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We establish a first example of a ferroelectric phase transformation where a Brillouin-zone-
boundary soft mode [at the M point (2, 2, 0) ] rather than a Brillouin-zone-center mode of the
parent paraelectric phase (PE) is responsible for the transition. By inelastic scattering of
neutrons, we have measured low-frequency phonon-dispersion relations in Tb2(Mo04)3 for sym-
metry directions emanating from the M point in PE. For T & Tp=159 C the frequency +&& of a
doubly degenerate mode at M follows a Curie-Weiss law &&I=A(T —T&), with A=0. 0165 meV /
'C and T&=149'C. With the help of group theory, the symmetry properties of soft modes
which lead from the PE symmetry (tetragonal P42&m) to the symmetry (orthorhombic Pba2) of
the ferroelectric (FE) phase were determined. The soft-mode eigenvectors contain parame-
ters which are not fixed by symmetry and their "static" values can be obtained from existing
x-ray-structure data. "Dynamic" values are determined here from the integrated inelastic-
scattering intensity of the soft mode measured in PE at various M points. The "static" and
the "dynamic" values are in good agreement. The condensation of such an antiferroelectric
soft mode cannot directly produce the spontaneous polarization Pg in FE. As has been suggested
theoretically, our measurements show that the antiferroelectric static displacements consti-
tute the order parameter, which couples to a shear strain u, which in turn produces the
polarization by piezoelectric coupling. The spontaneous polarization and the spontaneous
strain in FE are shown to be proportional to the square of this order parameter. From the
initial slopes of acoustic branches we derive a set of elastic constants in PE.

I. INIODUcTION

Several rare-earth molybdates were discovered
by Borchardtand Bierstedt toundergoferroelectric
-hase transformations at transition temperatures
3.5Q& Z& 190 C. These materialsa' show many un-
usual properties. In a stress-free crystal, a
small dielectric anomaly is found at low frequencies
in the ferroelectric phase (FE). In the high-tem-
perature paraelectric phase (PE) the dielectric
constant is independent of temperature. Qn the
other hand, the clamped crystal does not show a
dielectric anomaly at all. Similarly, the elastic
properties show an anomaly below the transition
only. '5 Coupled with spontaneous polarization
states of opposite polarity (+P„which of course
can be switched by an applied electric field)e are
two mechanical configurations described by a shear
strain su~ (see Fig. I). One mechanical config-
uration can be Switched into another by an applied
mechanical stress. ~ This has been described as
ferroelastic behavior. But ferroelectricity and
ferroelasticity in this material are so coupled that
P,, and u„, change simultaneously.

The coupling of elastic and dielectric properties,
together with the absence of a dielectric anomaly

in the clamped crystal, led Cross et al. 4 to the con-
clusion that the spontaneous polarization was an
incidental but necessary consequence of the strain
u„„since the piezoelectric constant a3e (coordinates
of PE) is nonzero. ' Pytte, however, suggested
that this picture was incomplete and that the tran-
sition is fundamentally connected with a doubly de-
generate soft mode at the Brillouin-zone edge in
PE, which leads to a doubling of the unit cell. In-
dependently, Levanyuk and Sannikov~~ and Aizu~m

came to the same conclusion.
The only experimental technique capable of direct

investigation of such a proposed mechanism is that
of inelastic neutron scattering. This paper pre-
sents such a study. A preliminary account of this
work has already been reported. ~ %hen this work
was begun, some uncertainty existed in the litera-
ture concerning the sizes of the PE and FE unit
cells. In preliminary experiments, we therefore
established that the anticipated doubling of the cell
volume does in fact occur. Subsequently reliable
structure determinations in the FE phase of iso-
structural Gd~ (Mo04) s (GMO) by Keve et al. ~4 and

in both phases by Jeitschko" have been reported.
The recent data are in substantial agreement with
those given in Table I for T12(Mo04)3 (TMO).
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PE

FE (+) FE(—)

FIG. 1. Schematic drawing of the two possible con-
figurations in FE coming from PE. The solid lines de-
scribe unit cells of PE and the dashed lines those of FE
projected onto the x-y plane. The (+) and (-) indicate
the direction of the spontaneous polarization along z.

In Sec. II we report measured phonon-dispersion
relations, which indicate a soft mode at the M point
(-,', -„0). The temperature dependence of this soft
mode was measured over a wide range (T~ & T & 725 'C)
and establishes a phonon instability at the M point.
In Sec. III we use a group-theoretical approach~
to derive a system of basis vectors e& used in con-
struction of atomic displacements in PE, which
lead to the FE symmetry. The eigenvectors E& of
the doubly degenerate soft mode in PE are linear
combinations of the e&. An inelastic-structure
analysis was performed to determine the proper
linear combinations of the e& in the E&.

