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The effect of the electron-electron interactions on diamagnetic susceptibility is investigated
using the Green's-function formalism. General expressions for the Green's function and
eigenvalues of the effective one-particle Hamiltonian of the Coulomb gas are developed through
second order in the magnetic field strength. Specializing to the Hartree-Fock approximation,
the Sampson-Seitz prescription is proven: The susceptibility is given by the Landau-Peierls
formula applied to the quasiparticle energy. Energy-band electrons are treated in the Hartree-
Fock approximation, yielding a quasiparticle term plus an explicit many-body correction to
the orbital paramagnetism. The quasiparticle term corresponds to treating the self-energy
operator as a nonlocal pseudopotential. The explicit many-body correction is shown to be
small for sodium and bismuth.

I. INTRODUCTION

The first calculation of the effect of Coulomb
interactions upon diamagnetism was carried out
by Sampson and Seitz, ' who assumed without proof
that the diamagnetic susceptibility for a gas of in-
teracting electrons is given by applying the Lan-
dau-~Peierls3 formula to the Hartree-Fock eigen-
value. For the case of spherical symmetry, this
yields

1 t'e '~ 1 dE 2 d'E &f(E)
12 l(~Ac 2 dy 3 dy SE

where E is the Hartree-Fock eigenvalue, f is the
Fermi-Dirac distribution function, and k' is the
magnitude of the wave vector. This conjecture is
very plausible but needs proof, as the magnetic
field affects the energies and wave functions of all
electrons, not just those at the Fermi surface.
The present paper contains the first published
proof of the Sampson-Seitz prescription. More
recently, March and Donovan, Pines, ' and Fletch-
er and Larson all have applied the Landau-Peierls
formula to the equilibrium quasiparticle energy
calculated in the Bohm-Pines" theory of electron
correlation. We shall refer to these calculations

as applications of the Sampson-Seitz prescription.
Fundamental calculations of the many-body ef-

fects on the diamagnetism of the Coulomb gas have
been carried out by a number of workers. Kana-
zawa' applied the Bohm-Pines transformation to
the current operator in the presence of the mag-
netic field, and Wentzel used the pair model, but
both authors neglected the effect of exchange.
Kanazawa and Matsudaira' carried out a com-
plete Green's-function treatment in the high-den-
sity limit. Fujita and Usui" extended Wentzel's
method to include the screened exchange.
Stephen' used the free-particle Green's function
in a magnetic field and calculated the first-order
exchange effects by summing the ring diagrams.
Ashkin" used the linear response theory of Mar-
tin and Schw inger' and devised an approximation
for the two-particle Green's function which in-
cluded the long-range correlations. Tsai, Wada-
ti, and Isihara ' carried out a calculation similar
to Stephen's, but carried it to one higher power of
r„ the average interparticle spacing. Hajagopal
and Jain' expressed the susceptibility in terms of
a vertex function in the case of a statically
screened interaction. They then solved the in-
tegral equation for the vertex function, using a
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variational method. The more recent calcula-
tions' ' '"' all agree in the high-density, low-
temperature limit if the trivial error in the
screening constant is corrected in two of the pa-
pers 1Gt 11

The application of the Sampson-Seitz prescrip-
tion to the Bohm-Pines quasiparticle energy agrees
with the fundamental calculations at high density if
both results are expressed in terms of the screen-
ing constant. However, there is considerable dis-
agreement at metallic densities. The fundamental
result, '3'" which really is not valid at metallic
densities, predicts a 30-60/q increase in diamag-
netism for the alkali metals. On the other hand,
the best calculation~ using the Sampson-Seitz pre-
scription predicts corrections ranging from+ 8 to
—Ho.

We would like to prove the Sampson-Seitz pre-
scription under the most general conditions pos-
sible for several reasons: (i) The prescription
has the form of many of the results of Fermi liq-
uid theory, ' and would be aesthetically very
pleasing; (ii) calculations using the prescription
are much easier to perform than direct calcula-
tions, and one could easily take advantage of im-
provements in the theory of the quasiparticle spec-
trum; (iii) the prescription probably offers the
best chance of obtaining reliable results at metallic
densities. In Sec. II, we treat the Coulomb gas at
low temperature using the Green's-function formu-
lation of Kadanoff and Baym. " We construct in k

space the effective one-particle Hamiltonian and
the equation of motion of the Green's function in
the presence of the magnetic field. We find gen-
eral expressions for the eigenvalues of the effec-
tive Hamiltonian and for the Green's function cor-
rect through second order in the magnetic field
strength. We then specialize to the Hartree-Fock
approximation, which allows us to find an expres-
sion for the change in total energy of the system
which is analogous to Fermi liquid theory. This
expression leads to a proof of the Sampson-Seitz
prescription. A discussion is given of the possi-
bility of extending the proof beyond the Hartree-
Fock approximation.

Until recently, the only calculations of the
many-body effects on the diamagnetism of band
electrons was in the effective-mass model. '

Some work has now appeared on the diamagnetism
of excitonic insulators and on the diamagne-
tismaG' ' in the Hubbard model. Fukuyama has
recently calculated the many-body effects on the
diamagnetism of the one-dimensional weak-poten-
tial model. In Sec. III we treat general energy
bands using the Hartree-Fock approximation. The
result for the diamagnetism can be divided into
two terms. The first term, which we call the
quasiparticle term, is the diamagnetism calcu-

We first concentrate on obtaining an expression
for the total energy in the presence of the magnet-
ic field, as at low temperatures the magnetic sus-
ceptibility can be calculated from the appropriate
derivative of the total energy with respect to the
magnetic field strength. The total energy can be
expressed in terms of the one-particle Green's
function. ' In the presence of the magnetic field
the equation of motion may be written

(z —K)G(r, r', z) = 6(r —r'), (2. l)
where G is the one-particle Green's function, z is
the complex energy, and K is the effective one-
particle Hamiltonian given by

&p(r)= (1/2m)(-iV- &sxr) y(r)

+ Jd~r" Z (r, r", z) p(r") . (2. 2)

In the above, Z is the self-energy, @and c have
been set equal to unity, and the vector potential is
in the symmetric gauge X= —,B xr, so that the vec-
tor s is given by s = eB (in restored units, s
=eB/8'c). The self-energy contains the effects
of the Coulomb interactions and depends upon the
magnetic field strength. The total energy per
unit volume is given by'

d~1 1 . 1E...= 2 —~+ ——iv- —s &r
271 2 2' 2

x G (r, r', u) I; -„, (2 3)

where the factor 2 is the spin degeneracy, the in-

lated treating the self-energy as a one-particle
nonlocal pseudopotential. The recent theory of
Misra and Both' should be well adapted to evaluat-
ing the first term. The second term is an explicit
many-body correction to the orbital paramagne-
tism which is similar to the correction to spin
paramagnetism, but may be difficult to evaluate
in general. In two extreme cases, an isolated s
band and two strongly interacting bands, the sec-
ond term is found to be unimportant.

The present work treats only the low-tempera-
ture limit. The three works ' ' which treat the
high-temperature limit all get different results.
We also do not treat the many-body effects on the
de Haas-van Alphen effect, which has already
been treated by Luttinger ' and by Bychkov and
Gorkov. We take into account only the Coulomb
interactions. Tani has concluded that the pho-
non-mediated interaction has a very small effect
upon the diamagnetism. Finally, for the most
part, we neglect the effect of interaction upon the
spin paramagnetism, which is well known. "

II. COULOMB GAS

A. Exact Results
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(2. 4)

tegral is along the real energy axis, and G is giv-
en by an analytic continuation of G across the real
energy axis. '

In the absence of the magnetic field, G, G, and
Z a11 depend upon the coordinate differences so
that the equation of motion is easily solved by
transforming to 0 space. The vector potential
term in the effective Hamiltonian destroys the
translational invariance, but G, G, and Z can be
written as products of a "Peierls phase factor"
and a part which depends upon the coordinate dif-
ference alone,

I
)

iN'I'xl' /2 G (
I

)

correct through order s2.
In the Fourier transformation of the trans-

formed equation of motion (2.6), the kinetic energy
operator goes over to (k ——,'isx V~)z/2m, follow-
ing well-known replacement rules. ' The self-
energy term gives a new result:

13 / v3 jt -f k ( r-r') -fs [(r-r"))f(r"-r') j/2d

ryder

e e

x Z (r —r")G(r" —r')

fd fd -&k (r~+ z& js ~ r~/2 Z(r )G (r

= fd r2 Z'(k —2sxr&)e G (r&)

The phase factor has the effect of translating the
origin of the vector potential.

