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It is shown that the influence of conduction-electron polarization effects upon the suscep-
tibilities of metals containing the tripositive samarium ion is very much greater than upon
metals containing normal rare earths. A theory of the susceptibility of metallic samarium
materials is developed which takes account of these polarization effects and of interionic
Heisenberg exchange couplings, the admixture of the J=

2 state into the J=
2 ground state,

which is assumed to be the only one to be thermally populated, but which, however, does
not take account of crystal-field splittings. The susceptibility is found to be of the unex-
pectedly simple form X(T) =)(o+D/(T —e), in which the only dependence on temperature T
is that explicitly shown. This expression is found to fit the published data for the suscep-
tibility of dhcp samarium to an accuracy of 1% in the temperature region 110-230'K, and
the parameters extracted from the fit are found to be in excellent agreement with those ob-
tained for the other light rare-earth metals. An expression is also derived for the suscep-
tibilities of metals containing normal rare earths, which takes account of both conduction-
electron polarization and crystal field effects.

I. INTRODUCTION

The purpose of this paper is to direct attention
to the effects of conduction-electron spin polariza-
tion upon the paramagnetic susceptibilities of me-
tallic rare-earth compounds, in particular those
containing samarium. Although for "normal"

rare-earth ions (that is, those whose properties
may be adequately described by taking account only
of the lowest angular momentum level of quantum
number J) the effects of conduction-electron spin
polarization upon the paramagnetic susceptibility
are rather small —of the order of a few percent—
they are nonetheless important to measure because
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from them the sign of the coupling constant between
the f shell and the conduction electrons may be de-
duced. The sign of this quantity, which is be-
lieved to consist of a positive contribution from
direct exchange and a negative contribution from
s-f mixing, is difficult to obtain by other means.
Measurements of the ESR g shift should give it
directly, but in practice resonances are rarely
seen for other than S-state ions, and when they are
seen, bottleneck effects' make their interpretation
difficult. The excess Knight shift at a nonmagnetic
nucleus in a rare-earth compound can in principle
give the sign, but a detailed knowledge of the com-
pound's band structure is needed to calculate it,
and our present knowledge of band structures is in-
adequate for this purpose. The sign may also be
deduced from logarithmic anomalies in the resis-
tivity, '8 but only if they are large enough to be de-
tectable, and for rare-earth materials apart from
those in the virtual-bound-state category, they
usually are not.

It is recognized that the effect of conduction-
eleetron polarization upon the susceptibilities of
metals containing normal rare earths is small;
however, the effect of it upon metals containing
samarium, as we shall show in this paper, is very
much larger. In fact, in order to attempt to un-
derstand the paramagnetic susceptibility of ele-
mental samarium metal it is essential to take ac-
count of conduction-electron polarization, and this
aspect of the problem has not been adequately
treated before. In this paper we therefore calcu-
late expressions for the susceptibilities of metallic
compounds containing samarium or normal rare
earths which take account of this important fea-
ture.

The free-tripositive samarium ion possesses
five electrons in its 4f shell and has a spectro-
scopic structure which is well described by Hund's
rules. The lowest term is a 6H (8=-'„L=5, where
8 and L are the spin and orbital angular momen-
tum quantum numbers, respectively), and this is
split by the spin-orbit interaction into a multiplet
with a J=-,'ground state. The first excited level,
the J= 2, lies about 6=1550'K above it, ' and the
other angular momentum levels are correspond-
ingly higher. The effective paramagnetic moment
of the J=—', ground level, which is given by
g[Z(J'+1)j', where g is the Landh factor of that
level, happens to be rather small (0. 845'.~) com-
yared to those of the other rare earths apart from
europium. The consequence of this is that a large
portion of the magnetic susceptibility of an as-
sembly of free samarium ions will arise from the
virtual transitions between the J = -', level (which
throughout this paper we assume to be the only one
to be thermally populated) and the 8= +2 level, which
are induced by the applied magnetic field. The

susceptibility will then be proportional to 5+ &/7,
where T is the temperature. This expression for
the susceptibility and its generalization to take into
account the thermal population of higher J levels
was first obtained by Van Vleck, and the term 5
and the transitions which give rise to it are known

as the Van Vleek term and the Van Vleck transi-
tions, respectively.

When the magnetic ion is situated in a metal, it
is subjected to two main influences. The first is
the effect of so-called crystal fields which split
the 2 J+1 degenerate states of each angular mo-
mentum level into a number of levels which de-
pends upon the point symmetry of the solid about
the magnetic site. The crystal fields will also
admix angular momentum levels, but this effect
is not expected to be big enough to influence sub-
stantially the susceptibility behavior of the normal
rare earths; it may, however, affect samarium
materials. ' The magnitudes of these fields are
difficult to calculate from first principles, partic-
ularly in metals, "but once they are known or taken
as given parameters, their effects upon rare-earth
ions may be calculated by the concise methods of
Stevens and Elliott and Stevens. 3 The second in-
fluence which acts upon the ion is the s fcoupling-
between the ion and the conduction electrons, which
may be written in the schematic form —2$& S s,
where S is the spin operator of the magnetic ion,
s is that of a conduction electron, and g,z is the
coupling constant which is a matrix element de-
pending in general upon the initial and final wave
vectors of the scattered conduction electron. This
gives rise first to a long-range Heisenberg cou-
pling between ionic spins and second to a clothing
of the bare rare-earth spin with a conduction-elec-
tron cloud which adds or subtracts a portion of
conduction-electron spin magnetization to the free-
ion moment. These effects are associated with
the names of Buderman and Kittel, ' Kasuya, ' and
Yosida, known collectively as RKKY.

Therefore in a calculation of the susceptibility
of a system of rare-earth ions in a metallic solid,
the following factors must be taken into account:
(a) the crystal-field splittings of each J level and
the admixture of one with another; (b) RKKY Heis-
enberg interactions between ions; (c) Van Vleck
transitions between different J levels which are
caused both by the applied magnetic field and by the
exchange fields when the BKKY interactions are
treated in a molecular-field approximation; (d) the
effects of the conduction-electron spin polarization
clothing of the bare-ion spin; and (e) the thermal
population of higher-lying J levels.