A Brillouin-zone-boundary mode is generally
"antiferroelectric" and cannot directly produce a
spontaneous polarization. In Sec. IV we report the
measured temperature dependence of the antiferro-
electric static displacements, which are the order
parameters in TMQ. A somewhat simplified free-
energy expansion is considered in order to under-
stand the origin of the polarization and its relation
to the primary order parameter. Finally, in Sec.
V we compare a set of "high-frequency" elastic
constants derived from our measurements with
ultrasonic results.

Qur studies were carried out at the Brookhaven
National Laboratory high-flux-beam reactor with a
single crystal of 0. 8&&1.0&&2. 5 cm for the inelastic
measurements, loaned to us by Brixner.

II. WAVE-VECTOR AND TEMPERATURE DEPENDENCE OF
SOFT MODE

A study of the structural information given in
Fig. 2 and Table I reveals that the reduction in the
translational symmetry necessary to pass from PE
to FE must result from displacements modulated
with the wave vector j„=(-,', —,', 0) in PE. We have
therefore determined the dispersion of several
phonon branches in the PE phase lying along sym-
metry lines in the (hk0) plane and connecting with
the condensing wave vector q„. Qn a structure as
complex as TMQ, it is clearly impractical to carry
out an exhaustive mapping out of phonon branches
by inelastic neutron scattering. However, in order
to establish the occurrence of instabilities leading
to a displacive phase transformation it is sufficient
to measure the low-lying branches. The results
are shown in Fig. 3. The phonon instability appears
clearly at the M point. We find inelastic scattering
from this soft mode at every Q= G»+q„, where

GpE is a reciprocal-lattice vector of PE ~ This in-
tensity is particularly large at Q= (-,', I-, 0).

At temperatures near to the transition, the soft

TA BLE I. Crystallographic data for Tbl(Mo04)3 above
and below the transition temperature To =159 C, Refs.
16-18.

Space group
Lattice constant

T &T0 Tetragonal P42fm
T & T0 Orthorhombic Pba2 10.35

b c
7.37 10.62

10.38 10.66

Formula units
per

unit cell

FIG. 2. Tetragonal (PE) and orthohombic (FE) unit
cell projected onto x-y plane. The molecular orientation
is as in PE. The dots ~ give the Tb positions and the
tetrahedra represent Mo04 groups. Atom designation is
taken from Jeitschko Ief. 15). For atomic displace-
ments see Table III.
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FIG. 3. Measured phonon dispersion. Phonons labeled
Z f ( ) and Z2 ( ) are, respectively, even and odd under
reflection in the (&&0) plane. Open symbols indicate mea-
surements with Q Ilq ("longitudinal" ), closed symbols
QJ. q ("transverse") in an (hk0) plane. (& indicates Ql.q,
but in another orientation of the sample (hhg). There was
no simple relation between Q and q for the remaining
points. O, y, and x are measured at 260'C; p, Q, and+ at
184'C; and 6 at 400'C.

mode is overdamped. It is possible to separate
distinct maxima for energy gain and loss processes
only at temperatures more than 200'G above the
transition. ' Figure 4 shows results at 414 G.
The data can be interpreted by a scattering law
S (Q, to) for a damped harmonic oscillator, which

has the form

FIG. 4. Energy profile of the inelastic "critical"
scattering at a superlattice point in PE. The central
peak is due to higher-order contamination of the incident
beam. The solid curve represents a least-squares fit of
Eqs. (1) and (2). The asymmetry is entirely due to reso-
lution effects.

this region w„(T) is consistent with the Curie-law
behavior

(hto„)a = A (T —Tc),

10

~(Q, &)
(

a
'

)a „aTa I~a-t(Q)I' ~

Here ~„ is the quasiharmonic frequency and I" is
a damping parameter. This scattering law, writ-
ten for energy transfers h~ «k~T, is fulfilled in
this case. To perform a least-squares fit to the
measured intensities 1(Qo, ~~a) we used the expres-
sion

I(Qo &a) = f &(Q Qo to &0) ~(Q to)d Qdto

6—
N

Cl

E
OJ

3
N

where R io the resolution function ~ containing the
experimentally determined reQectivity22 of the
analyzing pyrolytic-graphite crystal. The very
good fit was obtained by using an accurate normal-
ization~' of R. The asymmetry is produced entirely
by resolution. The peak at e = 0 arises from higher-
order contamination in the beam (this point was
checked by inserting additional filtering ) and was
described in the fit by an additional Gaussian func-
tion.

We performed similar measurements at several
temperatures up to 725'G, which is close to the
o-P phase transition. a As shown in Fig. 5, over

0
0 200 400

TEMPERATURE ('C)
600 800

FIG. 5. Temperature dependence of the frequency of
the soft mode ~~ at the M point. At higher temperatures,
~~ was determined by fitting the spectral profiles (Fig. 4)
to Eq. (1). The lower-temperature data (&&'s) were ob-
tained from the temperature dependence of the integrated
intensity, as explained in Ref. 13.
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which approximately characterizes all known sof t-
mode behavior with A = (1.65+ 0. 10)x 10 2 meV~/
'C and To = (149a 2) 'C. I' was found to be about
(2. 5+0. 5) meV, and within the statistical errors
independent of temperature. The value of A. re-
ported in the preliminary work~ was somewhat
larger due to the presence of a small misoriented
crystal which was masked off in the later work.

