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The electronic thermal resistivity of metals can be empirically split into two parts, one
of which, the so-called "elastic" part, is directly related to the electrical resistivity through
the Wiedemann-Franz-Lorenz law, and thus is of no particular interest. The remainder is
the "inelastic" part which is the only part that needs investigation in conjunction with the
electrical resistivity in any study of the transport properties. Such a split of the thermal
resistivity is very useful at high temperatures where the inelastic part becomes independent of
the lattice dynamics and, for spherical Fermi surfaces, the contributions to this resistivity
of both normal and umklapp processes can be evaluated explicitly in a simple fashion. The
comparison of such calculations with experimental results, which we undertake for the alkali
and noble metals, forms a simple and convenient test of the electron-phonon interaction.

I. INTRODUCTION

Recent calculations of the electrical resistivity
of metals, ' ' p, show very satisfactory agreement
with experimental values. The same cannot be
said about the calculations of the thermal resistiv-
ity W which display serious deviations through-
out the whole temperature range investigated. ~ No
doubt part of the deviation, at low temperatures,
is due to the greater complexity in the calcula-
tions of W, where, besides the usual difficulties
connected with electron and lattice dynamics and
electron-phonon interaction, one is faced with the
further problem that the variational solution of
the Boltzmann equation obtained with the conventional
trial function does not approach the correct solu-
tion of that equation. This is not the case at high
temperatures, however, and in that region it is
difficult to guess why the calculated W is in error
by a much larger factor than the calculated p.
That is the problem which we will investigate here
in detail.

Unlike all previous calculations, we shall not
deal with the total thermal resistivity, but only
with the "inelastic" or "vertical" part W„, that is,
with that part which is not directly computable from
p through the Wiedemann- Franz relationship with

the standard Lorenz number. Obviously, that is
the only part which can contain any new features
not already covered in p. Such a separation is of
no value at low temperatures, where W„equals W.
At high temperatures, W„ is only a small part of
W, vanishing in the limit. In this high-tempera-
ture limit the separation proves very useful, for,
as we shall show, W„here becomes independent
of the lattice dynamics. As a consequence, one
can analytically reduce the calculation to a rela-
tively simple form: For spherical Fermi surfaces,
W„can be essentially expressed as a single in-
tegral over the pseudopotential used for the elec-
tron-phonon interaction, both for normal and um-
klapp scattering. Since in this temperature range
the variational solutions with the standard trial
functions are valid, one can readily calculate W„
with an accuracy limited only by the applicability
of the pseudopotential; as such, our calculations
form a simple and convenient test of the latter.

In the following, we will first develop very brief-
ly the theory of the high-temperature limit of W„.
We will then compare our calculations to the ex-
perimental values for the alkali metals and, on an
exploratory basis, to the noble metals; as it turns
out, the problem is not one of a basic discrepancy
between theory and experiment, but simply one of
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choice of a suitable potential to reproduce the ex-
perimental results. %e will conclude the paper
with a simple-minded look at the low-temperature
limit of W„, where a significant discrepancy be-
tween theory and experiment appears to exist; this
area should certainly be subjected to detailed and
precise calculations.

II. THEORY OF HIGH-TEMPERATURE LIMIT OF fV„

In this section we consider only the electronic
part of the thermal resistivity, and limit ourselves
to pure electron-phonon scattering. As mentioned

above, we define the inelastic part of W, W„, as
that part which has no correspondence with p;

8'„= W- p/I pT,

where T is the absolute temperature and Jo the
standard Lorenz number —,

'
(mkz/e)z, kz being the

Boltzmann constant and e the electronic charge.
Using the conventional trial functions for the vari-
ational solution of the Boltzmann equation, k.u for
p and (E-Ez)k u for W, where k is the electron
wave vector and E its energy, E~ the Fermi ener-
gy, and u a unit vector in the direction of the ap-
plied field, W„ is given by