A susceptibility calculation has not yet been made
for any rare-earth material which takes account
of all five of these factors. Van Vleck made cal-
culations which considered (c) and (e), and Frank '
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a'[1+ 2'(0)p(g —1)/gj'XT=
T —)a' (1.2)

This equation takes account of factors (b) and (d).
J(0) is the q=0 component of the wave-vector-de-
pendent coupling constant J(q) which appears in
Kasuya's second-quantized formulation of the sf-
interaction. For an electron gas in which there
are no internal exchange or Coulomb interactions,
p is equal to the conduction-electron density of
states per atom at the Fermi surface for one spin
direction. This notation is the same as Kondo's.
For a free-electron gas, p is given by

p = SZ/4Z„,

where E~ is the Fermi energy and Z is the average
number of conduction electrons per atom in the
metal. It is recognized, though, ' that even for an
interacting electron gas, p is proportional to the
uniform Pauli spin susceptibility,

p = X,/2g~N*,

where ~ is the Pauli spin susceptibility per unit

mass, p~ is the magnitude of the electronic Bohr
magneton, and ¹ is the total number of atoms (in-
cluding both magnetic and nonmagnetic ones) per
unit mass. The susceptibility of the metallic ma-
trix y„, which consists of the Pauli and orbital
paramagnetic and the Landau and core diamagnetic
contributions, and which is usually substantially
temperature independent, must be added onto the
right-hand side of Eq. (1.2) in order to obtain the
total susceptibility of the solid.

Another interesting property of the paramagnetic
state of metallic rare-earth compounds is the ex-

considered (a), (c), and (e) together. De Wijn et
aE. derived an expression for the susceptibility
of a samarium compound taking account of factors
(b), (c), and (e). They treated the Heisenberg ex-
change interactions by means of the molecular-field
method put forward by Wolf and Van Vleck' and
also obtained an expression for the quantity
(S')r/H, where (S')r is the thermal average of
the ionic operator S', z being the direction of the
applied magnetic field H. Bleaney' took account
of (a) and (b) and derived the following equation for
the susceptibility y(T):

,-'(r) = „.-'(z) —~, (1.1)

where y, (T) is the susceptibility of the noninter-
acting system of ions subject to the crystal field
and & is the molecular-field parameter. This
equation is valid only within the manifold of states
of the lowest J level.

As for the effects of conduction-electron polar-
ization upon the susceptibility, it is known' that if
the susceptibility of a system of bare ions is a'/7,
then the full susceptibility is given by

cess Knight shift which occurs at the nuclei of the
nonmagnetic atoms. This arises because the s f-
interaction allows the magnetic atoms to polarize
the conduction electrons in their vicinity and so
propagate waves of spin density through the crys-
tal. These impinge upon the nuclei of the nonmag-
netic atoms, which sense them through their hyper-
fine interaction. This excess Knight shift, which
is the Knight shift in addition to that caused by the
normal uniform conduction-electron polarization
mechanism, is proportional to (S')r/H. For the
normal rare earths apart from tripositive samar-
ium and europium, (S')r is proportional to the
ionic magnetization —p~ (L' +2 S') r, and hence the
excess Knight shift is proportional to the ionic sus-
ceptibility. However, for samarium Van Vleck
transitions play an important part, and it has been
shown by White and Van Vleck that because of this
the excess Knight shift in samarium compounds
should change sign at about 300 'K. De Wijn et gl.
reported that their calculated expression for
( S') r/Hwas reasonably similar to the experimen-
tal values of excess Knight shift which they ob-
tained for the compound SmAl3 and that their cal-
culated susceptibility also resembled the experi-
mental results. However, a measurement of the
excess Knight shift of SmAlz ' failed to reveal any
change of sign, and Malik and Vijayaraghavan'
have suggested that in this compound crystal fields
may play an important part by mixing higher J
levels into the J=-', ground state, thus preventing
the crossover.

The plan of the remainder of this paper is as fol-
lows. In Sec. IIA we discuss the effective Hamil-
tonian for the magnetic ions, which is our starting
point for calculations of the magnetic properties
of rare-earth materials. It contains the effects of
crystal fields and the effects of conduction-electron
polarization obtained from treating the s finterac--
tion to second order in perturbation theory. Heis-
enberg exchange interactions are treated in the
molecular-field approximation. Whether or not
Van Vleck transitions between different J levels
are taken account of depends on which manifolds of
states the effective Hamiltonian is allowed to act
upon. In Sec. IIB the Hamiltonian is solved within
the manifold of states of a single J level, and a
generalization of Bleaney's 8 equation (1.1) is ob-
tained which is valid for a metal. In Sec. IIC the
effective Hamiltonian is applied to a set of ionic
states which, it is hoped, will adequately repre-
sent the samarium ion. Van Vleck transitions are
allowed but crystal-field splittings are taken to be
zero. In addition, it is assumed that only the low-
est J level is thermally populated. The results
should therefore be applicable to samarium in a
temperature range above that at which crystal-
field splittings have a significant effect upon the
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susceptibility and below that at which the thermal
population of higher 8 levels becomes important.
In Sec. III the theories are compared with pub-
lished experimental data for some of the light rare-
earth metals.

II. THEORY

A. Effective Hamiltonian

The s for s--d Hamiltonian 2 is notoriously dif-
ficult to handle, and it was not until 1957 that Yo-
sida fully calculated the effects of it to the lowest
orders of perturbation theory. Kondo' began the
investigation of the consequences of treating the
interaction to higher order, and the question of
what happens to a local moment at low temperature
when the 8-d interaction is treated fully, particu-
larly when the coupling constant is negative, is
still far from settled.

In this paper we only consider the effect of the
s-1 interaction to the lowest orders in perturbation
theory. Therefore we take as the starting point of
our calculation the effective Haxniltonian K, for the
magnetic ions which was derived by Yosida, . This
ls

—28~y (8')rZS„', , (2. 3)

teractions, which are not relevant to the problems
considered here. We have also omitted a term
from each equation which refers to the uniform
Pauli conduction-electron spin polarization of the
metal; this must be added on at the end of the cal-
culation in order to obtain the total magnetization
of the solid. The quantity (aN) of Yosida has
been converted by Eq. (1.3) into 2p, and also the
terms g = m have been omitted from the double
suxnmation. This omission will be justified in
Sec. IIB. To Yosida's Hamiltonian we have added
a term p~ L'Il mhich represents the interaction of
the orbital part of the ion's angular momentum
with the applied magnetic field. A Hamiltonian
P„which represents the potential energy of the
ionic electrons in the crystal field has also been
formally added.

We may now treat the term in Eg. (2. 1) which
contains the Heisenberg exchange interactions by
a molecular-field method, '~ which applies in the
paramagnetic and ferromagnetic regimes, and re-
duce it to

X, =Z V„'+ p~ HZ (i.„' +28„')+p~ H J(0)pZ28„'
e

"'
n n

Z A„S„'8„. (2. 1)

m'here

~ff ~ ~nm
n

n&m

(2.4)

n, m
ffAm

Yosida also obtained an equation relating the total
spin polarization in the conduction band (n, —n, )

(the total number of conduction electrons with spin-
up minus the number with spin-down) to the ionic
spin operators:

n, —n, = Z(0)pZ„28„'. (2 2)

This conduction-electron spin polarization is not,
of course, uniform throughout the metal. It is
distributed in the well-known BKKY magnetization
density oscillations originating from each mag-
netic ion. II is the magnetic field, which is in the
z direction, L' and 8' are the operators for the z
component of the orbital and spin angular momen-
ta, respectively, of the magnetic ions, and Z(0)
and p have been defined previously. The coeffi-
cients A„, which give the strength of the exchange
couplings between the ions, depend on the detailed
nature of the metal's band structure and of the s-f
coupling. The general expression for them has
been given by Yosida, who has calculated analyti-
cal forms for them using certain simplifying as-
sumptions. Their exact forms need not concern
us here; we shall take them as adjustable param-
eters.