In constructing the smoothed dispersion relations
through the observed points in Fig. 3, we have in-
cluded a "longitudinal" and "transverse" notation
which has a practical experimental relevance, al-
though in a complicated system like TMO it can be
justified only in the q - 0 limitfor acoustic branches.
Since not all branches are complete, it is possible
that the curves drawn are in reality only quasi-
continuous in the sense that other branches of like
symmetry may "cross" them with a resultant small
splitting. Where symmetry considerations dictate
a splitting of bands degenerate at the I' or M points,
this fact is noted by a short line, if both branches
were not actually seen.

It is not possible to fit together existing optical
and neutron data in a completely unambiguous way,
but symmetry arguments are helpful in putting to-
gether a partial picture. Compatibility relations con-
necting the various symmetry points of interest are
shownin Fig. 6. We mayprobablyassociate the 6-
meV phonon which we observe atq = Oin PE with the B~
mode in FE seen by infrareda '2 and Raman scat-
tering at 6.2 meV, which does not shift with tempera-
ture 'and persists into PE, where it becomes an E
mode. Another infrared-active mode at q = 0 in FE
disappears in PE and thus presumably becomes a
7, mode at the M poini. ~'~' This could be the M-
point mode we observe at either 7. 7 or 8. 5 meV.
The latter mode has 7'5 symmetry; the former is
either T& or 75.

We have also extended our measurements of the
soft mode into the FE phase. Here we expect the
soft-mode scattering to be largest around (and have
intensity proportional to) the superlattice reflec-
tions. We therefore chose the strong (I, 2, 0) su-
perlattice reflection I(—'„2—, 0) in PE] and performed
E scans at five different temperatures over an ener-
gy transfer of +2. 0~5~~ —9.0 meV. For small
energy transfer (~10.25 meV I) the intensity de-

creasess

with increasing temperature in agreement
with the temperature dependence of the elastic
superlattice intensity as discussed in Sec. IV. But
for larger nominal energy transfer the intensity
first slightly decreases with increasing temperature
but then increases when approaching the transition
temperature. We associate this latter component
with inelastic critical scattering from the soft
phonons. In order to approximately separate elas-
tic and inelastic components we assume that at
room temperature IBragg» I,net for al1. I@ l up to 3

meV. This approximation means that the energy
profile around ku = 0 at room temperature repre-
sents only Bragg scattering convoluted with the
resolution. Since we know accurately the tempera-
ture dependence of this elastic scattering, it is
then a simple matter to subtract this elastic con-
tribution from higher- temperature measurements.
(If anything, this slightly overestimates the elastic
contribution. ) It is felt that this correction was
reliable for data with l~ & 0. 75 meV.

After subtraction of the elastic scattering there
remains a central cross section as well as a rea-
sonably well-defined phonon peak at 5. 7 meV. We
assume a scatt;ering law for the well-resolved peak
of the form of Eq. (1) with parameters Fg Nf r„
allowing the latter two to vary with temperature.
Simultaneously, we tried to fit the residual low-
frequency scattering with I'z, ~~, I'3. The fitted
data (including resolution effects) are shown in
Fig. 7. The parameters of the low-frequency peak
were not uniquely determined and we can only con-
clude that ~~«X'~- 2 meV. A reliable fit was,
however, obtained for the higher-energy peak.
The && and I"~ are shown in Fig. 8.

At room temperature the value@&= 5. 7 meV,
which we determine is very close to that of the A &-

mode found by Fleury2 at 5. 9 meV, with our re-
sults showing a somewhat stronger temperature

I (PE) M(PE)

A, (i)

A~(i)

8) (I)

B~(t)

E (2}

T( (2)

T2(2)

T5(2)

V~ (2)

I'(PE) I'(FE) M (PE)

A~ (i)

A2 ( I)

B, (l)

E (2)

A) (I)

A~(i)

B~ (i)

B~(l)

T( (2)

T2 (2)

75 (2)

FIG. 6. Compatibility relations between I' point (0, 0,
0), Z direction [f, f, 0], M point (2, 2, 0), and y direction
tg, 2, 0]. The representations T„T2, and 7& are given in
Table II. The degeneracy is indicated in parentheses.
Note that the group of Y has but a single doubly degenerate
representation F&. Compatibility relations from I (PE)
and M(PE) to I'(FE) are given below.
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squares fit of two excitations with frequencies ~& (indi-
cated by arrows) and» (&1 meV) by means of Eqs. (1)
and (2).
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dependence. Infrared measurements by Petzeltav
with polarized light also reveal a broad A~ excita-
tion near 5. 7 meV at room temperature, which was
resolved into two A

~ modes at lower temperatures.
He observed that the frequencies of these modes
decrease slightly with increasing temperature and