= Z (q ——'s V ) G(k) I; g . (2 9)

(-iV- 2s Xr)G(r, r', z)

=e "'""' [-iV —2sx(r —r')]G(r —r', z) .

(2. 5)

Substituting the expressions for G and Z into Eq.
(2. 1), commuting the differential operator through
the Peierls factor, and multiplying on the left by
exp(2is ~ rxr'), we find

{z —[- iV ——,s x (r —r ) ] /2 m] G (r —r', z )

~3 rt fl ~ t:(r-r")x(r"-r') ]/2dy e

x Z (r —r", z)G (r" —r', z)=5(r —r') . (2. 6)

Thus the Peierls transformation has produced an
equation which depends only upon the coordinate
differences. We now introduce the Fourier trans-
forms of G and 5:

G (r, z) = (27/) fd k e'"'" G (k, z), (2. 7a)

G(k, z)= fd'r e '"'G(r, z) . (2. 7b)

Note that we follow Kadanoff and Baym in using
the same symbol for G and its Fourier transform,
letting the argument denote which quantity is
meant.

The expression for the total energy (2. 8) is eas-
ily transformed by using the result (2. 5) twice,
and by noting that both the vector potential term
and the Peierls phase vanish when r= r'. When
Fourier transformed, the energy expression be-
comes

E„,= Tr[ —,'(co+ kz/2m)G (k, &u, s)], (2. 8)

where Tr stands for 2(2m) Id k

Idaho

Equation . (2.8)
is the same as in the absence of the magnetic field
except that G, which is a function of s, replaces
the Green's function in the absence of the field,
Go(k, +)= G (k, v, 0). Thus the total energy depends
upon the magnetic field only through G . To find
the low-field susceptibility, we need to obtain G™

In the first step above we have put r, = r —r" and r2
= r" —r', and used the fact that integrating over all
r~ and r~ is the same as integrating over all r and
and r". In the second step the coefficient of r& in
the total phase becomes the argument of the Fourier
transform of Z. In the last step we use the result
that iV„operation on e ' '~ yields r2 times the ex-
ponential; however, the gradient must not operate
on the k in the argument of Z. The result is sim-
ilar to the standard replacement rule, but does
not suffer from any ambiguity as all the compo-
nents of q —2is ~V~ commute with each other. Fi-
nally the transformed equation of motion may be
written

(z —K„)G (k, z, s) = 1,

X, y(k) = [(k —~ s x Vq) /2 m ] y(k)

(2. 10a)

+ Z (q 2 s x Vz, z, s) q7(k)
~ ~

-„. (2. 10b)

This is the first time that the complete equation of
motion in the presence of the magnetic field has
been written in k space.

A formal solution of Eq. (2. 10) can be written in
terms of the normalized eigenfunctions of the ef-
fective HamiltonianX„y (k)=E p (k),

(2. 11)

Though Eq. (2. 11) is not valid for a general non-
Hermitian Hamiltonian, it holds in this case as
the y mill be shown to form a complete set.

We now need to find the eigenfunctions and eigen-
values at least through order s3. We start by not-
ing that the magnetic field has its effect on the mo-
tion perpendicular to the magnetic field, and that
the self-energy has cylindrical symmetry about the
magnetic field, i. e. , we may write Z(k)=Z(pz, k,),
where the z direction is chosen parallel to the mag-
netic field and p =(k„,k„0). We also define the
operators acting perpendicular to the magnetic
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field
9

Koy = k~+ g ss k, ky —~ps —0 (2. 12a)

integration over k' causes all terms for p. &0 to
vanish, yielding

G( 2 k z g) 2g( ) X(p/ ) (2 18)
Q., q(k)-=~„+-,'is ~k, ~„-zis k, 0 y(k)(q p,dk„'

(2. 12b)
with the convention that in calculating products of
components of Q„, all derivatives are taken before
q is set equal to p. Thus the eigenvalue equation
may be written

[(k', + K,', )/2m+ Z (Q,'„k„z,s)]y, (k) =E„y (k) .
(2. 13)

Note that K„could just as well be written Q,', in
the eigenvalue equation. In Appendix A, we show
that the eigenfunctions of K„are also eigenfunc-
tions of (Q„)", and that if Z can be expanded in a
power series in p, then it can be shown that

Z (Q„,kz, s) = Z(K„,k„z, s ) + s D Z (K„)+ 0 (s ) .
(2. 14)

In the second term above p is replaced by K,, in
the quantity s D(p') Z(p'), where the operator D is
defined by

(2. 15)

Thus we have shown that the eigenfunctions of K2,
are also the exact eigenfunctions of X„, a result
which has been stated without proof by Bychkov
and Gprkpv. The eigenfunctipns pf Kop are well
known to form a complete set. In polar coordinates

y„(p, e)=me '"
p

''
, ,I"'(2p'/s) e'"',

where L&=-L,. As the eigenfunctions are exact and
E„ is good to order s2, Eq. (2. 18) for G is also
good to order s . For noninteracting electrons,
Eq. (2. 18) is the result derived by Hajagopal. 33

In Appendix B we use the properties of Laguerre
polynomials to evaluate the summation through or-
der s,
G(p, k„z, s)= 2

—s D(p ) 2

where

&(p, k,)= k /2m+ Z (pa, k,)+szD(p2) Z,

(2. 19)

(2. 20)

2+k2 and D is the operator defined in Eq
(2. 15). The leading term in G resembles the
Green's function in the absence of the magnetic
field except that & depends upon the magnetic field
strength. The eigenvalue has two correction
terms of order s~, the explicit s2D Z™term in Eq.
(2. 20) and the change in Z(p~, k,) with magnetic
field. We shall deal approximately with the change
in Z in Sec. IIB, but our expression (2. 19) for G
and the analogous one for G are general (through
order sz). In the absence of interactions our ex-
pression for G is equivalent to the expansion to
order s of the Green's function found by Sond-
heimer and Wilson.

B. Self-Consistent-Field Approximation

where

st= [m( —,'s) " '(x+ I p I)!/x!]

L;(t)=Z ( )~

(2. 16a)

(2. 16b)

(2. 16c)

We now make two simplifying approximations
which make further progress easy. At the end of
this subsection we discuss the possibility of im-
proving the derivation. First we neglect the de-
pendence of the self-energy upon the complex en-
ergy z. In this case the function G is easily cal-
cu].ate d

is a I aguerre polynomial. ' The corresponding
eigenvalue of K„ is (2X+ I p I

—p, + 1)s. The eigen-
values of X„are given by replacing K„by its
eigenvalues. For the case p, = 0,

E~(k,) = [(2X+ 1)s + km]/2 m + Z((2X+ 1)s, k )

+ s D Z ((2X+ 1)s, k, ) . (2. 17)

The Onsager replacement rule p - (2X+ 1)s is well
known, ' but the second-order correction terms
are new. The result (2. 17) is in agreement with
the result derived by Roth in the case of nonin-
teracting Bloch electrons.

We now substitute the eigenfunctions and eigen-
values into the formal solution (2. 11) for G. The

G (k, &, s)= 2m [1 —szD(pa)]f(z) 5(&u —e), (2. 21)

where f is the Fermi-Dirac distribution function
and e is given by Eq. (2. 20) with z suppressed. As
D operates on the & in the argument of the Dirac
5 function, it is best in evaluating the total energy
(2. 8) to place the & to the right of D before per-
forming the integration on , yielding

E„,= 2 ~
— (1 —s D)f+ (1 —s D) ef) .