In transferring Egs. (2. 1) and (2. 2) from Yo-
sida's paper we have made several changes in them.
We have omitted terms which refer to nuclear in-

m' = —p~ (L'+2 8')» (2. 6)

and the magnetization per ion m' of the electron
gas, which from Eq. (2. 2) is given by

m'= —p, 240) p (S'), . (2. V)

The sum of m'+en' then gives the "dressed" mag-
netization of the ion.

if we substitute Eg. (2. 3) into (2. 1) the following
single-ion Haxniltonian is obtained:

Z= V, + p ~(I-'+28')H+ps28'[J(0)oH —(S')ref f /Pg]
(2. 5)

In the interests of simplicity we have assumed
that the compound whose susceptibility we shall
calculate has only one magnetic atoxn per primitive
cell, although elemental samarium has more, and
even though it is known that anisotropic and non-
Heisenberg exchange effects may be important in
some circumstances, we shall not consider them
in any detail, but only take account of the isotropic
Heisenberg interionic interactions which result
from the simple RKKY mechanism.

In the remainder of Sec. II this effective Hamil-
tonian mill be applied to two situations which are
of importance for rare-earth magnetic materials,
with the purpose of obtaining (8')r, which deter-
xnines the excess Knight shift, the ionic magne-
tization per ion
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8. Susceptibility of Materials Containing Normal
Rare-Earth Ions

We now proceed to solve the effective Hamilto-
nian within a manifold of states of constant J. This
should accurately represent the situation for nor-
mal rare-earth iona in which the separation be-
tween the lowest-lying multiplet levels is large.
In this case the Wigner-Eckart theorem allows
the substitutions

L+28-gJ,

s-(g-i)J,

( g ) ft' (2. S)

We now assume that the crystal-field-only Hamil-
tonian

+c ~c+ pBg J (2. io)

has been solved to give the crystal field suscepti-
bility X,(T), where

m' = X,(T)H . (2. ii)
It follows that when Eq. (2. 8) is to be solved

m' = X,(T){H [I+2 J(0)p(g —1)/g] + X m'];
(2. i2)

therefore,

m'[I-XX, (T)]=X,(T)H[I+2J(0)p(g- i)/g] .
(2. iS)

Now from Eq. (2. V),

m'=2 J(0) p~ m',(g —1
(2. 14)

so that

(m'+ m') [1—X X,(T) ]

= X,(T) [1+2 J(0) p(g —1)/g] H . (2. 15)

If the "dressed" susceptibility of the ions is defined

X(T) = (m'+ m')/H,

then the following equation is obtained:

X (T)[1+2J(o)p(g —I)/g] =X. (T) —X

or

x.(T) [I+2 J(0)p(g —I)/g]',
Xr T =

I X„(T) +X@~

(2. 16)

(2. 17)

(2. i8}

L- (2-g)J,
and Eq. (2. 5) becomes

R= V, + p ~gJ '
f H [1+2 J'(0) p( g —1)/g]+ X m ],

(2. 8)
where it is useful to define a molecular-field pa-
rameter A, by

K, =-A„„f (2. 19)

Now the states of a rare-earth ion are to a good
approximation described by the Russell-Saunders
coupling scheme and can be written in a conven-
tional form 1LSJM). Then because 12 i~LSJM)
= S(S+ 1) l LSJM), the only effect of H, is to lower
each state in energy by A„„S(S+I). 3C, cannot mix
Russell-Saunders coupled s'ates, and in particular
it cannot mix higher-lying crystal field states into
a nonmagnetic ground state and so spontaneously
polarize a non-Kramers ion; therefore 3C, need not
be taken account of when considering rare-earth
materials.

As well as the susceptibility, it is also straight-
forward to calculate the quantity (S')r/H, which
is of interest because it is proportional to the ex-
cess Knight shift. (S*)r is related to m' by

(S'~} (g —I)(J')r 1 t' g —1 m'
H H p~ ( g H

(2. 20)

where Xr(T) is the total susceptibility of the metal
and X„ is the matrix susceptibility per magnetic
atom. Equation (2. 17) reduces to the the one de-
rived by Bleaney'8 in the case where J(0)p = 0, and
Bleaney's criterion for the occurrence of ferro-
magnetic ordering at a temperature T, [XX,(T,) = 1]
is seen to remain valid for a metal. For a mate-
rial of point symmetry lower than cubic, the pa-
rameters in Eq. (2. 18) will in general be aniso-
tropic andthere will be a separate equation of the
type (2. 18) for each principal axis of the suscep-
tibility tensor.

It can be seen from Eq. (2. 1V) that the effect of
the part of the s-f interaction which is not associ-
ated with the Heisenberg couplings between the
ions is merely to multiply the ionic susceptibility
which the material would have without it by a fac-
tor of [1+2J(0)p(g —I)/g] . This part of the s-f
interaction, as manifested in Eq. (2. 1V), does not
appear to be able by itself to induce spontaneous
ordering of an ion whose crystal field ground state
is nonmagnetic, as has been suggested by Mahanti
and karma. It is possible that the difference be-
tween Eq. (2. 1V) and the expression of Mahanti and
Varma arises because they based their theory on a
treatment of the s-f interaction, whose relation to
Yosida's effective Hamiltonian is not entirely
straightforward to see.

In obtaining the effective Hamiltonian which was
used as the starting point for the susceptibility cal-
culation, the n= m term of the Heisenberg-interac-
tion Hamiltonian —g A „„f„'f„was omitted. This
means that to the Hamiltonian of each ion a. term
K„which describes the self-energy of the ion in
its own spin polarization cloud, should be added
where
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by the signer-Eckart theorem, and from Eqs.
(2. 13) and (2. 20), we obtain

(&') & ~(Z
—

~) „~T~
H JLt ~ I, g

x(1+ p g '
(2 21)

and we see that the excess Knight shift is exactly
proportional to the "dressed" ionic susceptibility
providing that p does not vary with temperature.

