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The transition between compressed molecular hydrogen and metallic hydrogen is investi-
gated from the point of view of a metal-insulator transition. By studying how the electronic
states in metallic hydrogen change when nearest-neighbor protons are moved closer to-
gether it is found that the transition should occur at a pressure in the neighborhood of 3 Mbar.
The metastability of metallic hydrogen at low pressures is investigated and it is found that at
zero pressure and temperature metallic hydrogen would last only a fraction of a second.

I. INTRODUCTION

There is at present great interest in the possi-
bility of producing metallic hydrogen in the labora-
tory. In this connection it is important to have
some estimate of what pressure is needed to pro-
duce metallic hydrogen and whether metallic hydro-
gen would be metastable at low pressures. Esti-
mates of the pressure needed to make metallic hy-
drogen vary all the way from 0.25 to 20 Mbar. 1+2
In this paper we will discuss the transition be-
tween compressed molecular hydrogen and metallic
hydrogen from the point of view of a metal-insula-
tor transition. This point of view allows us to
estimate the transition pressure in a simple way
and also to investigate whether metallic hydrogen
is metastable at low pressures.

Our method is based on calculating the distor-
tion of the electronic wave functions in metallic
hydrogen as nearest-neighbor protons are moved
closer together. That is, metallic hydrogen with
protons regularly spaced in abcc or hep array will
ke perturbed by decreasing the separation of near-
est neighbors while keeping the over-all density
constant (see Fig. 1). If the protons are moved
only a little or if the density is high enough, mov-
ing the protons will produce only a small change
in the electronic wave functions. However, if the
protons are moved substantially closer together
and if the density is low enough the change in the
electronic wave functions can be large, We might
ask if the change in the electronic wave functions
can be so large that the wave functions become
localized around pairs of protons. The localized
electrons would of course not be free to move and
hence in this case the perturbed metal would be an
insulator, If we approximate the electronic wave

functions in the metal by plane waves, then the
criterion for electrons becoming localized can be
approximated by the condition that an electron of
average energy forms a bound state in the potential
near two protons that have been moved closer to-
gether,

In the normal metal, where a cell contains only
one proton, it is energetically favorable for an
electron to be unbound. However, in the perturbed
metal where there are two protons in acell it may
be energetically favorable for an electron to be-
come localized., In other words, the decrease in
potential energy due to the attraction of an extra
proton may more than compensate for the increase
in kinetic energy of the localized electron. The

FIG. 1. Displacement of nearest-neighbor protons in
a body-centered-cubic structure,
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tendency to form a bound state in the perturbed
metal will be greater at low densities than at high
densities, because as the density is raised changes
in kinetic energy become relatively more important
compared to changes in potential energy. By
solving the Schrddinger equation for an electron
moving in the potential near two protons that have
been moved closer together we can calculate, as

a function of density, the energy of the bound

state, By comparing this bound-state energy

with the average energy of an electron in the

metal we can determine at what density a given
displacement of the protons will turn the metal

into an insulator,

For the purposes of estimating at what pres-
sure compressed molecular hydrogen turns into
metallic hydrogen we should consider displace-
ments of the protons such that the separation of
the photons in the perturbed metal is approxi-
mately equal to the separation of the protons in a
hydrogen molecule, namely 1.4q,. In Sec. II
some simple approximations are introduced for
estimating the density at which such displacements
cause electrons to become localized. This gives
an estimate for the transition pressure which is
consistent with present experimental knowledge
of the equation of state of compressed molecular
hydrogen.

In Sec. III we will study the question of whether
metallic hydrogen is metastable at low pressures.
Using the method developed in Sec. II we can cal-
culate, as a function of pressure, what displace-
ments of the protons in metallic hydrogen would
cause electrons to become bound. The probability
per unit time for attaining these displacements at
zero temperature can be estimated from the Debye
temperature, Thus we are able to estimate from
the Debye temperature how long it would take a
sample of metallic hydrogen at zero temperature
and low pressure to switch to the insulating form,

II. TRANSITION PRESSURE

In order to estimate the pressure below which
metallic hydrogen is unstable against formation of
compressed molecular hydrogen we must first cal-
culate the binding energy of an electron in the po-
tential near two protons separated by 1.4a,. As
in the Wigner—Seitz approximation® for a normal
metal we will assume that the motion of different
electrons is correlated in such a way that this po-
tential goes to zero as one approaches neighboring
pairs of protons. In estimating the energy of an
electron bound to a pair of protons in the perturbed
metal we will consider first the situation at pres-
sures £ 1 Mbar and then the situation at higher
pressures.