FIG. 9. Soft-mode frequencies in PE and FE. Doubly
degenerate modes show Curie-Weiss behavior above To.
Below To, the degeneracy is removed between mode 1
(eigenvector proportional to static displacements) and the
orthogonal mode 2. +&0 and»0 are the limiting values of
co& and ~2 as To is approached from below. The precise
behavior of the modes below T& depends upon the detailed
form of the free energy (see Appendix).
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FIG.. 8. Temperature dependence of the energy h~&
(closed circles) and damping constant I'& (open circles)
derived from the data of Fig. 7.

the oscillator strength vanishes as (T —T).Q

Very generally, the soft mode in FE must be
totally symmetric (&&). From Fig. 8 the doubly
degenerate soft modes in PE become two nondegen-
erate A& modes in FE. The two frequencies ~, and

&2 depend on the higher-order terms in the free
energy of the system and on temperature. This
behavior is discussed more explicitly in the Appen-
dm and some examples of possible behavior are
shown in Fig. 9. One of these two A& mod 'th

frequency ~& has an eigenvector similar to the
vector of the condensed static displacements, which
in turn is similar to one of the eigenvectors of the
doubly degenerate soft modes in PE.

It does not seem possible to deduce unambiguous-
ly the behavior of the soft modes in FE as yet.

2VPetzelt considered the two modes which he ob-
served near our frequency j to be the two soft
A& modes. Taken alone the most natural inter-
pretation of our results (Figs. f and 8) is to as-
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It is convenient to discuss the amplitude of the
displacements u(qlk) of the kth atom in the &th unit
cell due to a normal vibration of wave vector q in
terms of the eigenvectors E(qk) of the dynamical
matrix

u(qlk) CC E(qk) e"'""', (4)

where x(l) is a translation vector of the lattice.
In TMO there are two formula units (34 atoms)
per unit cell in the PE phase leading to 102 branch-
es in the phonon spectrum. The problem can be
further simplified by considering the MoO4 groups
as rigid, reducing the number of degrees of free-
dom from 102 to 48. It is still necessary to reduce
the complexity as much as possible by symmetry
considerations. We therefore carried out a group-
theoretical study of the normal modes using the
multiplier-representation formalism of Maradudin
and Vosko. ' This problem has also been studied
recently by Dvorak' and Petzelt and Dvorak.

The irreducible multiplier matrix representations
of the group of the wave vector q„= (-,', —,', 0) (here-

afterr

referred to as the group of M) for PE are
shown in Table II. ' The complex representations
7 g P3 and v.

z
= r4 are degenerate by time reversal

and may be replaced by real representations T, and

T2, obtained by a complex unitary transformation.
There are thus only three possible physical repre-
sentations at ~, T„T~, and ~5, all doubly degen-
erate. The 48-dimensional vectors g composed of
Cartesian translations and rotations of the contents
of a unit cell form the basis for a reducible repre-
sentation of the group of M. Generating such a
representation and using projection operators to
decompose this representation into irreducible
representations, one can establish that the normal
modes at M are distributed into symmetry types
as follows: 14T» 12T2, and 227,.

While it is not essential to do so, it is most con-
venient to discuss the reduction in symmetry in
passing into FE terms of the actual physical dis-
placements u given by Eq. (4). The u transform
like ordinary (as opposed to multiplier) representa-
tions T„T2, and 7„ listed in Table II. Of the
symmetry operations listed in Table II, only ~
and (v„, r) remain in FE. Thus only the displace-
ments u which transform like T2 (or equivalently
the eigenvectors E of the soft mode which trans-
form like T2) can cause the observed symmetry
breaking upon condensation. The reduction of P
to basis vectors of T~ shows that a pair of eigen-

sociate the two soft A& modes with the frequencies
co~ and wz of Fig. 7. However, still other possi-
bilities exist. For example, both soft A~ modes
could be overdamped in FE and thus lie with the
central component of Fig. 7.

III. DETERMINATION OF EIGENVECTORS OF SOFT MODES

vectors (E&, E~) is in general composed of six
pairs of symmetry-adapted basis functions (e~~, ez'):

E,= Za'(e~+b'e~), Ez= Za'( —b'e~+e2) . (5)

For our choice of basis vectors see Fig. 10. The
pairs of eigenvectors given by Petzelt and Dvorak 6

are one set of linear combinations of our ez and ez'.

The matrix representation of T2 which specifies
how E, and Ez transform among themselves is
invariant against an arbitrary real unitary trans-
formation. We will use this feature in Sec. IV,
when we discuss an expression for the free energy.
The 12 parameters a', b' are not determined by
symmetry considerations alone but can be deter-
mined by inelastic neutron scattering (dynamical-
structure analysis). The eigenvectors E are re-
lated to the displacements u by Eq. (4). The dis-
placements u in turn contribute to the inelastic
structure factor F,„,(Q) by

unit cell
F&„„„(Q)= Z b~(Q)[Q u;(qk) je'~'"~ .