(2. 22)
In Appendix C we show that for functions with cy-
lindrical symmetry D(ef) = eDf+fD& under the in-
tegral sign. Furthermore, s Dc=s DZ=s DZp
to order s, so that the —s fD& term cancels the
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(s'DZ) f part of the (1)x ~f term, so that we have

"dok fkz...=2,
~

—,
'

&) (1 —s'&)f)~) . (2. 23)

We now introduce the following quantities:

Z= Zp+5Z,

eo (k /2-—m)+ Z)),

(1 —s D)f(e) = f(eo)+ 5f+

0f(e ps'D—f('o)+ s'(DZo)
9Ep

5f 5Z 'f(&o)
96p

(2. 24a)

(2. 24b)

(2. 24c)

(2. 24d)

(2. 24e)

The relations above are correct to order s . Note
that 5f is the change in the distribution function due

to the change in form of the self-energy operator
in the magnetic field, and hf is the change coming
from the action of the operator Qo,. This separa-
tion of changes will be very useful in Sec. III.
Note that all changes in f are confined to the re-
gion of the Fermi surface. Using the above nota-
tion, we rewrite the total energy

E),,),
= 2(2o) fd k (k /2m+ pZo+ 25Z)

x [f(eo)+5f+ +]. (2. 25)

Z (k) = —(2w)
~ fd& fdok' G'(k') V(k' —k)

= —(2v) o fdok' [f(&o)+ 5f+ &f] V(k' —k),
(2. 26b)

using Eqs. (2. 21) and (2. 24c). In the above,
v(r —r'} is the interparticle interaction and

V(k —k') is its Fourier transform. We have ne-
glected the Hartree term which cancels the poten-
tial of the positive background charge. Because
Eq. (2.26b) is linear in f, Zo and 5Z are given seP-
arately by the integrals involving f(&o) and 5f+ Q,
respectively. Thus the change in the self-energy
is proportional to the change in the distribution
function, and so is proportional to s . As 5f de-
pends upon 5Z, Eq. (2. 26b) is an integral equa-
tion for 5Z. The integral equation can be solved, "
but it is not necessary for our purpose. We re-
quire only the integral of fo5Z, which can be
evaluated by the following theorem:

fd'k 5Zf(oo)= —(2v) o fdok fdok' [5f(k')+ af(k')]

We now introduce the Hartree-Fock approxima-
tion in order to get an expression for the change
in the self-energy. The Hartree- Fock approxima-
tion for the self-energy in configuration space is'

Z(r, r')= —(2m)
' fd+ G (r, r', &u)v(r —r'),

(2. 26a)
which leads to

x V(k —k )f [~o(k)1

= fdok' [5f(k')+ &f(k')]Zo(k'), (2. 27)

where we have used the symmetry of the potential
V(k —k')= V(k' —k). It is this theorem which al-
lows the change in energy of all the particles to
be expressed in terms of quantities near the Fer-
mi surface A. pplying the theorem to the 25Zf(&o)
term in the total energy expression (2. 25) and ne-
glecting 5Z(hf+ 5f) terms which are of order s4,
we have

&).) = 2(») ' fd'k [(k'/2m+ 2Zo)f(&o)+ &o(5f+ &f)] .
(2. 28)

The first term is the total energy in the absence
of the magnetic field and the second term gives
the change in energy to order s'. The second
term has the same form as results in Fermi liquid
theory, ' ' ' i. e. , the integral of the equilibrium
quasiparticle energy times the change in the dis-
tribution function.

We calculate the magnetic susceptibility by tak-
ing the derivative of the thermodynamic potentialn"

g &0
X= -B

~B

Q = Stot —p, N —TS,

(2. 29a)

(2. 29b)

where p is the energy of the Fermi level, N is the
density of particles, and S is the entropy. In tak-
ing the derivative p, is held constant. As we are
interested in the susceptibility at very low temper-
ature T, we neglect the term TS. The part of the
thermodynamic potential proportional to s~ is then
given by

M=2(27)) o f dok (eo —p)(5f+ r)f) . (2. 30)

})'=4e (2v) fd k (eo —p, )Df(eo) (2. 31)

In Appendix C we show by partial integrations and

ignoring terms of the order of To that Eq. (2. 31)
reduces to the Sampson-Seitz result, Eq. (1.1).
At the low temperatures where our derivation
holds, we have (in restored units)

12 mac 3 dk 3 ~dk2

where k& is the radius of the Fermi surface.
If V(r —r') is taken as the bare Coulomb inter-

The terms in 5f+ nf proportional to &f/&e are fi-
nite only near the Fermi surface, where & —p is
small. Integrals of the type Jd k (eo —p)of/&e are
proportional to T and can be neglected at low tem-
peratures. Thus the only part of 5f+ Q that re-
mains is —s Df(eo). Taking the derivative indi-
cated in (2. 29a), we find
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X/Xo = 1+ (&r,/6m) (4+ 2 In ~&) . (2. 35)

All the most recent fundamental calcula-
tions' "'"'6 agree with Eq. (2. 35) with suitable
choices of q. Four of the works ' ' ' 6 agree
with taking the Thomas-Fermi value q2= 4am, /m.
The other two works have an p only half as large,
apparently due to leaving out the spin degeneracy
factor in the density of states. The leading terms
in x, of the results found using the Sampson-Seitz
prescription and the Bohm- Pines quasiparticle
energy~ ' also agree with Eq. (2. 35), with 7i~ being
the cutoff parameter Pa, which is taken variously
between 0. 53 and 0. V1 of the Thomas-Fermi g .
Equation (2. 35) with the Thomas-Fermi Z gives
small corrections for small r, (l. 06 for ~, = 1) but
large corrections for metallic densities (1.53 for
r, = 5). The result of Tsai, Wadati, and Isihara, "
which is good to r2, gives 1.65 at r, = 5. These
formulas are not expected to be accurate at metal-
lic densities as the expansion parameter nx, /m

is equal to 0. 83 at x,= 5. However, Eq. (2. 34)
gives only 1.02 for ~,= 5. The most accurate cal-
culation using the Sampson-Seitz and Bohm-Pines
schemes gives 0.997 —1.009 at ~, = 5.

It seems likely that the Sampson-Seitz prescrip-
tion can give a reasonable estimate of the suscep-
tibility at metallic densities. When used with the
Thomas-Fermi potential model, it gives the exact
high-density results. It gives comparable results
at metallic densities for both the Thomas-Fermi
potential model and the Bohm-Pines method, and
it is known that the Bohm-Pines method gives
reasonable results for the correlation energy at
metallic densities. However, it would be very de-

action, we have. the original Sampson-Seitz rela-
tion. ' However, the divergence associated with
the long range of the Coulomb potential makes the
result unphysical. It has been shown that the use
of the Hartree-Fock approximation with a screened
potential gives many of the same results as the
random-phase approximation. In order to get a
comparison formula, we choose the static Thomas-
Fermi potential whose Fourier transform is

V(k)=4' /(k +q kp) . (2. 33)

The self-energy and its derivatives are easily eval-
uated with this potential, yielding '

X/Xo= 1+ (&&./6~) [4 —(~ &'+ l)»(I+ 4/&')

+ 2&'/(4+a')J, (2 34)

where &= (4/Qm)'~ = I/her, and x, is the dimension-
less average interparticle spacing, N
= Sm e6/4nx3h6. Equation (2. 34) agrees exactly with
the result (3. 3b) of Rajagopal and Jain. ~6 When
the screening constant is small, Eq. (2. 34) be-
comes

sirable to carry through the derivation in higher
approximation. Especially pleasing would be a
derivation of the type in Fermi liquid theory. As
was noted before, the total energy (2. 8) is the
same functional of G' as in the absence of the mag-
netic field. Also, the equation of motion (2. 10)
has the same form as in the absence of the mag-
netic field except for the operator replacement.
The self-energy depends upon the magnetic field,
but in the Hartree-Fock approximation Z is the
same functional of G that Z o is of Go in the same
approximation. This is also true in the random-
phase approximation, as the Peierls phases all
cancel so that the Fourier transform of a random-
phase approximation diagram contribution to Z is
expressed as the integrals of simple products. The
result is not generally true outside the random-
phase approximation, the simplest example being
the Born exchange diagram. Within the random-
phase approximation a generalized version of the
theorem (2. 27) is possible, so that one can find an
expression for the diamagnetism in terms of in-
tegrals involving the self-energy. One would like
to use the same methods as in Fermi liquid the-
ory' ' ' ' to evaluate the integrals on & and find
a result for the change in total energy which de-
pends only upon the quasiparticle properties near
the Fermi surface. However, these methods work
easily when the change in G involves first-order
derivatives with respect to k, while our operator
D involves higher derivatives. Actually, to cal-
culate the magnetic susceptibility, one must calcu-
late to second order in the perturbation p ~ A,
whereas our transformation to 0 space has changed
the problem to one of calculating to first order in
a perturbation proportional to s 3.

