, for a homogeneous deformation,
1

Et,-A+ n, &A,&+ —,n, & n» A,f»+ ~ ~ ~

where
(3a)

(»)

1 ~ ey(r")
A]) ~ aq,

0 er) p
(Sc)

1 ~ 8'y(r")
A&par n ~ m m aj a&

~ano m ay~ er l 0
(Sd)

1 I 2+ —, n;) n„, (A,~~, +n P5;q 6», —nP5„5)0)+ ~ ~ ~,

with 5;& the Kronecker 5.
The resultant equilibrium conditions are

A&&+ nP5,.
&

——0

These conditions impose restrictions on the po-

The equilibrium conditions for a lattice with this
energy function are (BE/en, &)10=0, or, equivalent-

ly, that the energy is independent of terms linear
in the strain parameters. It is assumed that the
n&&'s are zero or of the same order of magnitude.
Unless A, &=0, this energy function does not satisfy
the equilibrium conditions. Equilibrium can be at-
tained under more general conditions by adding a
volume-dependent energy contribution E„=P(V/V0)",
where P is a constant, V is the deformed and Vp the
undeformed volume. As a function of the strain
parameters, E„is given by

1 2 1E„=P(1+nQ)g + 0 n cv( g cRgg
—

2 'nQ)y (Ygg + ' ' ' )

(4)

The total energy E= E~+E„ is then

E=A+ P+ n)) (A,~+ nP5)q)
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tential: The diagonal terms of A, ~ must be equal
and the off-diagonal terms must be zero. If the
potential-energy function and lattice symmetry are
such that these conditions are not fulfilled, a simple
volume-dependent energy contribution cannot lead
to equilibrium. If these conditions are satisfied,
Eq. (6) can be used to determine the value of P re-
quired for equilibrium.

The nine independent strain parameters n, &
can

be written as six symmetric parameters E,&= —,
'

&& (nr&+ cr&r) corresponding to pure deformation and
three antisymmetric Parameters yr&

= 2'(nr—
&
- cr&r)

corresponding to pure rotation. Since n, &
= &,&

+yri, Eq. (5) is

E=A+P+(eri+ yrr) (Arr+nP6ri)

1 2AE = —, &
1& (»1 (Ai», + n P6 1& 6», —nP6 i, 6»)+ ~ ~ ~

(1o)
For a system initially in equilibrium classical

elasticity theory yields
1&E= ~&&y&»C&»r+ ~ ~ ~,

where C,», is the elastic-constant tensor. Recent
papers pertaining to the thermodynamics of elas-
ticity theory ' indicate that the Lagrangian strain
parameter r)r&= er&+ r221» a—» (the symmetric finite-
strain parameters introduced by Murnaghan )
should be used rather than &,&, but, in the present
case, the same results are obtained with either
choice of deformation parameter. The elastic—
constant tensor is commonly given as

+ 2 (~ri+yrr) (&»1+y»r) C&yai =
~&

&g e~ai 0
(12)

x(Ari»r+n P6ri6»r —nP6rr 6»)+ ~ ~ ~ . (7)
2

Equilibrium with respect to pure rotation only re-
quires that A, &

be symmetric, while equilibrium
with respect to pure deformation leads to the con-
ditions given by Eq. (6).

With hE given by E -A —P, and with the equi-
librium conditions satisfied, Eq. (7) becomes

nE = 2 Erg »»1 (Ar»i+ rr P6ri 6»r —rrP6rr 6»)
j. 2

1+ 2 (~is y» 1 + yu ~» r) Ar» r

+ —,
'

y„y», (Ar»r nP6r r 6»—)+ ~ . (8)

The energy will be independent of pure rotations
only if the sum of the last two terms is zero. This
requirement (which is discussed below) places a
condition on the potential that

Ai»r-A&r»1-—nP(6«61» —6r»6rr) . (9)

The question arises as to whether the condition of
invariance of the energy function to pure rotation
should be applied. The forces which produce an in-
teratomic potential in a crystal are fixed to the lat-
tice structure. Thus, when the lattice rotates as
a whole, physically the interactions rotate with the
lattice. The energy function in the present cal-
culation does not allow for this. The lattice is ro-
tated against the noncentral forces fixed at the ini-
tial coordinate frame. Therefore, the use of non-
central interactions implies that the noncentral po-
tential must be rotated with the lattice for a homo-
geneous rotation, and that the noncentral interac-
tions used for a given lattice orientation must only
be applied to situations in which the homogeneous
deformation does not produce rotation of the lat-
tice as a whole. In the present development, this
means that only pure deformation is considered,
i. e., yr&=0, ar&= r2r&= n&r, and Eq. (9) is not aP-
plied. Equation (8) is then simplified to