27K + ~

~

[(K ~ u) +3(k, ~ u)(fez ~ u)]z (K ~ e) C (K)do, doz

2m MNk k„a T (e'- 1)(1—e ')v, vz
(2)

Here M is the mass of the ion; N the number of
cells per unit volume; k~ the Fermi wave vector;
e the velocity of the electron on the Fermi surface;
a the Fermi surface area; z= hv/kzT, v being the
frequency of the scattering phonon; and K=k~-. k&

= q a g is the scattering vector, g being the recipro-
cal-lattice vector and q the phonon wave vector.
The subscripts 1 and 2 denote the original and final
s'ate of the electron. The summation over p is
over the three possible polarizations e~ of the phon-
on. C(K) is the pseudopotential used in the elec-
tron-phonon inter action.

At low temperatures, W„dominates W; in that
region it is proportional to T~, but its magnitude is
given incorrectly by Eq. (2).4' As the tempera-
ture increases, 8'„goes through a maximum and
then decreases monotonically, approaching zero in
the limit of high temperatures as T ~. Our in-
terest lies in this last region, for here not only is
Eq. (2) valid to order (mkzT/E„), butfurthermore
it becomes independent of lattice dynamics: This
is readily seen, for (e*—1)(1-e ') -zz as T be-
comes large. Under these circumstances Eq. (2)
can be relatively easily evaluated, both for nor-
mal (N) and umklapp (II) scattering processes, with
only the single assumption of a spherical Fermi
surface.

The reduction of Eq. (2) proceeds by standard
steps. 6 For both N and Uprocesses, the summa-
tion over P can be explicitly performed, and gives
the same result: g~ (e~ ~ K)z=4kzzuz, where u
= sin zQ =K/2k~, 0 being the scattering angle. For
a spherical Fermi surface the integrals, upon
transformation of coordinates, can be expressed
in the following form:

W„=A [ f ' V (u) F((((u) du+ Q~ f V (u) Ev(u) du],
(Sa)

where

S(((m')'" ((( )' (A=
2z ( kz aMT

V(u) = SC(E)/2Ep, (3c)

where a is the cube root of the unit cell. The
first part of Eq. (Sa) describes the resistance due
to N processes, the second thatdueto Uprocesses.
u, depends on the Brillouin zone and uz=g/4k~.
The summation over g means a sum over the pos-
sible types of reciprocal-lattice vectors, and not
over the total. number of g'»f any type, that sum
being already incorporated into E~. Thus, for
both the fcc and the bcc lattices the sum extends
over two terms, covering the directions [100)
and [111]for the former, and [100]and [110]for
the latter.

E„and E~ can be viewed as geometrical weight-
ing factors of the (reduced) pseudopotential V, and
are given explicitly by

F~(u) = (96/v) u (3-2u ) f [1 —cosz„(Q)] dQ,

(4)

Fv(u) = (12/v)I~u (3-2u ) f [1—cosz„(Q)] dP.
(5)

g is the angle between E and the nearest g; z,
its maximum value, is a function of P, the angle
of rotation about that g (see Fig. 1). I~= 1,+s, and 2

for g's in the directions [100], [111], and [110],
respectively. The integration in (4) has to be
carried out over the irreducible ~4, th of the cor-
responding Brillouin zone, and in (5) over that
part of the Bril.louin zone which can contribute to
U scattering for any particular g. It should be
noted that no geometrical approximations have
been made in deriving Eqs. (3)-(5), whichis cer-
tainly not the case in some of the previously pub-
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nature, decreases in one part being made up by in-
creases in another, whereas the V's tend to differ
monotonically in u, and produce quite significant
changes in the calculated 5'„, as will be shown in
Sec. III.

III. COMPARISON WITH EXPERIMENTAL RESULTS

A. Alkali Metals

FIG. 1. Geometry for
normal Q) and umklapp
(U) scattering.