Fi„„is related to the observed intensity through

(b)

(c)

FIG. 10. Basis vectors of the multiplier representation
A general phonon eigenvector E of this symmetry is

composed of linear combinations of these vectors. The
double-lined arrows represent e&, the solid arrows e2.
Broken arrows indicate rotations. The vector L' can be
grouped into six pairs as follows: (a) (e&, e2) translation
of the Tb atoms and (e&, e2) translation of the general
Mo04 molecules; (b) (e&, e2) rotation of the general Mo04
around an axis in the x-y plane (arrows) and e&, e2) rota-
tions about z (+ and —); (c) (e&, e2) translation of the
special Mo04 molecules; (d) (e&, e2) rotation of the special
Mo04.
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TABLE II. Multiplier and ordinary representations of the group at the 1Vl point (2, 2, 0). The translation t is (2, 2, 0).
The T; and T; are physical representations, i.e. , reducible into complex irreducible representations.

Multiplier
Ti
A

T2
A

73

74
A

75

T2

Ordinary"

T2

T5

'Reference 31.

1
1
1
1
10
01
10
01
10
01

10
01
10
Ol

10
01

$4

i
i

1 0
0 —1

0 —1
3 0

0 —1
1 0

0 —1
1 0

0 —1
1 0

1 0
0 —1

C2

—1
]

]
1 0
0 1

—1 0
0 —1

—1 0
0 —1

—1 0
0 —1

—1 0
0 —1

1 0
0 1

z

1 0
0 —1

0 1
—1 0

0 1
-1 0

0 1
—1 0

0 1
—1 0

1 0
0 —1

1
—1

1
—1
0 1
1 0

1 0
0 1

—1 0
0 —1

—1 0
0 —1

1 0
0 1

0 —1
—1 0

"Reference 32.

—1
1

—1
1

0 1
1 0

—1 0
0 —1

1 0
0 1

1 0
0 1

—1 0
0 —1

0 —1
—1 0

C2x "

i
0 —1
1 0

0 1
—1 0

0 —1
1 0

0 —1
1 0

0 1
—1 0

0 1
—1 0

C„,Z

2

0-1
1 0

0 —1
1 0

0 1
—1 0

0 1
—1 0

0 —1
1 0

0 1
—1 0

Eqs. (1) and (2). The integrated intensity I„,from
the measured intensities of a constant Q scan after
appropriate correction for resolution effects2S (in
three-axis measurements) is

find(Qo) = '

Iao~(Qo~ ~o)d+o= ~(Qo~ 4')d~
J

In the above expressions b~(Q) is the product of the
scattering length times a Debye-Wailer factor,
u, (qk) is the displacement of atom k in mode i with

wave vector q, R„ is the equilibrium position of
atom k, and &„ is the frequency of the soft mode.

As the summation in Eq. (6) runs only over one
unit cell. , we can express u~ by E, from Eq. (4).
By measuring the intensity of a large number of

phonon "reflections" we can determine a best-fit-
ting set of displacement vectors u(q, k) associated
with the soft mode. At a temperature (164 'C)
slightly above T&, the energy transfer is sufficient-
ly small that reliable integrated intensity measure-
ments can be performed on a two-axis spectrom-
eter with a 57-meV incident neutron energy. (We
confirmed this fact by repeating several measure-
ments by three-axis spectrometry. ) Altogether
66 "reflections" of the type (k+ —,', k+-,', 0) were
studied (see Fig. 11). Of these, the six of type
(k + —,', k+ —,', 0) should vanish for a mode af Tz sym-
metry. The small residual intensity observed at
these points is ascribed to multiple scattering due
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(5.5, 6.5, 0)
(5.5, 7.5, 0)
(6.5, 6.5) 0)

~
f

FIG. 11. Phonon "reflections" of the doubly degenerate
soft mode in PE at 164 C (5'C above To). The dashed
bars (22/p R factor) were calculated with soft-mode eigen-
vectors derived from static displacements in FE. The
solid bars (9.2/p R factor) are the results for a best-fitting
mode of T2 symmetry. (See Table III for the resulting
parameters. )
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TABLE III. Differences of atomic positions FE —PE from structure determination (Ref. 15) (structure) and the best fit
of a condensed soft mode E& to these differences. Atom designation (see Fig. 2) is taken from Jeitschko I|Ref. 15).

PE coord.
Tb atoms
Tb(1)
Tb(2)

General Mo04
Mo{1)
O(1)
0(3')
O(6)
o(s )
Mo(2)
O(2)
O(4)
O(5 )
o(v)

Special Mo04
Mo(3)
o(e)
o(1o)
O(11)
O(12)

Structure

x/a

o.oo4e6(8)
—0.00680(8)

0.01108(10)
0.0077 (12)

—o.oo6v(e)
0.0450 (10)
o.ooos(1o)
0.00303(10)

—0.0204(12)
—0.0051 (10)

0.0375 (10)
0.0020 (10)

—o.ooo55(6)
—o.ooeo(1o)

o.oo5vo. o)
—o.oo450.o)
—o.oo14(1o)