The potential-energy function is related to the
elastic-constant tensor by setting Eqs. (10) and

(11) equal. With the above discussion in mind, and
with C,», = C», &= Cz,» and A,», =A», &, this equali-
ty leads to

j. /
Cr»r = 4 (Ai»r+ rrr»+Air»r + Arir»)

+n P5;i 6»i ——,
' nP(6rr 6»+61» 6rr) . (13)

If the conditions given by Eq. (9) hold, Eq. (13) re-
duces to

2
C&p„=A&yar+n P5&y5~, -nP5&r &» ~ (14)

This result, which appears to be a direct conse-
quence of equating Eqs. (10) and (11), is valid only
in the case in which the energy equation is inde-
pendent of pure rotations.

These equations can be readily extended to the
situation where there are several contributions to
the volume dependence, i. e., E„=g, P, (V/Vo)"».
The equilibrium conditions are

Air+ 6riZ, n, P4= 0,
and the elastic constants are given by

1/
Cr»r = a4'Ar»r +Arir»+Air»r +Arri»)

+Z n, , 6rr6» »Zr, rr P (6;16»+6 6 r)». r(r6)
These equations will be used in the examples in
Sec. III.

and it would appear that this result follows directly
from Eq. (11). This relation is misleading, how-
ever, and considerable care must be exercised in
the use of Eqs. (11) and (12). The difficulty arises
from the symmetry of the strain parameters, i. e.,
there are only six independent strain parameters,
not nine, and q,&= e&, For example,

8 AE
(C1212+ C1221+ C2121+ C2112)

8&12 0
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III. CENTRAL POTENTIAL A12=A23 =A31= 0 (26b)
In the case of a central potential p = Q(r),

Bp r~ 8$
egg x el

rsr, ~(sy 1 By 1 aq (18)~er2 y e~ "X 8~

With the notation p'—:[sp(r )/sr ]lo and p
—= [say(rm)/sr 2] I» it follows that

where b is the lattice constant (a is the nearest-
neighbor distance) and the equilibrium condition is

Q2Zn P =-——y'.
0 0 a0

The subscript denoting evaluation at the initial state
is dropped. The equations for the bulk modulus
B= ', (C„-+2C„)and the shears C=C44 and C =-',. (Cn

C12) are

1
A&&=2& Z m Pma7a7,

0 m
(19)

Asyar= i mrna 4m —
m 4m agan aa a7a

B= (b /300) [Q +(1/a) Q ]+K,n, P, ,

C = (b'/4n, ) [y" + (3/a) y'],

C' = (b /8Q ) [g"+ (1/a) p'] .

(28a)

(28b)

(28c)

+5~, —Q a; a~ . (20)

Then, with the definition

B)/k' 2g / mh8 4m m 4 a~ ay ay a~
0 a

(21)
we have

Aifll +igkl+ ~pl Ail' '

The matrix B,», is symmetric with respect to all
changes of indices, and with the equilibrium condi-
tion Az ———g, n, P, b+, the elastic constants are

Y 2C ga l
= &igal+~a +e Pa ~&) &al

-Z, n P (5, , 5~ +b(~5)() . (23)

As a generalization of the Cauchy conditions,

C,y» —C&», =Z, n, (n, + 1) Pa (5&y bar

(24)
or in Voigt notation,

«» = Csq —C55 = Cxa —Cs6 = Z, n, (n, + 1)P, ,
(25)

C14 —C5e= C25 —Ce4 = Cse —C45= 0 .
Thomasv has pointed out that, with a model similar
to that used here, the commonly accepted rela-
tion C12-C44= 2P does not necessarily hold for
short-ranged forces in fcc and bcc materials. The
requirement for this relation to hol6 for a material
with central forces is that there be only one vol-
ume-dependent term with n = 1. These equations
can be applied directly to obtain the relations be-
tween elastic constants and a central potential in
any lattice structure.