III. BAND ELECTRONS

A. General Energy-Band Structure

We now treat the case of interacting electrons
in a fixed, periodic potential. The equation of mo-
tion is still given by Eq. (2. 1), but with the effec-
tive one-particle Hamiltonian modified to include
the period lattice potential Ui, :

X(—i V ——,
' s x 'r) y(r) = Ro(- i V ——,

' s x r) y (r )

+ fd x' Z(r, r') y(r'), (S. la)
where

Xo(—i V —m x r ) = (- i V —~ s x r) /2 m + U~(r),
(3. 1b)

and Uz(r+ R) = Uz(r), where 5 is any crystal trans-
lation vector. We retain the constant part of the
Hartree potential in U~ to avoid a divergence, but
include the varying part in the self-energy. As
before, some of the translational symmetry can
be regained by introducing the Peierls factor
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(S.2a)G(r, r', z, s)=e "' '~ G (r, r', z, s),
where G no longer depends upon the coordinate
difference but follows

= —,
' Tr [K(-iV —p s x r) G (r, r ')]

= —,
' Tr([Ko(-iV)+ Z]G (r, r')} . (3 6)

G(r+ R, r'+ R, z, s)=C(r, r', z, s). (3.2b)

The equation of motion can be transformed to a
form the same as (2. 6), except for the inclusion
of the periodic potential Ul, . The total energy per
unit volume is modified by the periodicity,

Etot = 2(21Tvp) fdtdf d Yo'[(0+ Kp( —iV —o s x r) j

K(-iV —osx r)y„(r)=E y (r). (3. 5)

Using this form, the term proportional to the in-
tegral of (oG in Eq. (3. 3) can be written

—,
' Tr[Q E y(V)f(E ) yg(r')2z6(~-E )]

x G (r, r', ~, s ) ~
o.-„,

-=p Tr ([&+Kp(- i V —p s x r)] G (r, r ', ar, s )},
(3.3)

where vo is the total volume of the crystal. Ex-
pressing G in terms of G, commuting the Peierls
factor through the differential operator using Eq.
(2. 5), and setting r = r' in factors other than 8
produces an equation similar to (3. 3) with G~ re-
placed by G' and without the vector potential term.

We now introduce the same approximations as in
Sec. II, in order to reduce the energy expression
to a more convenient form. First, we neglect the
frequency dependence of the self-energy, so that
the frequency dependence of G is given by a Dirac
5 function. We also express G in terms of the
eigenfunctions of the effective one-particle Hamil-
tonian in configuration space,

G'(r, r', ~, z)=Z y (r)f(E ) y*(r')2o5(&u —E ),
(S.4)

where

The last step is obtained by noting that

K(—iV —&s xr)G (r, r') is given by an expression
similar to Eq. (2. 6) and when r = r' the vector po-
tential term and the Peierls phases vanish. Thus
the total energy may be written

E„,= Tr([K,(-iv)+ —,
'

Z ]G'}, (3. 7)

G (r, r')=Go(r, r')+5G (r, r')+ bG (r, r'),
(S. 9)

where 5G is the change in Go when Zo is re-
placed by Zo+ 5Z but no other change is made in

the equation of motion, and LK' is the change in

Go+ 5G when the vector potential and Peierls
phases are introduced into the transformed equa-
tion of motion. The order in which the changes
are made is now important, in contrast to the
case of the Coulomb gas, as there can be changes
of the order of s, and the total change of the order
s can involve a cross term. Because Eq. (3. 8) is
linear in G, 5Z is given in terms of 5G + hG'.
We may now prove the same type of theorem as
Eq. (2. 27),

which is the analog of Eq. (2. 23).
We now introduce the Hartree-Fock approxima-

tion'

Z(r, r') = (2z) 'fdic [25(r —r') fdpr"

x G~(r", r")v (r —r ")—v (r —r') G'(r, r ')] .

(3. 8)

The factor 2 on the Hartree term is the spin de-
generacy. As Z and G carry the same Peierls
phase factor and the phase vanishes for r = r'
Eq. (3. 8) also holds for Z and G~. We also de-
fine, in analogy to Eqs. (2. 24),

»[~Z(»r')Go(r'r) j=(2&) vo' fd &fd &'fd~fd&' ( 2(6r-r')fdor" v(r —r')[5G (r', r")+aG (r", r")]

-v(r —r') [5G (r, r')+ EG (r, r')]}Go(r'r)= Tr([5G (r, r')+ hG'(r, r')]Zo(r', r)}, (3. 10)

where we have used v(r —r') = v(r' —r). We now

substitute for G and f Eqs. (3. 9) and (2. 24a),
respectively, into the total energy expression
(3. 7), multiply out the terms, apply theorem
(3. 10), and obtain for the thermodynamic poten-
tial

0= Tr[(Kp+ o Zp+ o5Z —p, )(Gp+ 6G + bG )]

= Tr[(Kp+ —'Zp —&) Gp]+ Tr[(Ko+ Zo —g)

x (5G'+ aG')]+ o Tr[6Z(5G + aG') j . (3. 11)

(S. 12)

This result is the same as that of Luttinger and

As before, the first term gives the thermodynam-
ic potential in the absence of the magnetic field.
The second term is analogous to Eq. (2. 30). The
third term cannot be discarded as each change,
5Z and 6G + hG, could have a part proportional
to s, giving a term proportional to s .

In Appendix D we prove that at low tempera-
tures,

[(Kp+ Zp+ o~Z —p)~G'I= 0
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V/, y (r) = Jd'r' P (r, r ') y(r'),

P(r, r') = P„X.(r)(Z. —(s) X +(r'),

(3. 15a)

(3. 15b)

where the X are the eigenfunctions of the core
electrons, which can be taken as the Peierls3 wave
functions

Ward that the thermodynamic potential is station-
ary with respect to the self-energy, except that
our result is good to second order in 5Z and their
result is not limited to the Hartree-Fock approxi-
mation at low temperatures. Using this result we
may rewrite the change in the thermodynamic po-
tential (3. 11)

50= Tr[(Ão+ Zo+ 5Z —p) &G ] —2 Tr(GZ&G ) .
(3. 13)

We redistributed the 5Z~G term so that the first
term has the form of the change in thermodynamic
potential for an independent particle system whose
one-particle Hamiltonian is given by Ko+ Zo+ 5Z.
(Remember that bG' is the change in G' when the
vector potential is introduced into the same one-
particle Hamiltonian. ) The evaluation of the first
term will give a result proportional to B with a
coefficient which depends upon the effective Ham-
iltorian Ko+ Zp+ 6Z. Taking the zero-field limit
in operation (2. 29a) gives a result depending upon
the field-independent effective Hamiltonian. Thus
this term represents the susceptibility calculated
treating the effective Hamiltonian as an indepen-
dent-particle Hamiltonian, and we call it the
quasiparticle term. In this term we may drop
the 5Z and replace AG by DOG, the change in G

when the vector potential is introduced into Ko+ Zo.
The third term represents explicit many-body
corrections. In this term 6Z and 4G' need be
correct to first order in s only, so that AG may
be replaced by 60G . The magnetic susceptibility
can then be written

y= —(2e /s ){Tr[(BCO+Zo —p. ) BOG ]
——,

' Tr[5Z/) G ]j . (3. 14)

The standard theory of diamagnetism of non-
interacting band electrons ' does not apply directly
to the evaluation of the quasiparticle term because
of the self-energy operator. However, we shall
now show that the translational properties of the
self-energy operator are the same as those of a
nonlocal pseudopotential. In the simplest case,
the pseudopotential is given by42

= exp[- w2'sx (r —r') R]P(r, r'). This is equivalent
to the translation properties of G and Z, Eq.
(3. 2a). Therefore the quasiparticle term can be
calculated by the theory of Misra and Roth,
which gives the diamagnetism of independent band
electrons in the pseudopotential formulation.