Such variations of the matrix susceptibility can
have significant effects upon the total susceptibil-
ity, not so much through their influence upon the
term Z(0)p, which will give only a second-order
effect, but through their influence on the molecu-
lar-field parameter &. Kasuya' has used this idea
to explain why the proportional increases of the
effective paramagnetic moments of the heavy rare-
earth metals are so much smaller than the in-
creases of the effective ferromagnetic moments,
which from Eq. (2. 14) are given by [1+2 J(0)p
x (g —1)/g]. For example, for gadolinium (the
data are taken from Kasuya's review) the effective
ferromagnetic moment is 7. 55li~, which is 8%
greater than the free-ion value, while the para-
magnetic moment is only 0.5/o greater. (However,
in comparing the paramagnetic moment to the ferro-
magnetic moment it should be remembered that the
latter results from an electron gas which is strongly
magnetized to a value of 0. 55 ',~ per atom, and so the
linear-responseapproximation, whichwehave im-
plicitly been using in this paper, may not be too good. )
It is worthwhile to review Kasuya's argument, as we
shall need it when examining the susceptibilities
of the light rare-earth metals in Sec. III.

It has been established by Penney and Schlapp '
that crystal fields may have the effect of convert-
ing the susceptibility of a free rare-earth ion,
which is of the form C/T, into the form X,(T)
= C /(T —0) for a polycrystalline specimen over a
range of several hundred degrees kelvin, where
0 is negative and C is slightly greater than C,
provided that the temperature of measurement is
not too low compared with the crystal-field split-
tings. For instance, in the calculations which
Williams and Hirst" made of the susceptibilities
of heavy rare-earth ions subjected to a cubic-
crystal field, it was found that although the over-
all crystal-field splittings were in the region of
100—200 'K, susceptibility behavior of the form
C /(T —Q) persisted down to 10-40 'K, and that
—0 was of the order of 2-10'K. However —0
can be substantially larger than this; for example,
in Ybz(SO4)3 ~ 8 H20 it is + 42 K.

Therefore, in the temperature regime in which
the expression X,(T) = C'/(T —0) is valid,

X(T) = X,(1 —T '/T ',), (2. 24)

where T~ is of the order of the degeneracy tem-
perature of the electron gas, although at tempera-
tures above room temperature a linear dependence
on temperature seems to be more satisfactory for
the heavy rare-earth metals. ' Therefore,s, ,

' C'[1+ 2Z(O) p(g -1)/g]'
TsT " ' 1+ 2T T /T',

(2. 25)
where Te= go C, and so the ratio of the effective
paramagnetic moment p, which is deduced from
the slope of the inverse susceptibility curve at a
temperature T, to the ba, re moment po
= g[Z(Z+ 1)]'"is

p/p, = [1 2+2(0)p(g —1)/g](1 —TT /T )
(2. 28)

In obtaining this equation from the one above we
have assumed that the value of C is very close to
that of C. We shall see in Sec. III that this as-
sumption leads to some very reasonable results,
but nevertheless it can only be rigorously justified
by an accurate crystal field calculation. The as-
sumption will, however, be a good one for gadolin-
ium materials as these have crystal-field splittings
which are very small.

From the value of the effective ferromagnetic
moment of gadolinium metal, it may be deduced
that J(0)p =+ 0. 08, and from the value of the ef-
fective paramagnetic moment, measured at, say,
T = 600 'K and taking T& = 300 K, it may be de-
duced from Eq. (2. 26) that TF is in the region of
1600 K. Usually in metallic rare-earth materials
TTz/TI «1 and the effective paramagnetic moment
is temperature independent; only for the heavy
rare-earth metals is the second factor large enough
to need to be taken account of. In his original der-
ivation Kasuya' assumed a linear dependence of A.

upon temperature. This results in an effective mo-
ment which is modified by a numerical factor but
which is also temperature independent, in agree-
ment with the experimental results for most of the
heavy rare-earth metals. However, it is impor-
tant to note that the quadratic temperature depen-
dence of Eq. (2. 24) can in principle provide a

X-'(T) = [T —fl —C'~(T)]/C'[1+ 2 J(0)p(g —1)/g]'

(2. 22)
from Eq. (2. 17), and hence

s
[ i( )] 1 —C'(s/BT) x(T)

C'[1+ 2~(0) p(g —1)/Z]'
(2. 23)

Now it is reasonable to assume that the molecular-
field parameter X [Eq. (2. 9)], which depends upon
the wave-vector-dependent susceptibility of the con-
conduction-electron system, has the temperature
dependence
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K= ps(L'+ 2S') H + ps2$'[J(0)pH- (S )r$ ff(4 J3),

(2. 27)
which may be written

K= ps(L'+ 2$') H, + ps2$'H, , (2. 28)

where H„ the total exchange field, is given by

H, = Z(0)PH —(S')rgb/Ps .

It is known that a Hamiltonian of the form
ps(L*+2S')H gives rise to a susceptibility per ion

y, = —ps(L'+ 2$')r/H obtained from

(2. 29)

mechanism for deviations from linearity of a plot
of g '(T) against temperature in the high-tempera-
ture paramagnetic regime.

C. Susceptibility of Metals Containing Samarium

In the discussion of the susceptibility of metallic
samarium compounds which is given in this sec-
tion, the following assumptions are made: First,
the Heisenberg exchange interactions between the
magnetic ions are treated in the molecular-field
approximation„second, crystal field effects are
neglected; third, it is assumed that only the lowest
angular momentum level of the ion is thermally
populated: No further physical or mathematical
approximations enter the theory thereafter. This
means that the theory is applicable only in the tem-
perature range in which the latter two restrictions
do not make themselves felt. For the particular
samarium materials whose susceptibility data are
analyzed in Sec. III, this range appears to be from
15 to about 230 K, but for other materials it may
be different. It is straightforward to generalize
the theory to take account of the thermal popula-
tion of higher-lying J levels in the manner of De
Wijn et al. ,

' and this will be the subject of a future
paper.

The single-ion Hamiltonian of the problem is
therefore

—(I '+ 2$')r=a[H+ 2H, (g —1)/g]/T+ b(H+ 2H, ),
(2. 33)

—(S )r=a[H+ 2H, (g —1)/g] (g —1)/gT+ b(H+ 2H, ) .
(2. 34)

The equations may be obtained by treating the Ham-
iltonian of Eq. (2. 28) by perturbation theory and
calculating the thermal averages of the operators
S' and (L'+ 2S'). They may also be obtained by
the more concise but equally rigorous arguments
of White and Van Vleck. The essential point which
they use is that the matrix elements of the opera-
tors S and (X+ 28) between states of different J are
exactly the same, because the operator J= (L+ S)
is by definition diagonal in the quantum number J.