A. fcc

(1/.) y'= (Il,/b') (2C' —C),

y' = (n, /b') (vc —8c'),
and the volume-dependent terms are given by

Z n, P, =C —2C

Zn, P, =B —2C+q—C

If there is just one volume term,

P= (1/n) (C -2C')

(29a)

(29b)

(3Oa)

(3ob)

(31)

and there is a compatibility equation for the elas-
tic constants,

n(C —2C') = B —2C+ —C' .
If there are two volume terms,

B —2C+ g C ng(c —2C )jP1-
n~(ng —ng) ng(ng —n~)

B—2C+3—C' ng(c —2C )P =
n, (n, —n, ) n, (n, -ng)

B. hcp

I.et x1 be the nearest-neighbor distance between
atoms in different basal planes, x2 the nearest-
neighbor distance between atoms in a basal plane,
and (8$/Br) I „,= P;. If these are the only interac-
tions considered,

The two shears are independent of the volume con-
tribution, and the common form for 8 is obtained
for a single volume term with n= 1. The two
shears are sufficient to determine the two potential
parameters &f&

' and (1/a) P:

For the well-known case of a central potential
between nearest neighbors in an fcc lattice,

a 1 I 3 pAn=Au=2- —4i+ —42 ~

0 +1 +2
(34a)

Q2
An ——Apg ——A33 = ——

Q
0 a (28a)

3c2 1
A 33 4g ~ 1

0 1
(34b)
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A12=A23=A31= 0 .
For equilibrium,

48 (bg2 3 ) 41

(34c)

(86)

This condition is satisfied directly for an ideal c/a
ratio, but applies a constraint on the potential for
nonideal ratios. The elastic constants are

1 p 203(sc —2g ) 2 2 I, [(Sc —2a)Cb —4~ Cb] ~2%a c (c —2a )
(39b)

2 2 a [2(3c+2a)Cb —(Sc +10a)Cbl ~9c c —2a
(39c)

„[36c'(c'—2aa) C,
2VQ C (C -2Q J

C11=8~ ~y 1 1 +~

+Z n', P, —2Z n, P, , (S6a)

a4 1 („1
C»-24'

+ 4aa(9c —2a ) Cb- (9c —10a ) (Sc + 2a ) Cb] .
(89d)

The volume-dependent terms are related by

)
[4

(40a)

C« = 2 (C11 - C») i (86c)

5S&P+~8+ P+= Ba 3 Ca= B& —3 Cy —Cq,
(40b)

where the bulk moduli are defined by B,= 3 (C11
+ 2C12) and Bb = 3 (C33+ C31). If there is just one
volume term,

GC 1 II 1 I ~ 2
C33=1 p $1 ——$1 Z+n P, —~n P

0 1 +1
(86d)

QC 1 II 12 2
2

C31=8& ~ $1 ——
Q1 +Z n, P, ,

0 +1 +2
(36e)

QC 1 II 1
C4=

& 2 $1- $1 -QnP, ,
SAP r1 y'1

and the Cauchy condition in this case gives
3 1

C31 C44 C12 C66 or C31 C44 2 C12 —~ C11 .
(SV)

In an analogous manner to the fcc case, the shear
parameters C, =C«=-,'(C,1

—C»), C, =C44, and C,
= z(C33 C31) are defined, and are given by

P =
2 2 [4a'Ci —(3c —2a )C,]Sn c —2e) (41)

and there is a compatibility equation for the elastic
constants in addition to that arising from the
Cauchy condition:

3( 2 2 2)
[4a C,

' —(3c' —2a)C, ]

I= B, —
3 C, + 3Cg -2Cg

=B~+2C~ -3 C' .I
(42)

The equality on the right-hand side of the two ex-
pressions in Eqs. (40b) and (42) expresses the re-
lation imposed by the Cauchy condition.

For an ideal c/a ratio, these relations simplify
a 1, 3(c +aa) 1

a 240 ya 1 +
432 r 1

+~ (02+-', Aa), (88a)
r2

to

Q

12fl i ~''
Op

Q' ( II 5
C =Sg I

01+
ap I,

(48a)

(48b)

Q C 1 II 3C +2Q 1 I
b 8g ~Y 41+ 2 2 41

0 +1 Q
(38b)

Q (II 3 I
2

~

4i+ 4i)n, (
(48e)

(Sc —2a )c 1 (» Sc +10a 1

(38c)
With the equilibrium conditions and these relations,
the potential parameters are determined, and,
again as in the fcc case, are independent of the
volume terms:

1 I AP I, (3C, -2C,),
2Q

2 (10Cb —9Cb),
2Q

Z n, P, =2C,'-SC, ,

(44a)