The explicit many-body correction has the same
form as, but opposite sign from, the many-body
correction to the Pauli spin paramagnetism. Thus
it is plausible to regard the final term in (3. 14) as
a correction to the orbital paramagnetism, which
is composed of the crystalline paramagnetism
analogous to the Pauli paramagnetism plus an in-
terband term analogous to the Van Vleck paramag-
netism. It is not hard to show that if one includes
the electron spin, which adds a term v, p~B to
the effective Hamiltonian, the change in the ther-
modynamic potential becomes

5' =Tr[(X,+Z, +o, i,B i) ~-,G']

+ Tr(o, i/sB&G') ——,'Tr(&Z&OG'), (3.1V)

where p~ is the Bohr magneton, o, is the Pauli
spin operator, &G is the change in Go due to the
change in the form of the self-energy, and ~OG
is the change in Go due to the action of the vector
potential and the 0,p.~B term. In the Coulomb gas
case the equality Tr(o, psB&G~) = Tr(5Z&oG ) holds,
and the correction has the same form as, but op-
posite sign from, the orbital paramagnetism cor-
rection. With further calculation, the correction
to the spin paramagnetism can be brought to the
standard result. '7'43 When the spin is neglected
in the Coulomb gas case, ~OG' is of the order s~
so that the explicit correction can be ignored. The
quasiparticle term then reduces to the Sampson-
Seitz result obtained in Sec. II. In the band case,
6Z must be found by solving an integral equation,
which is simplified by needing 6Z only to first
order in s.

B. Luttinler-Kohn Representation

The two band models considered in this paper
are treated in the Luttinger-Kohn (LK) representa-
tion, 44 which is an extension of the k ~ p method to
include perturbations. As it is an expansion in
powers of k, the method is particularly useful when

only a small part of the Brillouin zone needs to be
treated. We first write the equation of motion in
the LK representation, i.e. , in terms of the basis
function e'~'~u„o(r),

(r) Q eim Rxr/2 ca% R + (r g) (3. 16)

where a„(r —R) is an orbital localized on the atom
at R. If the overlap between the core functions a„
on different atoms can be neglected, the kernel
P has the translation property P(r+ R, r'+ R)

g-- (g--', &ex'„)' I ——5 (k- .'fax',)-
2m ' " m

—z(i ——,'i sx(),)I G~, ; I(8,18).=
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In the above 0 is the momentum at the symmetry
point, G(k) and 5 are matrices with respect to
the band indices, and I is the unit matrix. The
self-energy matrix is given by

Z„„,(k) = Jdzr fdsr'e'"'~~' "u„*o (r) Z(r, r') u„.o(r') 8'~o
a&&

—- 6&+m — — —, i j = xy
Bk; Bk;

(s. 2v)

([z-& (k)]i-(v k/m)-(k o k)/2m)GO = I,
(s. 26)

where the tensor a is defined as

= Z„„.(0)+(nol e '"'
[Z, e'"' ] ln 0}. (s. Io)

A similar Hamiltonian has been developed in the
Bloch representation by Kane. " Expanding to
second order in s, we may rewrite (3. 18) as

[(zI —+—Z) —B, —B ]G=I, (s. 2o)

where 'Ko+ Z is the effective Hamiltonian without
the vector potential (but Z = Zo+ BZ still depends
upon s), B~ is the first-order term

B~= ——,
' i[%,(K +Z)] ~ sx V

= ——,
' i [(P/m ) + (k I/m) + V„Z] ~ s x V,

= —(i/2m)(f+ki) sxv„,
and B~ is the second-order term

Bz———
8 (V ' sx v, )'[~,+Z(q)]l;-'

(3. 21)

m eh~ ek

( B2Z B2 (B2Z B2

I, B„ks„kks„ks~ (Bk„sk~
(3. 22)

The quantity w defined in (3. 21) is m times the
velocity operator. Letting Go be the solution with-
out the vector potential, (z -Xo —Z), the Green's
function through second order in s can be written

G —Go+GQBf Go+GQB)GQ+$GQ+GQB2GQ 0 (3.23)

We may also express Go in terms of the zero-field
Green's function Go,

Go= Go+Go ~ZGQ+GQ~ZGQ~ZGQ ~ (3.24)

to second order. For calculating the quasiparticle
term, Go may be replaced by Go in (S.23). In cal-
culating the explicit correction we need only the
first-order terms, which are additive,

G = G o+ G Q~ZG o+ G oB r G o (s. 26)

The Green's function for the Coulomb gas may be
calculated from (3. 23) and (3. 24), and after some
manipulation agrees with the result found in Sec.
II A.

The zero-field k ~ p Hamiltonian may be expanded
in k, for application when k is small. Expanding
the off-diagonal matrix elements of the self-energy
to second order in k yields

g„'(k) =Z„„(O)+Z' (k)+k'/2m.

If we let go be the solution of (3.26) for k = 0,
[(z —8 ) I], then the solution for Go is very simi-
lar in form to Eq. (3.23).

C. Isolated s Band

We now take up the case in which the Fermi level
lies in a band which has s-like symmetry at the
center of the Brillouin zone and which is far in en-

ergy from all other bands. Kjeldaas and Kohn
used this model and the LK representation in their
calculation of the independent-particle diamagne-
tism of the alkali metals. They calculated the con-
duction electron susceptibility as a power series
in ko, the average radius of the Fermi surface.
The lowest-order term is proportional to ko, and

is equal to the Landau-Peierls diamagnetism to
that order. The second term is proportional to

ko, and includes interband terms. The next term
is proportional to ko, and was not calculated by
Kjeldaas and Kohn, though they concluded that it
could be important for lithium.

We shall first estimate the explicit correction to
lowest order in ko for which we need expressions
for the first order in s changes, &QG and &G, to
lowest order in k. Making use of the s-, p-, and
d-like symmetry at the center of the zone, one can
show that first terms involving the s band are off-
diagonal and proportional to k. This result is
closely related to the fact that the effective angu-
lar momentum operators, such as ivxgo v/m, are
diagonal in this symmetry and have zero eigenval-
ue on s-like states. Thus there is no orbital para-
magnetism contribution at the zone center. As the
factor B,GQ already is proportional to k, we may
write

b, o G —goB)GQ

In carrying out the analytic continuation to find
&OG, terms containing f and df/dE are encountered.
On integration the latter produces a factor propor-
tional to the density of states at the Fermi level,
N(p), which is proportional to ko; while the former
produces a factor proportional to the carrier den-
sity, which is proportional to ko. Keeping only the
df/dE term, we find

~G'„,„-=i(z sx V„G', )„,„/2m($„-8„.)
=2m &(&u —8„)im„.„~ sxv~f(g„)/2m(g„—h„,)
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-=2 v5((u —8„)ap„.„, (3.23) tice vector. We find approximately

where n is the band index for the conduction band
and p„.„ is the Dirac density matrix.

As there are no diagonal matrix elements of
~G to lowest order, &Z is off-diagonal, and we
have for the corresponding change in 6

5p„.„=(2v) ' f d(o (g o &Z g o)'„.„

The factor f„-f„.will produce a factor ko, so that
we shall neglect &, though it is not difficult to in-
clude it and solve the integral equation for &Z to
lowest order.