Condensed-
mode fit

x/a

0.0046
—0.0070

O. 0129
O. 0078

-0.0080
0.0449
0.0062
0.0043

—0.0195
—0.0091

O. 0392
O. 0040

-O. 0006
—0.0054

0.0023
-O. 0054
+0.0023

Structure

y/a

—0.00432 (8)
-0.00724(8)

—0.01196(10)
—0.0149(12)

0.0071(9)
—O. 0052 (10)
—O. 0448 {10)

0.00275 (10)
—o.o1e4(12)
—O. 0069 (10)

0.0005 (10)
o.o43s(1o)

—0.01485 (6)
—0.0184(10)
—0.0169(10)
—0.0111(10)
—0.0118(10)

Condensed-
mode fit

y/a

—0.0046
—0.0070

-0.0129
—O. 0078

0.0080
-0.0062
—0.0449

0.0043
—O. 0195 .

—0.0091
0.0040
0.0392

-0.0147
-0.0154
-0.0138
-0.0154
-0.0138

Structure

rlc

—o.ooo5o(12)
0.00017(12)

—0.00071 (10)
—0.0016(12)
-o.ooo3(e)

o.oov3(1o)
—o.oo6o {1o)
—0.00108(10)

0.0014(12)
0.0002 (10)

—0.0196(10)
o.o18o(1o)

—o.ooo6(6)
—o.oo24(1o)

0.0023 (10)
o.oo23(1o)

—0.0027 (10)

Condensed-
mode fit

z/c

0
0
0
O. 0041

-O. 0041
0
0
0

-0.0193
0.0193

0
—0.0015

0.0026
O. 0015

—0.0026

tJ(ql k) = q[&,E,(jk) + &3Ez(qk)]e'~'"" ', (8)

where g is the order parameter and the y& describe
the linear combination of the two soft modes (de-
generate in PE) with eigenvectors E, and Ez,
with y', +y', = i.

As me shall shorn in the discussion of the free
energy at a given temperature, we can always
choose y&—- 1, y&=0, i. e. ,

U E,

Therefore we tried to describe the static displace-
ments by a single eigenvector E~(T~) of the most
general form (see Fig. 10) with the help of a least-
squares fit. Table ID gives the static displace-
ments together with the best fit of an E~(f2) mode.

Inspection of Table III reveals that the eigenvec-

to higher-order contamination in the beam and was
negligible with a (311) Ge monochromator. The
remaining 62 intensities were summed pairwise,
I (k, k, 0) +1(k, k, 0) . The agreement within pairs
was about 5%. Thus we have finally 31 independent
intensities, which mere used to fit the 12 param-
eters of the soft mode. This ratio of independent
intensities to free parameters is not large. There-
fore, we used an initial estimate for these param-
eters from the static displacements U associated
with the phase transformation [compare Eq. (4)],

tor E, cannot fully describe the pattern of static
displacements for reasons to be discussed shortly,
although it is by far the largest component. The
parameters a' and b' from Eq. (5) are given in
Table IV. We used these 12 values as an initial
guess to fit the 31 inelastic integrated intensities.
Initially, the displacements were fixed at these
values and the phonon reflections fitted by adjust-
ing only a scale factor and two spherical Debye-
Waller factors (one for the oxygens, one for the
remaining atoms). The result of this fit is shown
in Fig. 11 as dashed bars. The agreement is al-
ready quite reasonable (22%%uc R iactor). If we then
adjust the 12 displacement parameters (due to cor-
relation effects not all 12 could be varied simul-
taneously) the R factor is further reduced to 9. 2%%uc.

The resulting set of values is given in Table IV.
The solid bars in Fig. 11 indicate this best fit.

Tables III and IV show that the static and dynamic
displacements are in close correspondence. Some
discrepancies are, however, out of the range of the
errors, perhaps partially due to the breakdown of
the rigid Mo04 approximation. Another factor
which must be borne in mind is that the condensing
soft mode couples to other A& modes in FE to pro-
duce the spontaneous strain and spontaneous polar-
ization. The z displacements of the Tb and Mo04
ions are certainly due to such coupling to other A&

modes. Thus there is no rigorous equality between
the soft mode and the condensed order parameter
in this system.
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Tb atoms
transl ~

General MoO&

transl.

a'

g
b2

Static

0 ~ 0046 + 0 ~ 0006
1 ~ 51 + 0 ~ 05

—0 ~ 0129 + 0 ~ 0013
0 ~ 34+ 0 ~ 07

Dynamic

—0 ~ 0047 + 0 ~ 002
—1 ~ 24+ 0 ~ 8

—0 ~ 0118 + 0 ~ 001
0.12+ 0 ~ 2

TABLE IV. Parameters of the soft mode as given by
Eq. (5).