(44b)

(46a)

1 I 400 2 2 2

r1 9c (c —2a )
[(3c —2a )Cb -4a Cb),

(89a)

Z n, P, =B,—3+ C, +3Cb —2Cb= B4+2Cb —3 Cb ..
(46b)
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Z=(1/n) (2C,'-3C, )

and the compatibility equation is

(46)

n(2C5 —SC5) = 8, -+2C, + 3C5 —2C5

In the case of just one volume term and an ideal
c/a ratio,

tions. A noncentral potential of the form

y(r) = p(5 ) + q(r) 5s(8, y) (48)

has been used in several point-defect calculations
for cubic materials'" where w(8, Q) is the cubic
harmonic,

=Bb+2Cb —
3 Cb . (47)

X +g +8
Qf(8) Q)= 4 =S —

55
(49)

IV. NONCENTRAL POTENTIAL

Very little has been reported in the literature
pertaining to the use of noncentral interactions in
the construction of potentials for defect calcula-

This potential is discussed in the present section.
In the following paragraphs, summation is not

implied by repeated indices. Differentiation of the
noncentral potential yields

8$ rq t'BP Bq Bs= —
i

—+w —+qBr r ( By' Br Br (50a)

8 Q ver& 8 p Bq 1 Bp Bq 1 (Bp Bq Bs Bs 1 Bq 82s
g +gl p

— +sU +6g) +% + rg +y' —+
Br&8r, r' Br Br r Br Br ' r ~I, Br Br ~ Br, '

Br& r Br Br&Br,

(50b)
wits 3

Bs 4r~ 4r&s
Bry

(51a)

8 s 12r5 4s 165~r,(5 q+r, ) 24rqr, s
By By r4 ~l-ra yl— r6 (51 )

and with the same notation for evaluated derivatives with respect to r as in the discussion of the central
potential,

1 ~ 1 4q &F m
A4y= „Z —

m (Pm+COmqm)+, m, 2 m Sm
200 a ',a ~i J

(52)

ir tI
I

&i~ s=E, „„(p"+M„p'„')-—„(p'„+w p'„& —p~ ™s,)a) apapaap,

1 & p 4q„ 1 a~ 1 /~a"
+ m (Pm+mqm)+ I m&Z: m +

I m
—Sm

)
Byl a) a2a

+4 —„„,
~

', ," a4" a, a,"a", +, „)", [&(a,")'--2'(a2)'-2(a5")']By)) (53)
(a

The second term in the summation for A,», is —28»(A, 2+A„,), so that, with the equilibrium conditions and
with f (r) = p(r) + co(8, p) I 5 q(r),

q' q (aP)'+ (a", )' ~q' 4q„
A4fpfA~ t~ p m%2 fm m fm 6sm m+24Sm 1 m&2+4 I m&2 m I m)2 a4 ap a2 a7

~a ~ ai a ja

+~ ~~ 5&zip(aq) — (ap) — (a ) Iapa I. -En, p 5+llzz . (m)

The general form for the elastic constants is then

1 ~ 1 „1, „2q (a";) +(ap) +(a2) +(a", )
Clf21 n ~ p m&2 fm m fm a4aga2a~+ m™ ~ ~

I m)2
—4Sm a4a&a&a~a a (a
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+ „2 3(5,~+5„+5»+5»)+24s„—8~& „2" ' a)a", a/a",Cm t'(a)) + (aq ) + (ap) + (a", )
a"

~„"3(5,~a& a", [(az)~+(a", ) ]+5, , az a~ [(a&) +(a", ) ]+5&~a", a)[(a", ) + (ap) ]

+ 5» a,"a~ [(aP) + (a ) I )I +2 n, P, 5, & 5», —5 n, P, (il f,

Ilgwu

llj I!J J)
a

(55}

For the case of a noncentral potential between
nearest neighbors in a fcc lattice

b
+11 = +M = +33 = —f',

np

A(2 = A23 = Aqq = 0,

(56a)

(56b)

b' 1Zn, P, = ———f' . (57)
Qp a

The subscript denoting evaluation at the initial
state is dropped. The equations for the bulk modu-
lus B= ~(C„+2C,3) and the two shears C= C44 and

1C'= 2(C,g
—C,2) are5, 1 i 8B = — f"——f'

i + Q n, P, , (58a)
30p a )

2 3.-f')~ —
n,

C'= f"+ —f' i+ . (58c)
800 a ) Qo

'

These equations are very similar to those from
the central-potential case [Eq. (28)]. The depen-
dence on the radial factor f is the same here as for
the central potential P, the shears are independent
of the volume contribution, and the dependence of
the bulk modulus on the volume contribution is the
same. The noncentral terms do not enter into the
equation for the bulk modulus, but do affect the
shears, as would be expected.