The relation between the self-energy and the
Green's function is very simple in the k ~ p approx-
imation,

Z„.„(k)= —(2v) f d(u f d k'V(k —k') G„.„(k')
(3.30)

In the above, umklapp terms such as V(k-k'+K)
have been neglected, where K is a reciprocal lat-

im„.„&s "
d k'

5Znrn(k) = —
2 (g g ) (2v) o V(k —k ')

-, ey(h„(k'))
tf eg

(3.31)

We need &Z evaluated at the Fermi surface only,
and

5Z„,„(k ) = fv„,„xs ~ V„S„(k)N(p)F,/2m(8„—8„),
(3.32)

where

E~= f dy' f d8' sin8' v(k —k') cos8». (3.33)

is a familiar integral from Fermi liquid theory
(giving the correction to the quasiparticle mass).
As V„S is proportional to k and N(p, ) is proportional
t.o ko, 6Z is proportional to ko. Finally, the cor-
rection to the thermodynamic potential is

—
o Tr(5ZbG~) = ——Z +~ (2v) 4

d&u dk &Z„„.(k) &G„.„(k)
n n'An 4 J

1g g v„i„xs ~ 0'„8„(
)

1 g p lv~il + lv„"„, I o 88 s No sg

(3.34)

Note that the correction is positive, so the cor-
rection to the susceptibility is diamagnetic (re-
duced orbital paramagnetism). The product
N(p, )s8/skF is equal to ko/o, so that the whole
term is proportional to ko, one order higher than
the highest term retained by Egeidaas and Kohn.
The factor in the parentheses is the total admix-
ture of other states into the s band at the Fermi
level, and is roughly equal to [(m*/mo)- 1]', which
is about 0. 001 for sodium but about 0. 1 for lith-
ium. Now E, is of the order of 4' /rPko. Using
the Thomas-Fermi value for g and putting in the
expression for s in terms of B, we find a correc-
tion to the susceptibility of the order of

~X = o((m*/mo) —11'XLm, (3.35)

where LP denotes the Landau-Peierls value. Thus
we see that the correction is small for sodium,
-0.2%, but is important for lithium -15%.

The quasiparticle term may be different from
the calculation of Kjeldaas and Kohn because of
the terms coming from the self-energy. One sees
that the terms linear in k can be handled by re-
placing P by f; one of us has shown35 that to order
ko the susceptibility is again given by the Landau-

l

Peierls term operating on the quasiparticle en-
ergy. Any change in the ko term should be unim-
portant for sodium (where the ko term is 2% of the

ko term), but may be appreciable for lithium. Be-
cause the explicit correction is small, the method

of Misra and Both should give the complete an-
swer provided the correct pseudopotential is used.

g
Xo+Zo-

~

7rl X-$7J2 3

k„+i@2k,
~

g )
I (3.36)

D. Two Strongly Interacting Bands

Finally, we treat another extreme case, that
of two bands close together in energy and inter-
acting so strongly that all other bands may be ne-
glected. This case applies to the Lax model
of the conduction electrons in bismuth, and to a
special point in the Brillouin zone of graphite.
The k ~ g' Hamiltonian is expanded about a symmetry
point (I, , H, respectively) which is not at the zone
center. The matrix elements of the momentum be-
tween the two states at the symmetry point are
non-zero, so for small values of k the linear
terms dominate and we neglect the quadratic
terms. The effective one-particle Hamiltonian in
the absence of the magnetic field is
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where, for bismuth

g [(&E )2+ ~2y2]l/ 8 (3.3V)

and E~ is the energy gap, which is due to the spin-
orbit coupling in bismuth. Note that when the lin-
ear approximation is valid the many-body effects
merely alter the value of the m, . Thus for certain
properties, model calculations which use the ex-
perimental values of n; implicitly include the
many-body effects. In particular, the quasipar-
ticie susceptibility will be given by the indepen-
dent-particle calculations of Fukuyama and Kubo,
and of Buot. In our notation the quasiparticle
contribution to the change in the thermodynamic
potential at absolute zero is given by

5 &q I,= (so o, mo/So o,) [sinh '(2E, /Ee)

—sinh '(2g /EG)], (S.38)

where q —= [p,o- (—,'Es)o]~/ and E, is a cutoff energy
of the order of the bandwidth. Buot" has shown

that this expression gives excellent agreement
with experiment when the proper values of the pa-
rameters are chosen.

We shall now estimate the explicit correction to
the orbital paramagnetism. The zero -field
Green's function is easily found by inverting the
2 by 2 matrix zI-K —Z,

The reason the trace of &0G' is not zero for these
expressions is that there are two points in the
Brillouin zone connected by time reversal. The
sum of the trace of &OG for both points is zero.
As the eigenfunctions and eigenvalues of the Ham-
iltonian (3.36) are easily found, we have also
derived the same ~OG by using the same tech-
niques as we used for free electrons.

Including the change in G' due to the change in

Z, we again arrive at an integral equation for
5Z which can be easily solved. However, the
solution for 5Z is equal to the 5Z calculated ig-
noring 5G', divided by a factor roughly equal to
1 -N&(p)/Nr (p), where N/ (p) is the density of
states for one spin of the conduction electrons at
one L point and Nr (I/, ) is the total density of states.
Because of the contribution of the free holes N~
is more than an order of magnitude greater than

NI, in bismuth, so that we ignore 5G'.
The explicit correction due to the &OG in Eqs.

(3.42) is diamagnetic, and is a symmetric func-
tion of the Fermi level p, . However, we now show
that it is negligible for bismuth. First we consider
that the Fermi level is in band 2, p, & —,'E~, and es-
timate the effect due to the first 8fo/BEo term
We find

I S7fg ufo 7Te
~

d k 1 sfo
~ (2~)' [q +(k-k')o]E, (k ) sE,

1
' [.-E,(k)][.-E.(k)] = —~&(t = —s7/t &o7/e Nr, (p)/&oq p ~

2 2 (S.43)

e-h 7/, u„+im, //,
I (3 39)

7/qk„im2k, -s+& j '

where

E (k) =+[(-'E )'+o,'a'+o'u'+o, 'a']"'. (3.40)

Straightforward calculation yields the first-order
change

In the above q is the Thomas-Fermi screening
constant, q =4me Nr(p, )/eo, where eo is the back-
ground dielectric constant. For bismuth &0= 99,
q=0. 003 A', and the maximum extent of the Fermi
surface" is k =0.03 A', so we have overestimated
the integral by neglecting R' -k compared to Q.
The contribution to the explicit correction becomes

!

—
o Tr(5Z&oG ):e( ~ o)os-s [Nz(l/. )] /4toq p,

After manipulation which uses the facts that

g —
& 8+E g

(.-E,) '= a(. -Ei) '/sEi,
and

(») 'Jdo/I(e-E ) '(e-E) ']=(f -f)/(E' -Eo)

we find
N~(p, )= p. 0/2m pro'oo', , (3.46)

=(s oq7/, /So7/, )[Sm e'7/, mo7/3''(p)/«oq p'] . ,

(3.44)

The factor in the square brackets on the right-
hand side of the second line of (3.44) is roughly

equal to the fractional correction to the quasipar-
ticle susceptibility. The density of states for this
model is

sr' oo &f, &fo

2

(3 42)

so that the correction factor becomes

5X/Xop=Se [P -(aEG) ]/16m eoq &g&o7/o ~

(S.46)

Using the experimental values of the n;, the cor-
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rection factor is about 3&&10 for p, =E&, and thus
is negligible.

Next we consider that the Fermi level lies in

the forbidden gap, so that f, = 1 and fz = 0, and only
the f, -fz term contributes. We find for the total
correction

4 &0 . (2m)' (»)' E, (k) q +(k-k )3 E~3(k')

s w&mz Se l d k d k' $(k)m&mzwm8(k')

3w7T3 ~ 4iTCO „(2m) „(2m) Ea (k)[q'+ (R+k')']E~ (k')
(3.47)

where m= (m, m~m~)'~3. Again the factor in square
brackets is roughly the fractional correction to
the quasiparticle susceptibility. The double inte-
gral in the final line is dimensionless. The inte-
grals are limited to a finite volume, which we
overestimate by using the volume of the Brillouin
zone. A rough estimate of the integral is ln[E, /
(E~+ Trq)]/16m, where E, is the cutoff energy. The
value of Sca/4meo is about 0.015, so we find this
correction is also negligible. The change in this
term when the Fermi level is in one of the bands
is a fraction of the value just calculated, and thus
is negligible.