The obvious check of our calculations is through
comparison with the observed resistivities of the
alkali metals, as these satisfy best the require-

IO

lished calculations. -' The applicability of our
equations is only limited by the assumption of a
spherical Fermi surface, and of the cancellation
of the terms in z. From a practical point of view,
the latter assumption is valid whenever the ex-
perimental 8'„displays a:T ~ dependence.

In the past, many of the calcul. ations of trans-
port properties were done by integration not over
the Brillouin zone, but over the equivalent Wig-
ner-Seitz sphere, with a maximum vector Q . For
such a scheme, both F„and F~ can be put into
analytical form:

0

8
0.2 0.4 0.6 08 U IO

F~(u) = 8u' (3 —2u~), (4a)

E (u) = 6I u (3 —2u )[Q —(G —2u) ]/G, (5a)

where G=g/&~ and Q=Q„/k~. Here, u, = —,'Q and

~ = —,
'

(G —Q). Although the E's calculated for the
Wigner-Seitz sphere differ considerably from those
for the Brillouin zone (Fig. 2), it turns out that
upon integration to yield W„ the final results differ
only marginally. For the two test cases that we
have calculated, one for a bcc lattice (Na) and one
for a fcc lattice (Au), the W„'s differed at most
by 2. 4'%%uq (Table I). Such variations are negligible
when compared to the uncertainties in the poten-
tials V, or even in the experimental data for W„.
One may conclude therefore that for most cases
the much simpler equations (4a) and (5a) are per-

fectlyy

adequate.
Fortunately, the insensitivity of 5"„to variations

in the E's is not coupled with an equal insensitivity
to variations in the potentials V. The difference
between the two responses is probably due to the
fact that the variations in the F's are of a balanced

0
0 0.2 0.4 0.6 0.8 U I,O

FIG. 2. Geometrical weighting factors F(g) calculated
for the bcc and fcc structures for the proper Brillouin
zones (solid lines) and for the Wigner-Seitz spheres
(broken lines). The labels N and U show the curves ap-
propriate to normal and umklapp scattering, the latter
depending upon the orientation of the reciprocal-lattice
vectors. By coincidence, the U[100] curve for the bcc
lattice appears as an extension of the N curve in the
Brillouin-zone scheme; in the Wigner-Seitz scheme, this
curve is barely visible in the lower-right-hand corner.
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TABLE I. Calculated values of 8'„ in the high-temperature l.imit. A or 8 denotes the use of the Ashcroft or Bardeen
potentials; W-S or Br denotes integration over the Wigner-Seitz sphere or over the Brillouin zone. Note that for all
cases the resistance due to normal processes exceeds that due to umklapp processes.

E lement Potential
f~o{rs) E0]

(eV) Zone Normal [looj

10-'e„r ' (cm K'/W)
Umklapp

P 10j Total
Total
calc. Obs.

Na
Na
Na
Na
Na
K
K
Rb
Cu

Ag
Ag
Au
Au

A
A
B
8
8
A
8
A
8
8
8
8
8

l.45
1.45
0.09

0.02

1.3
1.1
2.3
3.7
3.7

W-S
81
W-S
Br
W-S
W-S
W-S
W-S
W-S
W-S
W-S
W-S
Br

0.12437
0.12267
0.17708
0.17494
0.12181
0.06217
0.06231
0.030 05
0.063 86
0.036 30
0.045 65
0.031 87
0.03133

0.000 00
0.000 04
0.000 02
0.000 54

0.000 00
0.000 00
0.000 00
0.004 55
0.002 86
0.004 91
0.004 63
0.005 67

0.025 20
0.015 41
0.024 23
0.021 40
0.020 95

0.044 66
0.042 33
0.123 93
0.123 37

0.021 68
0.030 06
0.014 16

0.04466
0.042 37
0.123 95
0.123 91
0.054 47
0.021 68
0.030 06
0.01416
0.029 75
0.018 27
0.029 14
0.026 03
0.026 62