At pressures less than about 1 Mbar the total
volume of two Wigner-Seitz cells in the unper-
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turbed metal will be sufficiently large compared
to the volume occupied by a hydrogen molecule so
that the potential seen by an electron in the per-
turbed metal will be similar to the potential seen
by an electron in a hydrogen molecule. As an ap-
proximation we will assume that the potential an
electron sees in the neighborhood of two protons
separated by 1. 4a, differs from that in a hydrogen
molecule only in that the potential is zero outside
a certain sphere centered on the pair of protons,
The radius of this sphere will be chosen so that
the volume of the sphere is equal to twice the vol-
ume of a Wigner—Seitz cell in the unperturbed
metal, The change in bound-state energy of an
electron from that in a hydrogen molecule will be
determined by the value of the electron wave func-
tion outside the sphere. Since the volume of the
sphere is large compared to the volume of a hydro-
gen molecule we need only concern ourselves with
the exponential tail of the electron wave function,
Thus for simplicity we will assume that the bound-
state wave function is an exponential function:

Y@= (na®) Ve, ()

where 7 is the distance from a point halfway be-
tween the two protons separated by 1.4q,. The
expectation values of the electron kinetic energy,
electron-proton attraction, and electron-electron
repulsion will approximately agree with accurate
numerical calculations for a hydrogen molecule*
if we choose a=0.97a,. If we use the wave func-
tion (1) with a=0. 974, and first-order perturba-
tion theory to calculate the change in the bound-
state energy in the perturbed metal from that in a
hydrogen molecule, we obtain the bound-state en-
ergies (for »;>1, 5a;) shown by the solid line in
Fig. 2.

As the pressure is increased the size of a Wig-
ner—Seitz cell decreases. At a pressure of
20 Mbar the radius of a sphere containing the
volume of two Wigner-Seitz cells becomes com-
parable to a Bohr radius, Thus at pressures
>20 Mbar the bound-state energy of an electron in
the perturbed metal is small. Hence, we may
approximate the bound-state wave function by a
function of the form

¥()= (C,/R) e*"'®, y<R

= (G/n)e™, 7>R @)
where R is the radius of the sphere containing the
volume of the two Wigner-Seitz cells. Continuity
of the wave function at =R requires C;=eGC,; the
absolute values of C, and C, are fixed by the nor-
malization condition [ |#12d%x=1. The constant b
will be approximately related to the bound-state
energy E, by
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FIG. 2. Bound-state energy in perturbed metallic

hydrogen (solid line). Average energy of an electron in
metallic hydrogen (dashed line). The abscissa 7 is
related to the density n by $mri=1/n.

b=~ 277/ (2mE,)"?, ®3)

where m is the electron mass. In order to estimate
the bound-state energy one may use the wave func-
tion (2) to calculate the expectation value of the
kinetic energy and electron-proton potential ener-
gy. In order to take into account electron-electron
correlation we will assume that the electron-elec-
tron repulsion energy is ¢2/2R. Taking the sum
of these energies and using Eq. (3) then gives us
an estimate of the bound-state energy at high pres-
sures. By joining the results for high pressure
and the results for low pressure we obtain the curve
for bound-state energy vs density shown in Fig. 2.
In order to determine at what density electrons
in the perturbed metallic hydrogen would actually
become localized we must compare the bound-state
energies just calculated with the energies of the
metallic electrons, We will first look at the ener-
gies of the electrons in the unperturbed metal. Be-
cause of the simple nature of metallic hydrogen the
energies of electrons in unperturbed metallic hydro-
gen can presumably be calculated fairly accurately
using the Wigner—Seitz approximation.® In Fig. 2
the dashed line shows the average energy of an elec-
tron in metallic hydrogen according to calculations®
based onthe Wigner —Seitz approximation. Ifthe en-
ergies of the electrons in the perturbed metal were
the same as in the unperturbed metal, thenthe per-
turbed metal would become an insulator at a density

METAL-INSULATOR TRANSITION IN SOLID HYDROGEN

2069

where the two curvesin Fig. 2cross. Thisdensity
correspondstoapressure of 3 Mbar. This, of course,
is only a rough estimate of the transition pres-
sure because of the crude nature of our approxi-
mations and because the transition in reality also
involves a change in density. An accurate calcu-
lation of the transition pressure would necessi-
tate calculating when the Gibb’s energy of com-
pressed molecular hydrogen becomes equal to

the Gibb’s energy of metallic hydrogen. Neverthe-
less, our estimate of the transition pressure is
consistent with present experimental knowledge