Thus we find that the orbital magnetism is given
by the quasiparticle term, which is the same as
the independent particle calculation with experi-
mental values of the m;. This is just the calcula-
tion of Buot, which gives excellent agreement with
exper iment.

IV. CONCLUSIONS

In Sec. II we proved that the Sampson-Seitz
prescription gives the orbital diamagnetism of a
Coulomb gas if two conditions are met: (i) The
transformed self-energy is the same functional of
the transformed Green's function to second order
in the magnetic field strength as when the magnetic
field is zero, and (ii) the self-energy in the absence
of the magnetic field is independent of the fre-
quency. A model meeting these conditions is a gas
interacting through a statically screened potential
and treated in the Hartree-Fock approximation.
Even though this model gives many of the results
of the random phase approximation, it would be
very gratifying to extend the proof to a more rig-
orous approximation. The Sampson-Seitz pre-
scription offers a simple way to think of diamag-
netism and provides an easy way to calculate a
more accurate diamagnetism whenever an advance
is made in the theory of the self energy in the ab-
sence of the magnetic field. In Sec. II we did find
general expressions for the frequency-dependent
Green's function and effective one-particle energy
eigenvalue in the magnetic field. These expres-
sions may be of use in generalizing the proof of the
Sampson-Seitz prescription.

In Sec. III we treated the case of interacting
electrons in a periodic potential in the same two
approximations as used in Sec. II. We derived a
quasiparticle prescription: The diamagnetism is to
be calculated treating the self-energy as a nonlocal
pseudopotential and ignoring the change with mag-
netic field in the transformed self-energy. It was
pointed out that the theory of Misra and Roth does
just that, and if the correct pseudopotential is used
their theory includes both the band structure and

many-body effects. We also found an explicit
many-body correction to the orbital paramagnetism
which has the same form as, but opposite sign
from, the many-body correction to the spin para-
magnetism. The correction tends to be diamag-
netic in simple cases. We showed that the correc-
tion is negligible for sodium, but may increase
the diamagnetism of lithium by about 15/o. The
correction was also found to be negligible for the
two-band model of bismuth. We cannot as yet com-
pare our results to those of Fukuyama, ~ who cal-
culated for the different two-band model generated
by a weak cosine potential. However his correc-
tions are both diamagnetic and paramagnetic, and
are not symmetric about the middle of the energy
gap.

We have not explicitly considered the question of
the change in screening with magnetic fieM. This
effect would be included in a complete many-body
calculation, but in our models we have kept the
screening of the electron-electron interaction in-
dependent of magnetic field. Hebborn and March'3
have shown that the correction to the screening
parameter g is proportional to s x,. This could
cause a fractional change in the susceptibility pro-
portional to xa„which shouM be included. How-
ever, in the Bohm-Pines theory' the value of q is
chosen so that the derivative of the total energy
with respect to g is zero, which would give no cor-
rection to the susceptibility. Glasser and Kaplan'4
have pointed out that the change in the screening of
the lattice potential should cause corrections to the
susceptibility. This effect is partially included in
our calculation of the change in self-energy 6Z.
Glasser and Kaplan' find that the effect vanishes
for zero absolute temperature. Brown, Hebborn,
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TABLE I. Magnetic properties of lithium and sodium. All experimental quantities are for T =80 K. The units of
susceptibility are dimensionless, often written emu/cm .

Property

10 X tot

10'
Xp

10' X,.

10 X

10' X„

10 Xy

10' X,

1o'
Xg

10' X„

10' X„

10' X„

10

Li

1.86 + 0.06

1.98 + 0.10

—0.06 + 0 002

—0.02 + 0.16

—0.267

—0.202

—0.31 + 0.005

—0.150

-0.19

—0.074

—0.252

—0.233

Na

0.585 + 0.015

1.05+ 0.10

—0.22+ 0.02~

-0.25+ 0.14

—0.219

-0.228

—0.221 + 0.002

-0.235

—0.27

—0.23

—0. 214

-0.208

Comments

Experimental, Collings

Experimental" average

Theoretical

Deduced from above

Free-electron theory, m = mo

Free-electron, m~/ma=1. 32, 0.96

Coulomb gas, m*/F0=1. 45, 0.98,
Fletcher and Larson

Coulomb gas, m*/ma=2. 17, 1.21,
Isihara and Tsai~

Coulomb gas, I*/m0=1. 66, 1.00,
corrected Isihara and Tsai

Band effects only,
Kjeldaas and Kohng

Band effects only,
Papadopoulos and Jones"

Pseudopotential method,
Misra and Roth'

E. W. Collings, J. Phys. Chem. Solids 26, 949 (1965).
"R. Hecht, Phys. Rev. 132, 966 (1963), and references

therein.
'W. A. Goddard, J. Chem. Phys. 48, 1008 (1968).
~Reference 57.
'Reference 6.

~Reference 59.
~Reference 46, with corrected value for Na.
"G. J. Papadopoulos and A. V. Jones, J. Phys. F 1,

593 (1971).
tReference 23.

and Scanes" disagree, finding a fractional correc-
tion which is proportional to x', and whose largest
value is 2/p for lithium.

In comparing with experiment, one usually
writes for the alkali metals X„,= X&+ Xp+ Q where

g „,is the total magnetic susceptibility, g, is the
ionic diamagnetism, Xp is the spin paramagnetism,
and y„ is the orbital diamagnetism of the conduc-
tion electrons. This separation is valid when the
ion core is much smaller than the atomic volume
and the spin-orbit coupling is small, conditions
met by lithium and sodium. In Table I we list the
best values of these quantities. The g„t values are
modern experimental values at liquid-nitrogen
temperatures. The gp values are the averages of
four and three measurements all with stated un-
certainty of + 0. 1 x10~, and all within the uncer-
tainty adopted for the table. The p, values are
calculated from accurate wave functions, Hartree-
Fock for Na and correlated for Li'. The value of

p; for sodium is about equal to X ~, so it is impor-
tant to have an accurate value. It has been con-
cluded' that the experimental values of y, for Na'
are unreliable, though the value —0. 2 x10~ was
adopted. The Hartree-Fock value for Ne is only
3% greater than the experimental value, "and the

Hartree-Fock approximation should be even better
for Na' because of the greater nuclear attraction.
For comparison, Van Vleck's" value gives
—0. 18x10~ and Isihara and Tsai' use a value of
—0. 29 x10 6, which is based on experiments with
compounds. Our diamagnetism deduced from the
above mentioned quantities diff ers significantly
from earlier values, as all three quantities have
changed.

We also list various theoretical values in Table
I, including the free-electron (noninteracting) val-
ues using both the free-electron mass and the
"bare" band mass (effective mass including the
lattice and Hartree potentials only). Fletcher and

Larson and Isihara and Tsai modified their
Coulomb gas calculations by using a band effective
mass. Fletcher and Larson correctly used the
"bare" band masses but Isihara and Tsai used ef-
fective masses derived from the low-temperature
heat capacity, which already contain large many-
body corrections. Therefore we also list the
results of Isihara and Tsai calculated with the
correct effective masses. For comparison, we
also give the results of two calculations which in-
clude the band structure but ignore the many-body
effects. For sodium, most calculations agree that
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APPENDIX A: EIGENFUNCTIONS AND EIGENVALUES OF
THE ONE-PARTICLE OPERATORS

We start by expressing functions of the operator
q„ in terms of K„. The quantity (q„)"may be
written as K2,(q~,)" ', as the k„and k, in K2, on the
left are not affected by the derivatives in q~, . We
can bring the K„ through to the right by using the
commutation relation which is easily proved,

[K„,q„]= s +s (k —g) ~ V„+2ig 5x k . (A1)

If there are no derivative operators to the left of
the commutator we may put f1= k, obtaining s .
If there is one q„ to the left, its action on the
right-hand side of (Al) produces

q, y [K,y, q„]= 3s q, y . (A2)

If there are several powers of q~, to the left, each
one acts individually on the right-hand side of
(Al), which is linear in k:

neither band nor many-body effects are very im-
portant. The new "experimental" value agrees
with all theoretical values, including the value of
Misra and Roth, which we consider the most ac-
curate. For lithium, the deviations are larger.
Our results indicate that the correct value should
be a little larger than Misra and Roth's, perhaps
y„= —0. 26 x10, which seems to be outside the
experimental uncertainty. Unfortunately, g„ is so
small that high accuracy is needed in X„,and p~ in
order to resolve the uncertainty.