The procedure for solving Eqs. (2. 29), (2. 33),
and (2. 34) is first to substitute (2. 29) into (2. 34)
in order to get a self-consistent value for (S') r/H.
Having obtained this, the extra conduction-elec-
tron magnetization I ' may be got from Eq.
(2. 7) and the exchange field H, from Eq. (2. 29).
The latter may then be substituted into Eq. (2. 33)
and so (L'+ 2$'}r/H and hence the ionic magnetiza-
tion m' [Eq. 2. 6] are obtained. To this is added
the conduction-electron magnetization m', and
the sum of the two divided by H gives the "dressed"
susceptibility per ion. Some of the algebraic steps
in this calculation are given in more detail in the

Appendix.
First we substitute (2. 29) into (2. 34} to obtain

—($'&r/H =
Tg

b I T[1+ 2Z(0)p] —To[1+ 2Z(0)p(g —1)/g]j
(T- T-)

(2. 35)
where it has been found useful to combine some of
the parameters into the forms

(2. 36a}

—(I,'+ 2$')r/H = a/T+ b,
where

a = p sg J(Z+ 1)/3k,

(2. 30)
2JyyQ g —1 (2. 36b)

(2. 31)ps F(J+ 1)
6(2J'+ 1)4

F(J) = [(S+L + 1) —J ][J —(S —L) ]/J, (2. 32)

and where g and J refer to the lowest J level and
4 is the energy separation between that and the
(J'+ 1) level. For the lowest multiplet level of the
tripositive samarium ion J= —,, and putting the values
of the quantum numbers S and L into Eq. (2. 32}, it
is found that b = 20ps/7h.

White and Van Vleck have shown that when an
exchange field is present as well, as in Eq. (2. 28)„
then the following expressions are valid:

or

T„g—1 To
(2. 36c)

$. H g —1 a[1+ 2J(0)P(g-1)/g]
(T- Te)

the latter two equations being equivalent. In the
limit of an infinitely large multiplet separation 4,
b approaches zero and Eq. (2. 35) becomes
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and it is seen that Te is the paramagnetic Curie
temperature which the system would possess if
Van Vleck transitions were absent.

From Eq. (2. 36c) it is apparent that if the condi-
tiongT~/(g-I) To= —1 is obeyed, then T will ap-
proach infinity and (S')r/H will be divergent at fin-
ite temperatures, as will the total susceptibility,
because we shall see later that this contains a
term which also has a denominator of the form
(T —T„). In this situation there will, therefore,
be a polarization catastrophe, somewhat analogous
to that discussed by Trammell and Bleaney' for
a rare-earth ion with a nonmagnetic crystal field
ground state, but in our ease it is the J=

~ multi-
plet level which will be spontaneously mixed into
the ground-state J=

& level by the exchange field.
Van Vleek has found that a screening factor o of

33 accounts best for the susceptibility of samarium
salts, and from this value a splitting of 1550 'K be-
tween the J= —,

' and J=~ multiplet levels may be
calculated. Using Eqs. (2. 31) and (2. 32) the value
To= 322'K is obtained. As g= 7 for the samarium
J= z level, it is found from Eq. (2. 36c)that Te must
be greater than 800 'K for the polarization catastro-
phe to occur. This value is rather large, and the
phenomenom does not yet seem to have been ob-
served in compounds whose only magnetic con-
stituent is samarium

Equation (2. 35) shows that the temperature T„o
at which the excess Knight shift changes sign is
given by

T„=T [1+2 J(0)p(g —1)/g]/[1+ 2 J(0)p] .
(2. 36)

and not T~o= To, as given by the theory of White
and Van Vleck. ' Using the value J(0)p=+ 0. 1,
which as we shall see in Sec. III may be suitable
for samarium metal, a value of roughly 150 K is
obtained for T~ in contrast with 322 'K if Z(0) p is
zero. This effect is however probably not ade-
quate to explain the nonobservance of a Knight-
shift crossover in the compound SmA13. ' The
value of J(0)p deduced from the paramagnetic mo-
ment of the isostructural compound GdA1~ is very
small indeed, and it is likely that the crystal field
effects discussed by Malik and Vijayaraghavan'
are needed to provide the explanation.

We now return to the calculation of the suscepti-
bility. From Eqs. (2. 7) and (2. 35) we obtain an
expression for the conduction-electron magnetiza-
tion m' associated with each ion,

~ /&, H= g —1 T„'t a
To ~ (T-T-)

x I [1+2Z(0) p] T/T [1+2Z(0) p(g 1)/g]}
(2. 39)

and from Eqs. (2. 29) and (2. 35) an expression for

the exchange field H, :
g2H, /H = 2Z(0) p—

& (T [1+2Z(0) p] —To[1+ 2 j(0)p(g —1)/g] }.

(2. 40)
We may now substitute the above equation into Eq.
(2. 33) to obtain

—(L'+ 2S')r/H = b [1-gT„/(g —1) To]

((I - T-/T. )' (1-T/T. )

x(T)/&8 = & [I -g T-/(g-1) To) [I+ 2~(0)&j'

+ (I+ 2 J(0)p(g —1)/g- [1+28(0) p] T /To)~ .
(2. 42)

An interesting feature of this equation is that the
temperature dependence only enters through the
term in the denominator; a Curie-Weiss type of
behavior occurs. For the free ion

X(T)/pa = &+ ~/T (2. 43)

and for an ion subjected to the exchange couplings
and conduction-electron polarization effects which
we have analyzed here,

X(T)/ps-b*+a*/(T —T„), (2. 44)

where a* and b* are defined by Eq. (2. 42). Of

course, to obtain the total susceptibility of the
metal, the matrix contribution y~/iLs must be ad-
ded onto Eqs. (2. 42) and (2. 44).

III. COMPARISON WITH EXPERIMENT

A. Samarium

Measurements of the susceptibility of samarium
metal have been made by Lock, ' Schieber et al. ,
and Jayaraman and Sherwood. ' The latter made
measurements up to room temperature on poly-
crystalline specimens of both the rhombohedral
form of samarium and also of the double-hexagon-
al-close-packed (dhcp) structural modification,
which can be formed at moderate temperatures
and pressures. We shall now compare the theory
of See. II C with their results.

In their paper Jayaraman and Sherwood plotted
the magnetization of the metals at a field of
15300 Oe. However, as Schieber et al. have
reported that the magnetization-field curves are
linear up to 16 800 pe, the magnetization read-
ings have been converted into susceptibility ones
by dividing by 15 300, and these are plotted as the
points in Figs. 1 and 2.

x [(g —1)/g- T„/To) 2J(0)p} . (2. 41)

Now m'/gs H may be added to this to obtain the fi-
nal result, y(T)/p3= (m'+m')/psH:
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FIG. 1. Magnetic susceptibility of
rhombohedral samarium metal plot-
ted against temperature. The data
points are obtained from Ref. 33,
and the continuous curve obeys the
equation X&(T) = [7.888+106,781/
(T + 9.45 8) ] x 10 6.

~ ~

8
100 00 300

Equation (2. 42) predicts that the total suscep-
tibility of the metal will be of a quasi-Curie-
Weiss form,

X r(T) = Xo+ D/(T 8) (3 1)

and the continuous lines in Figs. 1 and 2 indicate
the best least-squares fits of an expression of
this nature to the experimental points of Jayara-
man and Sherwood. We first discuss the data
for rhombohedral samarium shown in Fig. 1.