of the equation of state of compressed molecular
hydrogen at high pressures, 87

III. METASTABILITY

We now turn to the question of the metastability
of metallic hydrogen at pressures below the tran-
sition pressure. We will restrict our attention
in the following to the situation for zero tempera-
ture. Thatis, we will study the stability of metallic
hydrogen with respect to the zero-point vibrations.
From the considerations of Sec. II it is evident
that by moving two protons closer together than
they are in the normal metal some of the elec-
trons in the metal can become localized. The
fraction of electrons that can be bound depends on
both the displacement of the protons and the pres-
sure, As one lowers the pressure the fraction of
electrons that become localized because of a
given displacement of the protons increases. Thus
it is possible that at low pressures the electrons
in metallic hydrogen can become localized as a
result of the zero-point vibrations. In order to
investigate this effect we will first study how the
binding energy of an electron in a modified cell
depends on the separation of the two protons when
the pressure is low.

In Sec. II we found that if pairs of protons are
moved to a separation of 1, 4a, an average elec-
tron will become bound at a pressure of ~1Mbar,
We will now calculate what separation of two pro-
tons would cause an average electron to become
bound at a pressure of 1 atm. If we use a trial
wave function

()= (1a®) 2 e e, @)

then the binding energy of the electron may be
written in the form

E=(1/a® -2a/a+2B/a)Ry, (5)

where @ is a measure of the electron-proton attrac-
tion and B is a measure of the electron-electron re-
pulsion. The constant @ is determined by the
separation of the two protons; in fact

ax2-0.6[(r,~0)/al?, (6)

where 0 is the assumed displacement of each pro-
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TABLE I. Bound-state energy as a function of proton

separation at zero pressure.

Bound-state energy

Proton separation (@) Probability (Ry)
2.0 9x 10710 0.92
1.8 4x 10712 1.01
1.6 6x 10" 1 1.13

ton towards the other proton, We will assume that
B=%. At 1 atm pressure the radius of a cell in
metallic hydrogen is 7,=1.684,. The corresponding
binding energies in the modified cell for several
displacements 8 calculated using Egs. (6) and (7)
are shown in Table I, Since the average energy of
an electron in metallic hydrogen at zero pressure
is — 1,06 Ry, we see that an average electron will
become localized for proton separations = 1, 7q,.

In order to estimate how many electrons are
bound at any given time we must know the proba-
bility for attaining various displacements 0. At
zero temperature the probability for attaining var-
ious displacements is determined by the zero-point
motion, The average displacement of a proton due
to zero-point motion can be estimated for the Debye
temperature. Indeed, using the Debye model for
the vibration of a solid, we have the mean-square
displacement of a proton in a given direction as
follows:

(6% =% (n/Mwy), )

where M is the proton mass and wj, is related to
the Debye temperature @, by

rwp=k0 ), (®)

The Debye temperature of metallic hydrogen at
low pressure has been estimated to be on the order
of 2000 °K.5'® This gives a root-mean-square dis-
placement of 0.17a,. In order to calculate the
probability for attaining various displacements we
must know the shape of the interatomic potential.
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In the harmonic approximation to the interatomic
potential we would obtain the probabilities from a
Gaussian distribution, From Table I we see that
we need a displacement of about 5({62))!/2 for each
of two neighboring protons in order that the protons
be close enough to cause an average electron to be
bound. The probability for this to occur according
to a Gaussian is ~(6Xx 10-")2=4x 103, On the other
hand, the frequency of vibration corresponding to a
Debye temperature of 2000 °K is 27w=3,6X 10%°
sec™!, This means that in about 10° sec a given
sample of metallic hydrogen at atmospheric pres-
sure would convert to the insulating form. Actually,
this is probably a considerable overestimate of the
time that metallic hydrogen would last at low pres-
sure, In the first place,the harmonic approximation
fails for large displacements. Second, electrons
on the surface which are unstable for smaller dis-
placements would start a chain reactionwhen they
become localized. Inany case metallic hydrogen at
atmospheric pressure would last only afractionof a
second. A similar conclusion has recently been
reached by Salpeter.®

As the pressure is increased the displacement
of the protons necessary to cause the wave func-
tion of an average electron to become localized
decreases. At the sametime the Debye tempera-
ture increases, causing the mean-square displace-
ment of the protons to decrease as the pressure is
increased. If one uses the variation of Debye
temperature with pressure calculated in Ref. 5
then one finds that the ratio of the displacement of
the protons necessary to localize the wave functions
to the mean-zero-point displacement of the protons
decreases only very slowly with pressure. Indeed,
one finds that the pressure must be very high
(~1 Mbar) in order that the metallic hydrogen have
a long lifetime,
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