= Wl(yi + y2) + 38'2yly2

+ 6 +3(rl -y2 )ylr, , (1lb)

~a 866,af (ri) 2Z$6, 1 yly2+Z$6, 2(yl y2) (llc)

With the help of the equilibrium conditions

Rot. in ~-y

Rot, . z

Special Mo04
tran sl ~

Ro t ~

0
b

a4

b

a'

a

0 ~ 03 + 0 ~ 01
4. 68 + 0 ~ 2

—0 ~ 128 + 0.007
0 ~ 86 + 0 ~ 05

0 ~ 0147 + 0 ~ 0014
—0 ~ 04 + 0 ~ 08

0 ~ 016 + 0 ~ 006
0 ~ 21 + 0 ~ 25

0 ~ 022 + 0 ~ 006
3.90+ 1 ~ 2

—0 ~ 135 + 0 ~ 005
0 ~ 90 + 0 ~ 06

0 ~ 020 + 0 ~ 002
0 ~ 14+ 0 ~ 1

—0 ~ 007 + 0 ~ 009
—3 ~ 34~ 2 ~ 3

8F

we find

P — a36 X33Q y

(12)

IV. FREE-ENERGY CONSIDERATIONS AND q(T)

The aim of this section is basical ly to show that
the static displace ments in FE determined at one
given temperature can be des cribed by one eigen-
vector of the two soft modes condensed out, and to
derive an expression describing the temperature
dependence of the order parameter g. We use a
Landau- Lifs hit z approach and to describe a first-
order phase transformation we have to include the
sixth -order term in the expansion of the free energy
F as shown by Devonshire. " We restrict ourselves
to terms which are necessary to understand the
principal features of the phase transformation in
Tb2™0$}3,namely, the shear strain u„„and the
spontaneous polarization P, as well as the primary
zone -boundary -phonon displace ments:

2 (d(2n + 'n'+. & -f.'"a(r;) + 6 n'Z. W.f.'"(y, ) +

1 P 2 1 «1 2+ 2 C66&xy + TX33Pg+ ~ ~ ~

+ —', u„,q'Z g66 f ' "(y,.) +(336P u + (10)

1 j ~ 2
2

uxy CE 2
~ 866, afa (ri} (13)

+ 6 3i Za W f ai '(yi) + ~ ~ ~, (14)

where the f'" have the same form as in Eq. (11a),
only the V are replaced by the following B, where

2
g863 2+1 ~1 2C 8

66

Here C « = C « -a36 x33 We see that P, is propor-
tional to the strain and the strain in turn propor-
tional to g, if we neglect possible variations in the

f '(y;) discussed later [see Eq. (16)]. Thus the
experimental features -that the polarization changes
when the strain is switched' 7 and that the clamped
crystal does not show a dielectric anomaly, 4-are
correctly de scribed. The two possible conf igura-
tions in FE in our notation are expressed by +u„„.

With the help of Eq. (13), we eliminate P, and u)(3

from Eq. (10}. We find

E= 2 (d3ig +gYJ Z B f (y )

Here C 66 is the elastic constant at constant polar. -
ization, X33 the dielectric susceptibility, a 36 the
piezoelectric constant, and ()t)& the frequency of the
soft mode at the M point. This is the free energy
relative to undistorted PE and is written in terms
of PE coordinates. f '"'(y;) represents a function
of the two y; of order n. Only functions f ' '(y, ),
f '6'(y;), and u„„f'2'(y, ), which transform into them-
se ives under al 1 symmetry operations of PE, are
permitted. Explicitly, the functions can be defined
as

2 2

y ~g 663 1 g66 22
2 2 2C866

y g 663 18 663 2
3 3 2CE88

Making the substitutio n

y, = cosQ, y2= sin&f&,

we minimize E with respect to P, obtaining

83+ %3q
((~i-&s)'(a( —as)n ) (16)

~. 1 .f.'"(r;)= 1 1(rl + r'2) + 2y'2yl r2

+ 4&3(rl r', )ylr2, (1-»)

f (yi) = i4 1(yl + r2)+ 3 ~2(rl+ r2) rl r2

+ +3(ri + r2) (rl —r2) rl r2

We may think of the polar coordinate p as a second
order parameter (along with ll) for the low-
temperature phase. From Eq. (16) it is clear that,
in general, Q is temperature dependent through
&(T).

It is po ss ibl, although tedious, to carry out a
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no= ' (- fir), xo= hi'/K

With the help of Eq. (18) we can write for any

(18)

joint minimization of E(q, p) for this general case
in the basis system E, , K2 (or y» y2). However,
as was noted earlier, the degenerate eigenvectors
are undefined to within a rotation in the (R, , Rz)
plane. Thus, if at one temperature we rotate the
system by P to R,' and Ra (y,', yz) we get new B'
and Wo, such that$3+g TVSI=O. That leads to the
solution y1 =1, y2 =0, i.e. , U~E', as used in

Eq. (9). In our opinion the statement that y, = 0
solutions are not permissible (Dvorak~7) is not
physically significant given the possibility of such
a coordinate transformation.

The solution y1 = 1, y2 = 0 leads to one pair of
P, and u„„, while y', = 0, y2 = 1 produces the oppo-
site signs of P, andu„„y1= +1describestwoequiv-
alent structures which are microscopically differ-
ent, as the origins of the unit cells are shifted by
(-,, —,, 0) in FE coordinates (compare Jeitschko' ).