For this material, only the experimental points
in the range 15-231'K were used for the comput-
er fit. The parameters which gave the best fit
to Eq. (3. 1) were D = 106.78 x 10 o, go= 7. 838
x 10, and 8= —9.458. Now the susceptibility of

y (T) = (594/T+ 4. 61)x 10 o emu/g, (3. 2)

using Eqs. (2. 31) and (2. 32) and taking the num-
ber of atoms per gram to be 40. 1&&10 . This al-
lows the quantities a and b to be obtained and
hence the quantities J(0)p and To to be deduced
from Eqs. (2. 42) and (2. 36).

The parameter D = 106.78 x 10, which we de-
fine as the "effective Curie constant" of the sa-
marium ion in rhombohedral samarium metal,

samarium metal, if it were considered to be an as-
sembly of noninteracting free ions with only the
J= 2 multiplet level thermally populated, would
be given by Van Vleck's theory as [Eq. (2. 43)]

~ 10
Ql

E4
'O

9

r
~ ~

~ ~
FIG. 2. Magnetic susceptibility of

dhcp samarium metal plotted against
temperature. The data points are
obtained from Ref. 33, and the con-
tinuous curve obeys the equation

yz (T) = [7.681 +105.329/(T —21.115))

x10

100 200
T( K)

300
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is 594/106. 78 = 5. 57 times smaller than that of
the free ion. From Eq. (2. 42) we obtain

(5 57) "'=1+2~(0) p(Z 1—)/Z

—(1+ 2 J(0)p) T„/To . (3. 3)

To is taken to be 322 'K and T is identified from
Eqs. (2. 42) and (3. 1) as —9. 458 K. Using these
numbers the value J(0)p =+ 0. 123 is obtained from
Eg. (3. 3). The value of J(0) p estimated from the
saturation magnetization of gadolinium is + 0. 08,
as mentioned in Sec. IIB, so the value obtained
for rhombohedral samarium is not too unreason-
able. It is seen then that conduction-electron po-
larization effects which enhance the moment of
gadolinium ~educe the moment of samarium, al-
though in the latter case the proportional change in
moment is much greater, mainly because for sa-
marium (g —1)/g is five times larger in magnitude
than for gadolinium. From Eq. (2. 36c) Te, which
Eg. (2. 36b) shows to be a direct measure of g&&,

is calculated to be —9. 6 K; a net antiferromagnet-
ic exchange interaction is therefore indicated, and
this is borne out by the observation of a Neel point
at about 15 'K.

Since we now know J(0)p and T„, the theoretical
value of the temperature-independent contribution
to the susceptibility may be calculated from Eq.
(2. 42) to be 1. 532 b. Because b corresponds to
4. 61 &&10 emu/g [Eq. (3. 2)] this contribution
comes to 7. 06X10 emu/g. Now the parameter
go= 7. 84 &&10 6 emu/g, which was obtained from
the computer fit, contains the matrix susceptibility
as well as this contribution. The theory there-
fore predicts the matrix susceptibility to be equal
to (7. 84 —7. 06)&&10 =+ 0. 78X10 emu/g. The
susceptibility of lanthanum, a material which
might be expected to have matrix properties fair-
ly similar to those of samarium, has been mea-
sured by Lock ~' to be 0. 75&&10 8 emu/g at room
temperature and rather greater at lower tempera-
tures. The agreement between the two values
seems satisfactory.

The theoretical curve fits the experimental
points in Fig. 1 to an accuracy of 1% between 15
and 230 K, but it can be seen that there are devia-
tions from it at both low and high temperatures.
At about 15 'K magnetic ordering occurs and the
theory becomes invalid. However, what is sur-
prising is that the theory fits so very well down to
15 K, in spite of the fact that crystal field effects
are known to often give rise to marked deviations
from linearity of y '(T)-vs-T plots for normal
rare-earth ions below about 50 K. Measurements
of the susceptibility of polycrystalline specimens
would tend to mask deviations caused by crystal
fields, which might be more apparent in single-
crystal specimens. It is possible also that crys-

tal-field splittings in this material may happen to
have little effect upon the susceptibility or be very
small. The situation is not yet clear.

Above 230 K there are also deviations from the
theoretical expression. The following rough cal-
culation shows that these are due to the thermal oc-
cupation of higher multiplet levels.

We assume that the extra contribution to the sus-
ceptibility arises entirely from the population of
the J= 2 level, which lies ~= 1550'K above the J
=

2 ground state, and that the susceptibility contrib-
uted by this higher level consists only of the Curie
term relevant to it. Since the effective moment
g[J(J+ 1)]'~ of the 4= —,level is 3.28'~ and is far
greater than that of the J=2 level, which is 0. 845

p&, it follows that the susceptibility arising from
Van Vleck transitions from the J=

& level will tend
to be smaller, relative to the Curie term, than for
the J= 3 level at the same temperature. Heisen-
berg exchange couplings will also tend to be small
for the J= ~ level, because its spin projection
(g —1) J(Z+ 1) is only 0. 48, compared to the 4. 46
of the similar quantity for the J= —,

' level.
Therefore it is reasonable to estimate the con-

tribution of the J= ~ level to the susceptibility as
being of the form

[N ps(3 28)~/%Tie (3.4)

where 8 is the number of samarium atoms per
gram. At a temperature of 300 K the susceptibility
contribution of Eq. (3. 4) comes to about 0. 2&&10 6

emu/g, in good agreement with the difference be-
tween the experimental points and the theoretical
curves in Figs. 1 and 2. This difference, and also
the feature that the susceptibility of samarium rises
again after a minimum at about 230 K, are there-
fore attributed to the thermal population of higher
multiplet levels. The reason why the minimum is
observed at such a low temperature as 230'K, in
contrast to the 450'K obtained in the calculation for
insulators which was discussed by Van Vleck, is
that the large antiparallel conduction-electron po-
larization- clothing of the J=

& level of the ion has
substantially reduced its moment from the free-
ion value, whereas the moment of the J= 2 level is
little altered because its value of (g —1)/g is rath-
er small (--,'~z).

A small anomaly in the susceptiblity can be seen
at about 110 K. Measurements of the resistivity
and heat capacity of polycrystalline specimens of
nominally rhombohedral samarium have indicated
that there may be a magnetic transition at this tem-
perature. However, the observation of a distinct
transition, also at 110 K in dhcp samarium, which
can be seen in Fig. 2, raises the possibility that
the specimens of rhombohedral samarium may have
contained small quantities of the dhcp structural
modification. If, however, further experimental
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work confirms that the 110'K transition is indeed
intrinsic to rhombohedral samarium, then it will be
necessary to reinterpret the temperature depen-
dence between 15 and 110 K of the susceptibility
data in Fig. 1 in some other manner. Possibly it
may arise from one unordered sublattice while
another, which has ordered at 110 'K, gives a
temperature-independent contribution to the sus-
ceptibility.