0.16903
0.16505
0.30102
0.298 85
0.176 28
0.083 84
0.09238
0.044 21
0.093 61
0.054 57
0.074 79
0.057 90
0.057 95

0.30
0.30
0.30
0.30
0.30
0.1
0.1
0.01(~)
0.21
0.11
0.11
0.062
0.062

ment of a spherical Fermi surface. Unfortunately,
barring Na, experimental results for these metals
in their high-temperature ranges are scarce and
not too reliable; for K, Rb, and Cs we have found

only one source, and the scatter of the experimen-
tal points for the latter two metals precludes any
useful comparisons.

Figure 4 illustrates W„ for Na and K. For the for-
mer, we have used the results of Herman and Mac-
Donald, "MacDonald et al. ,

' and Cook et al . '; for the
latter those of MacDonald et al. '~ In computing 8'„for
Na we have subtracted a phonon contribution esti-
mated on the basis of the Leibfried and Schlomann
equation from the total thermal conductivity. "
For Na we show the results in the whole tempera-
ture range from 10 to 350K; for K only in the up-
per part.

We have used two pseudopotentials for our cal-
culation: that of Ashcroft" and that of Bardeen. '6

The Ashcroft potential is completely specified; the
Bardeen potential contains one parameter [Vo(r, )
—Eot about which there is some lack of unanimity
in the published literature. Bardeen suggests that
for the alkali metals this is about zero, and using
his prescription and the calculations of Ham, '
we have evaluated it as 0.OS, 0. 02, and 0. 08 eV
for Na, K, and Rb, respectively, valueswhich are
essentially in agreement with those used recently
by other authors. a'3 Some of the potentials that
we have used are shown in Fig. 3, and the results
of our calculations are given in Table I and are also
illustrated in Fig. 4.

For Na, the calculated values for the above po-
tentials underestimate the observed values by a
substantial amount. To get any agreement between
the two for the Bardeen potential, [Vo(r,) —Eo]
has to be increased to about 1.45 eV, a value very

gy Na

Na

-0.2

-0.4

-0.6

-0.8

-1.0
I s I

0.2 0.4 0.6
I s I

0.8 u l.0

FIG. 3. Reduced pseudopotentials V(g) used in the
calculations.

close to the 1.3 eV given for this parameter by
Mott and Jones, '8 and used in the calculations of
Ziman. ' Exact comparison here is difficult be-
cause of the sudden upturn in the observed 8', for
temperatures in excess of 260 K, which Cook
et al. have tentatively attributed to a contribution
from electron-electron scatter ing.

For K, both the Ashcroft and Bardeen potentials
fit reasonably well, in agreement with the detailed
calculations of p at low temperatures by Trofi-
menkoff and Ekin, ~ which, for these two potentials,
bracketed the experimental results. The agree-
ment may be somewhat spurious, for we suspect
that the results of MacDonald et al. yield too low
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I.O

0.3

O.IO
E
O

0.05
(

0.03

IO

I

30 50 100
T(K)

U

300 50 IOO

FIG. 4. Comparison of the experimental and calculated
8"„for the alkali metals. The experimental results are
taken from Refs. 11 (crossed dots), 12 (circles), and 13
(dots) for Na, and from Ref. 12 for K. The straightlines
are our calculated values, and solid and broken lines for
the Bardeen and Ashcroft pseudopotentials; for Na, we
show the total resistivities (T) and their normal (N) and
umklapp (U) components. For comparison, we also show
the curves obtained from the Bloch-Gruneisen equation
(B-G), and from the work of Sondheimer (8) and Klemens
(Kl), for a characteristic temperature of 260 K.

The extension of our calculations to the noble
metals is by way of an exploration, for two factors
affect the applicability of our equations to these
metals: (i) the nonsphericity of their Fermi sur-
faces, which at best make our formulas only ap-
proximate; and (ii) the intersection of these sur-
faces with the Brillouin zones, which may in-
crease the contribution of U processes to the re-
sistivity: This certainly has a large effect on the

a W„at high temperatures, and to check this out
we are currently undertaking high-temperature
measurements on K similar to those that we have
done for Na.