Finally, the correction to the orbital paramag-
netism could conceivably be a new mechanism for
superconductivity. In simple cases the solution
for ~Z involves a denominator approximately equal
to 1 —vN(p), where v is an integral involving the
interaction and N(ti) is the density of states. If the
factor vN(tJ) were equal to unity, there could be a.

spontaneous diamagnetism, if the explicit correc-
tion remains diamagnetic. A spontaneous diamag-
netism would be a Meissner effect and thus would

imply superconductivity. This argument is analo-
gous to the theory of free-electron ferromagnetism,
which does not exist because of the screening ef-
fects." The values of vN(ti) estimated in Sec. III
are small, and it is likely that they are always less
than unity.
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We wish to evaluate sums of the type

S=2Z&(-1)"e ' 'I z(2p /s)E[(2K+1)s], (Bl)

where E is a function which can be Taylor expanded.
The most important contribution to the sum comes
from the region where the relations L„,& = -L,~
= Lg y are approximately satisfied. Combining this
with the recursion relation '

(X + 1)L„„—(2A. + 1 —2p /s )L„+AL „+i = 0, (B2)

we find the standard replacement rule (2A. + 1)s = p~.

We thus expand E[(2A. + 1)s ] about this value, and,
to evaluate the sums, make use of the generating
function

J(t, z)=e "~ "/(1 —g)=Z„g"L„(t) . (BS)

The zero-order term is given by setting z = —1,
while the higher-order terms are found by taking
derivatives with resyect to z and then setting g
= —1. Calling

S„=2Z~ (- 1) e ' ~ ' [(21+1)s —p ]"L„(2p /s), (84)

we find Sp = 1& Sg = 0, S2 = —s, S3 = —2s p, and
S4= 20s . Higher-order terms are proportional
to higher powers of s. Combining these results
with the Taylor expansion of E, we have

S = E(p') —3s' p'E" '(p') —,'s'E" (p') + O(s'), — (B5)

The result (A4) also can be used repeatedly until
all q„have been replaced by combinations of K~„.
As the eigenfunctions of K2, are eigenfunctions of
(K„)", they are also eigenfunctions of (q~,)".

vVe need the eigenvalues to second order in s,
for which iteration of (A4) gives

(q„)".= (K„)"+ps n(n —1)(2n —1)(K„)"2+O(s4) .
(A5)

If the self-energy can be expanded in powers of

p, we have after operator replacement

~(q.',) =Z.&.(q.',)"

= g(K2, )++'[-,'K.', Z"'(K.',)+-'~"(K'.,)]+O(e'),

(As)
where the primes stand for derivatives with re-
spect to p (or K„). This completes the proof of
Eq. (2. 14).

APPENDIX 8: EVALUATION OF SUMMATIONS

(q.',)"[K:„q:,] = (» 1)"(q.',)" .
Finally we can use (A3) repeatedly to obtain

(q2 )n K2 (q2 )n-1

(q2 )n-1K2 + (n 1)2&8(q2 )n-2

(A3)

(A4)

where the primes stand for the derivatives with

respect to p2. This result then involves the same
oyerator D that appears in the eigenvalue equation
When E is taken to be [e -E„(k,)] ', Eq. (2. 19) is
obtained.
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APPENDIX C: PROPERTIES OF THE OPERATOR D

The integral over k space can be separated into
the integral over k, and the integral over k„and
k, . For cylindrically symmetric functions the
two-dimensional integration (2m) f dk„dk„can be
replaced by (4m)

' fdp2. Using the notation p2=x,
we consider integrals of the type

I= f dxF(x)Dg(x), (cl)

where F(x) and g(x) are differentiable functions
which are everywhere finite, and at least one of
which vanishes rapidly as x approaches infinity.
A series of partial integrations yields

1 Bg BEI=-—E —+g—
9& .=p

dxg(x) DF(x) . (cs)

The first term in Eq. (CS) is equal to f~" dx D(Fg),
so that (CS) proves the result that under the inte-
gral D(Fg) =FDg+ gDF.

We now apply (C2) to evaluate Eq. (2. 31), so
that g =f (op), the Fermi distribution function, and

F = e p
—p. At low temperatures Bf/Bx = 0 unless

Ep(x) = p . Thus the term evaluated at x = 0 vanishes,
as at least one of the factors is always zero.
Furthermore Dp. =0, so the integrand is equal to

fD&p. Returning to the k notation, we note that

Ep is a spherically symmetric function, depending
~+k~+k~ ++k

1 96p
Bx 2k Bk

and

1 8 1 8& 1 8& 1 Be

2k Bk 2k Bk 4k a Bk8 k Bk ]

The integral I now becomes

'™
p& 92~p 1 9&p

4g 3k~ Bk k Bk

(c4)

(c6)

1 Bep 1 Btp Bf
Sk Bk 2k Bk Bep

Including the integral on k, and the multiplying
factors, Eq. (2. 31) becomes

36m' . Bk Bk Bk 9&p

9 ' (1 9~I=--,'F( ) ~Bx „., ~ ~ 3 Bx' 6 Bx ) 8„ .
0

(c2)
In the above, we have discarded all terms evaluated
at infinity, and those terms proportional to x at
x = 0. Further partial integration yields

where we have evaluated the angular integrals by
making use of the fact that the average of (p/k) is
equal to —', . We change to an integration on Ep and
use the fact that at low temperatures Bf/Be
= —8(ep —p, ) to find

8 82 3

362' Bk Bk /n~~

This result gives Eq. (2. 32) on restoration of the
units.

(C8)

APPENDIX D: PROOF THAT THE THERMODYNAMIC
POTENTIAL IS STATIONARY TO SECOND ORDER

IN THE SELF-ENERGY

We wish to prove that the quantity given in Eq.
(3.12) is zero at low temperatures. The same
formula gives the total change in the thermody-
namic potential due to a change in the self-energy
when Eq. (3.10) is valid. In both cases BG is the

change in G due to the change in self-energy alone,
and is given in Eq. (3. 24). As in our approxima-
tion 6Z is independent of frequency, we may per-
form the integration on frequency before substi-
tuting into Eq. (3.12). We shall use the Bloch
representation, in which Xp+ Zp and Gp are diag-
onal. We find

82
"" 9+n nn Bg

B~nn' B~n' n fn fn' + fn
~ (Dl)8„-8„. 9$„j

Bp. .=((f.-f.)i(~.-~. )]&~;.. n'«, (D2)

d k &Z„„BZ„.„nn n n [(g ~)(f f )

+ l(h. —&g)(f.-f;)].
The factor outside the square brackets is even
with respect to interchange of n and n', while the
factor inside the brackets is odd. Thus the double
summation is zero, completing the proof.

where f„=f (8g and $„(k) is the eigenvalue of
Xp+Zp. We need the off-diagonal 5p only to first
order to calculate the quantity (3.12) to second or-
der. When these expressions are substituted into

Eq. (3. 12), two terms are produced of the form
fd k (8„—p) Bf„/Bg„. These terms are propor-
tional to the square of the absolute temperature
and will be neglected. Two other terms involve
fd'k(Z„„)'((&„-I )(8'f/BS„')+ Bf/88„], which
after partial integration takes the same form as
the first two terms discussed above. Finally, we

are left with the terms
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