The magnetic behavior of dhcp samarium is seen
in Fig. 2 to be rather more complicated than that
of rhombohedral samarium. There are susceptibil-
ity anomalies at 15, 2'7, and 110'K whose origins
are at present unknown. In fitting the data to Eq.
(3. 1) we have used only the experimental points
between 130 and 210 K. The parameters obtained
from the fit are go= 7. 681 x10 8 emu/g, D = 105.329
x10 ~ emu/g, and 8= 21.115 'K. Although the tem-
perature range over which the fit has been made is
rather narrow, the experimental points obey Eq.
(3. 1) well, as may be seen from Fig. 3 in which

[Xr(T) —7. 681&&10 ] ' is plotted against T, where
y r(T) are the experimental values of the suscepti-
bility. The ordinate of the straight line is given
by (T —21. 115)/(105. 329&&10 '), which is the best
least-squares fit to these points.

The parameters were analyzed in exactly the
same manner as were those of rhombohedral sa-
marium, and the following results were obtained.
The effective moment of the samarium ion in dhcp
samarium is 2. 37 times smaller than the free-ion
value, J(0)p = + 0. 10, T~ = + 20. 6 'K, and the tem-
perature-independent contribution to the ionic sus-
ceptibility, which appears in Eq. (2.42), is 1.4755.
Taking 5 to correspond to 4. 61x 10 emu/g, an
ionic temperature-independent contribution to the
susceptibility of 6. 80&&10 emu/g is obtained.
Since Xo = V. 681&&10 8 emu/g, it follows that the ma-
trix susceptibility of dhcp samarium is 0. 88&10 6

emu/g, which again is in reasonable agreement
with the value for lanthanum ' of 0. 75x10 emu/g.
We conclude that the susceptibility of dhcp samar-
ium agrees well with the theory of Sec. IIC in the
temperature region in which it is valid.

8. Light Rare Earths

Accurate measurements of the susceptibilities of
single crystals of europium, neodymium, and
praeseodymium have recently been made by Johans-
son et al. ,

' and from their results for the effec-
tive paramagnetic moments of these materials some
information about the quantity J(0)p may be ex-
tracted. It is important to note that while the para-
magnetic moments of the heavy rare earths could
not give unambiguous information about J'(0) p, as
the temperature dependence of the molecular-field
parameter gave an extra contribution to the slope
of the inverse susceptibility curve [Eq. (2. 26)],

this is not the case for the light rare earths. Be-
cause their ordering temperatures are low, and
because the temperatures at which the slopes
of their inverse susceptibility curves may be
estimated are also low compared to the similar
quantities for the heavy rare earths, the frac-
tional change of the effective paramagnetic mo-
ments of the light rare-earth metals is given by
1+ 2 J(0)p(g —I)/g within the limitations of the
model of Sec. IIB.

Johansson et a/. found the paramagnetic mo-
ment of europium metal (this material is excep-
tional in that the europium ion is divalent and in
4f configuration) to have the value 8. 48'~ com-
pared with the 7. 94LIL& of the free ion. This leads
to a value of J(0)p =+ 0. OV.

The effective moments of neodymium and prae-
seodymium, as deduced from their inverse sus-
ceptibility curves, were found to be anisotropic.
To obtain an estimate of an average J(0)p, we
have taken the polycrystalline moment to be the
sum of one-third of the moment for the c direc-
tion plus two-thirds of the moment for the basal
plane. In this way we obtain 3. 50 and 3.43',~ for
praeseodymium and neodymium and hence J(0)p
=+ 0. 05 and + 0. 08, respectively.

However Lock, ' who made an earlier measure-
ment of the susceptibility of polycrystalline neo-
dymium, found that its susceptibility could be best
represented by the equation

Xr(T) = D/(T —4. 3)+ 5. Ox 10 emu/g, (3. 5)

where D corresponds to a paramagnetic moment
of 3. 3p.&, as compared to the 3. 62', & of the free
ion. A part of the temperature-independent com-
ponent of the susceptibility is expected to come
from Van Vleck transitions between the ground
4= ~ level and the J = —", level, which lies about
3000'K above it. If the theory of Sec. IIC is
used to analyze Lock's data in exactly the same
way as it has been used on the samarium data in
Sec. IIIA, the result is obtained that J(0)p
=+ 0. 12„and that the temperature-independent
contribution to the ionic susceptibility in Eq. (2. 42)
should be 1.75&&10 6 emu/g. If we add to this the
susceptibility of lanthanum, which has been found

in Sec. IIIA to correspond fairly well to the ma-
trix susceptibility of samarium, we obtain the re-
sult that the total temperature-independent com-
ponent of the susceptibility of neodymium should
be about 2. 5&& 10 6 emu/g, rather than the value
obtained by Lock, ' which is twice this size. It
is to be hoped that future high-temperature mea-
surements of the susceptibility of neodymium will
clarify the reasons for this discrepancy.

Finally we come to the estimation of J(0) from
the quantity J(0)p. It is recognized from linear-
response-theory arguments' that p is directly
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FIG. 3. Susceptibility data for dhcp samarium metal
plotted against temperature. The points are given by
[g~(T) —7.681x 10 ] ', where gz (T) are the data points of
Ref. 33, and the ordinate of the straight line is given by
(T —21.115)/{105.329 x 10 6).

proportional to the uniform Pauli spin susceptibil-
ity of the matrix. If we use the value of the sus-
ceptibility of lanthanum metal, p is calculated
from Eg. (l. 4) to be 1.61 states/eV atom. How-
ever this is likely to be an underestimate, because
in putting the measured susceptibility of lanthanum
into Eg. (1.4), we have included the diamagnetic
contributions. The quantity p for europium metal
has arbitrarily been taken to have a value smaller
by a factor of (~~)'~~, as it contains only two con-
duction electrons per atom, as compared to the
three of the other rare earths. In Table I we show
the estimated values of J(0)p and J(0) for those
rare-earth metals which have been mentioned in
this paper. The values of J(0) in the table may
be compared with a value of + 0. 0365 eV obtained
from the energy difference between the S and S
spectroscopic states of the free dipositive gad-
olinium ion, which is caused by the exchange in-
teraction between the electrons in the 6s and 4f
shells. ' The agreement in magnitude is good,
and the agreement in sign strongly suggests that
the s finteractio-n mechanism in these light rare
earths is due to s fexchange and no-t to s-f mix-
ing, as is clearly the case in many cerium ma-
terials.