For Hb, both potentials overestimate the resis-
tivity by a factor of about 4 (Table I); however,
here we have absol. utely no confidence in the high-
temperature W„data.

For purposes of comparison, we show in Fig. 4
W„calculated for Na by the formulas of Klemens,
Bloch-Gruneisen, ' and Sondheimer' (third-varia-
tional solution), on the assumption of a Debye tem-
perature 0 -260 K, a rough estimate given for
longitudinal phonons by Blackman. The apparent-
ly good agreement between Klemens's values and
the low-temperature results will be discussed brief-
ly in Sec. IV.

B. Noble Metals

low-temperature p,
0 but whether it is important

at high temperatures, where only large-angle scat-
tering occurs, is a moot point —our guess is that it
is not significant.

The experimental results for the noble metals
are of good precision. We have used those of Moore
et al. ' and of Laubitz for Cu, those of Matsumura
and Laubitz~' and of Laubitz~4 for Ag, and those of
White and Woods, ' Cook and van der Meer, ~'" and
Laubitz~4 for Au. As before, we have subtracted
the phonon conductivities from the total thermal
conductivities before calculating W„; these were
takenfromWhite~ andfromWhite et al. 37 Fromthe
high-temperature results of Laubitz we have further
subtracted the estimated electron-electron scatter-
ing contr ibution. ~8 The results are shown in Fig. 5.

Only the Bardeen pseudopotential was tried for
these metals. The parameter [Vo(r,)- Eo] has
been taken directly from Bardeen: Values of 1.3,
1.1, and 3.7 eV for Cu, Ag, and Au, with the po-
tential for Au illustrated in Fig. 3. The calculated
results (Table I, Fig. 5) show good agreement for
Au, and poor agreement for both Cu and Ag. To
obtain a good fit for the latter two, the potentials
would have to be broadened considerably; for Cu,
the parameter [Vo(x,) -Eo] must assume a value of
4. 8 eV, and surprisingly, the resultant potential
is virtually identical with that of Au, illustrated in
Fig. 3. The case of Ag is more complicated: The
experimental results do not display a T ~ depen-
dence until much higher temperatures are reached
than is the case with the other metals. In the in-
termediate range (200 & T & 400 K) a reasonable fit
is obtained with [Vo(r,) —Eo] = 2. 3 eV, the value
given in Mott and Jones. If, however, we accept
that the correct high-temperature limit is not
reached until T & 400 K, then the potential required
to match this is again identical with that of Au.

It appears then that one and the same potential
will satisfactorily describe all the noble metals.
This potential appears somewhat broader than that
required for the alkali metals and, for all we know,
may not have the shape predicted by the Bardeen
equation, shown in Fig. 3, but one such as calcu-
lated by Collins~9 for deformed Fermi surfaces. This,
of course, is the main drawback in all the calcu-
lations of the transport properties: They can
serve as a test of the pseudopotentials, but cannot
be used to derive them.

From the above comparisons we may conclude
that the calculations of the high-temperature ther-
mal resistivity are in a much better state than
couM be surmised from Ref. 2. We certainly get
the right temperature dependence of W„, and rea-
sonable agreement in magnitude for some of the
pseudopotentials examined. In fact, our approach
seems useful as a good and simple first test of the
pseudopotential. Although it is not nearly as sensi-



HIGH- TEMPERATURE THERMAL RESISTIVITY OF. . . 2087

~ ~~
~ ~

0.05-

" oos-
E

Au

O.IO-
/ B-G .

g T

/

/

/ N

U [I I I]

/ /;
I j/

/ j e

O.OIO" .
1'

Jj
LI [100

0.005-

I

20
I

50
I I

100 200
I ~ I

500 IOO

T(K)