(58b)

V. DISCUSSION

Equations have been derived which can be applied
to a monatomic crystal of any symmetry to obtain

where 5 is the lattice constant (a is the nearest-
neighbor distance), and the equilibrium condition is

the relations between elastic constants and poten-
tial-energy functions for a model which contains
two-body interactions and arbitrary volume depen-
dence. The primary results are given by Eqs.
(15) and (16), which express an equilibrium con-
dition which imposes a constraint on the potential,
and the explicit relationship between the elastic
constants, the potential-energy function (which may
be central or noncentral), and the volume-depen-
dent terms. Examples for central and noncentral
potentials in a fcc lattice and central potentials in

a hcp lattice are given.
Wallace' has recently presented a detailed dis-

cussion of the thermoelasticity of stressed materi-
als including a review of various expansions which
have been used for the energy density in a stressed
elastic media. The present treatment, which is
similar to that given by Huang, ' is not as general
as the theory developed by Wallace, but the defining
equations are consistent with those given by Wallace
at zero initial stress and proposed earlier by
Brugger. The basic difference in the present
treatment is that rotational-invariance conditions
are not applied to the energy function arising from
bond interactions. It should be emphasized that,
for potentials which do give rise to rotational
invariance of the energy function, the same results
are obtained here as if the rotational-invariance
condition were applied. The only difference exists
for noncentral interactions which require a choice
of initial coordinate system.
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A study of the temperature dependence of the position, shape, and width of the submilli-
meter cyclotron-resonance absorption line has provided data which have been compared with
the predictions of several theoretical models. The data favor the valence-band structure of
tellurium as proposed by Weiler. This shows that the Landau levels are not parallel in the
k» direction. It also shows that the transitions between Landau levels at low temperature oc-
cur at the valence-band maximum on the camel back and not at k»=0. Previous experiments,
two other theoretical models, and previous attempts to fit band parameters are reviewed and
evaluated.

I. INTRODUCTION

The structure of the upper valence band of tel-
lurium has a camel-back shape for its E(k,) de-
pendence as first proposed by Betbeder-Matibet
and Hulin~ and rigorously derived by Doi, Nakao,
and Kamimura~ using the k p method. Attempts
to determine the valence-band parameters of the
camel-back model have generated a number of dif-
ferent theoretical approaches which differ in their
higher-order terms and also in the values of their
constants. It was not possible to decide from the
available experimental data which of the models
is the most realistic.

Therefore, the principal objective of the present
experiments was to carry out a careful study of
submillimeter cyclotron resonance as a function
of temperature and to compare the results with the
temperature dependence predicted by each of the
models. We measured position, width, and shape
of the cyclotron-resonance line at temperatures
from a few degrees to 120 K. Consistent results
could only be obtained by eliminating extraneous
influences which had been present in previous ex-
periments ~ owing to specimens of insufficient
purity. So we selected very pure, Czochralski-
grown specimens in which impurity absorption and
changes in the transmission, caused by a variation

of the refractive index with the magnetic field, are
practically absent and therefore do not interfere
with the study of the cyclotron absorption line.
Our spectrum therefore consisted of a single ab-
sorption line when the magnetic field was parallel
to the trigonal axis of the crystal. Thus we were
able to obtain precise data and to compare these
data with the theoretical predictions. The ad-
ditional details of the experimental conditions and
results are described in Secs. II and GI.

The comparison of our low-temperature ex-
perimental results with three theoretical approaches
described in Secs. IV and V does not favor model
W29 nearly as well as model W1. We conclude
that for the magnetic field parallel to the c axis of
the crystal the energy separation of the Landau
levels is not constant, but a function of the wave
vector parallel to the magnetic field; i.e. , the
Landau levels are not equidistant as a function of

Both model W1 and model J' predict non-

equidistant Landau levels but the quantitative com-
parison favors model W1, which seems to be the
most realistic one so far. However, further im-
provements in the theoretical approach are de-
sirable.

From our detailed calculations we can also as-
sert that the transitions between Landau levels at
low temperatures occur at the valence-band maxi-