If, however, the susceptibility of lutetium were
used to calculate p, this quantity would be about
five times smaller and the values of J'(0) would be
correspondingly higher. It appears, then, that
the metallic matrices of the rare-earth metals in
the first half of the series have properties which
are more similar to those of lanthanum than to
lutetium.

The purpose of this paper has been to elucidate
the effects which conduction-electron polarization
has upon the paramagnetic properties of rare-
earth materials, An expression has been ob-
tained for the susceptibility of a metallic material
which contains normal rare earths, which takes
account of the effects of the crystal field, of con-
duction-electron polarization, and of Heisenberg
exchange interactions between the rare-earth ions
treated in a molecular-field approximation. It
has been emphasized, although this suggestion is
hardly new, that accurate measurements of the ef-
fective paramagnetic moments of rare earths in
metallic materials give valuable information about
the magnitude of the s-f coupling constant J(0), and

also information about the sign of J(0), which is
difficult to obtain by other means, but fundamen-
tally very important.

An expression for the paramagnetic susceptibil-
ity of metallic samarium materials has been de-
rived which takes account of the Van Vleck transi-
tions between multiplet levels induced by both the
applied magnetic field and the exchange fields, and
of the induced conduction-electron polarization.
Crystal-field splittings are neglected and the as-
sumptions are made that the samarium ions are
in a well-defined 4f configuration and that only
the lowest multiplet level is thermally populated.
However, despite these shortcomings, the theory
is found to fit the experimental values of the sus-
ceptibility of dhcp samarium over the temperature
range 110-230 'K and the susceptibility of rhombo-
hedral samarium over a wider range, although in
the latter case there is at present some ambiguity
in the interpretation of the data. The parameters
obtained from the fits compare well with those ob-
tained for the other light rare-earth metals. It is
found that the key feature of the theory which al-
lows it to describe the experimental results so

Metal

Pr
Nd

Sm(Rh)
Sm(dhcp)
Ku
Gd

J(0)p

+0.048
+0, 076
+0.123
+0.100
+0.070
+0. 080

Z(0) (eV)

+0.030
+0.047
+0.076
+0.062
+0.049
+0, 050

TABLE I. Estimated values of the s-f coupling con-
stant J {0) and of J(0)p for some of the rare-earth metals
in the first half of the series. See the text for discussions
of the calculation of p and of the validity of the rhombo-
hedral samarium data. The values of J(0) may be com-
pared with the 4f-6s exchange integral of +0. 0365 ev
obtained from the spectroscopic properties of the free
divalent gadolinium ion.
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well is the incorporation of conduction-electron
polarization effects, which are far greater for
samarium than for the other rare earths. In fact,
this causes what might be called the effective Cu-
rie constant of the samarium ion in samarium met-
al to be more than five times smaller than the val-
ue expected for the free ion.

It is customary to refer to a magnetic ion which,
when dissolved in a metal, has associated with it
a total magnetic moment which is much greater
than that on the ion itself as a giant moment. For
example, Doniach and Wohlfarth'9 have commented
that of the 10@,~ of the archetypal giant moment
I'dFe, only about 3p, ~ actually reside at the iron
site. There is as yet no consensus of opinion as
to how much a moment has to be enhanced to de-
serve the name giant, but perhaps by a factor of
2 would be sufficient. In the same way we might
call a moment which is diminished by a factor of
2 a dwarf moment. By this criterion a samarium
ion in rhombohedral or dhcp samarium metal
bears a dwarf moment. ' Severely reduced mo-
ments are of course common in Kondo systems,
but in this case the diminution originates from
large s-d mixing rather than from the direct ex-
change interaction between the ionic spin and the
conduction electrons as in samarium.

Finally, we have compared the values of the sf-
coupling constant J(0) obtained for samarium with
those of some of the other light rare-earth metals
and have found them to be in good agreement with
the value deduced from spectroscopic data.
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APPENDIX

In this Appendix the algebraic steps required in

going from Eq. (2. 33) and (2. 34) to (2. 42) are in-
dicated. We shall, for brevity, use the substitu-
tion y= 2J(0) p.

If Eq. (2. 29) is substituted into (2. 34) we ob-
tain

(8') I(
'~~

( )
— b }/&

1+y — +b 1+ y . A1

Using Eqs. (2. 36) we find that

28~~ g —1
I

a T,(T —T„)
p, o g J T TT„

(A2)
whence follow Eqs. (2. 35), (2. 39), and (2. 40), using

Eqs. (2. 36).
We now substitute (2. 40) into (2. 33) to obtain

—(L '+ 2S')r/H = —+ b+

g l T T(1+ y) —T, [1+y(g —1)/g]
g —I& T() T TQQ

The author would like to thank R. C. Sherwood
for providing him with the numerical values of the
magnetization readings obtained for the two struc-
tural forms of samarium by Jayaraman and Sher-

using

b + (g —1)a/g T = (T —To) b/T .

Therefore,

(A4)

—(l.'+ 2S ') r a T —To T (T(1+y) —To [1+y(g —1)/g]j To

H T To To (T-T ) (T-T,) g

We can now expand the terms +iiain the large brackets as

[[1+y(g —1)/g]+ (1+ y) TT /Too- (2+ y) T„/To —(g —1)yT/g To) TTo
(T- T-)(T- To)

hence

(A5)

a
1

T o g —1 l, T TT„(1+y) (2+ y)T„—(f '+2S')r/H=b+ 1 ——+
i

1 —— + o
— — —,A6

0 ~ g ) 0 0 0 0 0

and from this Eq. (2. 41) is obtained. This latter equation may be manipulated into the more convenient

form

—(l.' 2S') /8 =b ( — -" (( y)~ ~ ( — " +V . —
&

(+ (( ~ 'Y)
&

—( 1'2)&g T„3 a T„g—1 T
To (T-T ) To 0 0

(AV)
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x 2+ y —(2+ y)
g- I) T„

g To
(A9)

and it can be verified that C* is a perfect square:
2

C*= 1+ '

y —(1+ y)
0

thus giving Eq. (2. 42).

(A10)

Onto this we add m'/ps H [Eq. (2. 39)] to get

g(T)/p~ = (m'+ m')/p~ H

=b 1 —
I I

T" (1+y) + —, (A8)
g & T„ , aC*

aa jTO T —T

where

&*= (1 —T /&0) + y
I

t'g —1 T„
7'0 J

Equation (2. 35) can also be cast into a quasi-
Curie-Weiss form. Specifically,

I. 1+y( g —I)/g —(1+y)(T-»o)]
T —7

This equation will remain a good approximation up
to a higher temperature than will Eq. (2. 42), be
cause the ratio of the value of g j(8+1)(g —1)/g
for the J=

~ level to that of the J= -', level is 11.8
times smaller than the corresponding ratio of the

g J(J+ I) values of the two levels. In other words,
the contribution of the J= ~~ level is relatively
much smaller. See the discussion of Sec. IIIA.
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