200
~t

100 200 500 500

FIG. 5. Comparison of the experimental and calculated 8'„ for the noble metals. Dots, circles, and crossed dots are
the experimental results taken from Ref. 24, 25, and 25(a) for Au, 21 and 22 for Cu, and 23 and 24 for Ag. The solid lines
are the results of our calculations: For Au we show the total resistivity (T) and its normal (V) and two umklapp (U) com-
ponents; for Cu and Ag we illustrate the total resistivity calculated with a Bardeen potential containing parameters as
given by Bardeen (A.), Mott and Jones (B), and as used here for Au (C) and shown in Fig. 3. The B-G curve is a one-
parameter fit of the standard Bloch-Griineisen equation to Au, with Kl the corresponding resistivity given by the for-
mula of Klemens. For comparison, we also show the experimental "elastic" part of the thermal resistivity p/I. OT.

tive to small variations in the potential as the de-
tailed calculations of the low-temperature resistiv-
ity, it is much simplerto perform, and intrinsi-
cally more accurate, for our calculations do not
depend on the lattice dynamics, and are based on
valid solutions of the Boltzmann equation.

IU. LOW-TEMPERATURE LIMIT

W„= 316&(r/O )', (6)

TABLE II. Comparison of the calculated and observed
thermal contributions at low temperatures.

O (K)
1048',T (cm/W K), calc.
104'„T 2 (cm/WK), obs.

Na K Cu Ag Au

310 187 650 449 395
1.7 6.2 0.05 0.11 0.10
3.5 13 0.2 0.3 0.8

In closing, we should like to take a simple-
minded look at the low-temperature limit of W„,
where, we feel, there appears to be a genuine dis-
crepancy between theory and experiment. Klemens
has numerically obtained the solution of the Boltz-
mann equation for W in the limit of low tempera-
tures, which can be put into the following form:

where A is the same as in Eq. (3b). In (6), the
pertinent O~ must be that for the longitudinal pho-
nons, e~, for the following reason: At very l.ow

temperatures, the ratio of the resistances due to
U and N processes is roughly [2k~ C(1)/KC(0) j'
for p, while for W„ it is —,'[C(1)/C(0)]~. Thus, the
resistance due to U processes should be smaller
in W than in p by about a factor 3(2k~/K)~ which,
at 10 K, is of the order of 4&& 10 . On the basis
of the low-temperature calculations of ps, the
contribution of U processes to W„becomes com-
pletely insignificant, and W, is dominated by N
processes which, because of the factor (e~ ~ K) in
the electron-phonon interaction, are limited to
the longitudinal phonons only. However, compari-
son of W„calculated on the basis of realistic esti-
mates of 0~ fall far short of those observed ex-
perimentally, as can be seen in Table II. The
only possible explanation of this that we can see
lies in the mixing of longitudinal and transverse
modes off principal directions, and we feel that
it would be useful to have this checked out by de-
tailed calculations.

Finally, we should like to note with some wry
amusement how well the simple Bloch-Gruneisen



2088 M. J. I AUBIT Z AND J. G. COOK

equation fits the experimental 8'„. This is illus-
trated in Fig. 5 for Au, where we have plotted
that equation arbitrarily adjusting only one param-
eter, O, which here turns out to be 265 K; the
magnitude of the calculated 5", is essentially that
predicted by that equation for that O. The Bloch-
Gruneisen formulation suffers from many short-
comings, e and the good fit observed through the
whole temperature range can only be viewed as

fortuitous cancellation of the large and tempera-
ture-dependent effects of three unconnected sim-
plifications employed in its development: (a) the
use of the first-variational solution; (b) neglect
of umklapp scattering; and (c) assumption that the
electron-phonon interaction is independent of the
scattering angle. Nevertheless, one has to admit
that the Bloch-Gruneisen equation forms a re-
markably good interpolation formula.
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