A careful search for temperature-dependent
changes in P requires precision structural deter-
minations at several temperatures. This is clearly
outside the scope of this work. Vfe have therefore
chosen to neglect the temperature dependence of

This is formally accomplished in Eq. (16) by
setting either (a) B, -B2 B~= 0, (b—)-W, —Wa= Wz
= 0, or (c) Bs/(B, -Ba)= W~/(W, —W, ). [The first
tvyo conditions represent isotropy of the fourth-
or sixth-order terms, respectively, whereas (c)
equates the degree of anisotropy of the fourth-
and sixth-order terms. ] It is not necessary for
our purposes to speculate or choose among (a)-
(c) at this time. For illustrative purposes at a
later stage we will make assumption (b). We
justify our treatment on the following pragmatic
considerations: (i) The fact that several super-
lattice intensities were observed to have nearly
identical relative temperature dependences sug-
gests that Q = const. (ii) As we will proceed to
show, the behavior of q(T) determined experimen-
tally is in reasonable agreement with the assump-
tion that P is temperature independent.

We now assume Q= const=0 [Eq. (16)]. That
is to say, the coordinate system is already chosen
such that y, =1, y2=0, and the resulting displace-
ments are given entirely in terms of the component

In this coordinate system the free energy
assumes the simple familiar form

&X l + 5}4+8K' +2 I 4 1 6

where y=&u„, $ =B» and ( = W, . Asiswellknown,
for first-order transformations the parameters
must satisfy the conditions g &0, g &0. At the
transition temperature the values of the order
parameter go and reciprocal susceptibility Xo in
FE are

T~ Tc
Xo To —Tc

For T ~ To we find

(20)

~2 f ~2 2 4 3 c

If the static displacements are small (Q U &1),
the intensity of a superlattice reflection is propor-
tional to g . Thus a comparison of the tempera-
ture dependence of the superlattice intensities with

q(T) predicted from Eq. (21) characterizes the
behavior of the order parameter in terms of the
familiar Landau free energy. A small cylindrical
sample (0. 15-cm diam, 0. 8-cm length) was used
to eliminate extinction corrections. Submultiple
beam contamination, although minimized by a
pyrolytic-graphite filter, was not entirely neg-
ligible because of the weakness of the superlattice
reflections. Appropriate corrections (varying
from 1 to 16%}were deduced both from a study of
spurious intensity at forbidden superlattice posi-
tions and from residual Hragg intensity which per-
sisted into the PE phase at the superlattice posi-
tions. Below To the sample is composed of un-
known fractions of opposite FE domains, and these
fractions may change with temperature. However,
since opposite domains exchange a and b axes, the
sum l(kkl)+f(kkl) is independent of the domain
distribution. Vfe therefore chose two Bragg pairs,
(320)+ (230) and (520)+ (250) (FE indexing), for
study vs temperature. A triple-axis spectrometer
(set for b, E = 0) was used to reduce the inelastic
(critical-scattering) background. The data were
fitted to Eq. (21) by a least-squares procedure.
The results, in which (besides an arbitrary scale
factor) Tp was adjustable, are shown in Fig. 12.
Larger values of To gave distinctly poorer fits.
The four values for Tc given in Fig. 12 are close
to each other but differ somewhat from the Tc
= (149+2) 'C as determined from the Curie-Weiss
law in the PE phase. This may be indicative of
slight inadequacies in the Landau theory, which
does not in principle properly account for fluctua-
tion effects in either the susceptibility (i. e. , in
pp„2) or the order parameter near Tp, but may also
indicate the limit of the validity of the assumption
that P is temperature independent.

The temperature dependence of the spontaneous
polarization and x-y shear as measured by Cum-
mins' is also shown in Fig. 12. Ne may draw two
conclusions: (a) Polarization, shear angle, and

temperature less than the transformation temper-
ature To

) 1/2

Xo &

The assumed temperature dependence of X leads to
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FIG. 12. Temperature dependence
of three physical quantities which
have been used to characterize the
phase transformation in rare-earth
molybdates. All have been fitted
with Eq. (21). The good resulting
fit shows that the spontaneous strain
and spontaneous polarization are
proportional to the square of the
zone-boundaxy soft-mode displace-
ments.
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Bragg intensity have the same temperature depen-
dence; (b) all these quantities can be described by
Eq. (21); i. e. , they are functions of the order
parameter squared. Thus in TMO the magnitude
of the antiferroelectric displacements U, not the
polarization itself, is a suitable order parameter
in that it displays the temperature dependence
predicted by a Landau-like free-energy expression.

V. ELASTIC PROPERTIES

Cross et al. reported anomalous temperature
dependence of CS8 near To in Gd2(Mo04)3 (GMO).
(The superscript PE here indicates only that the
elastic constants are referred to PE coordinates.
C is well defined in both PE and FE phases. )
A similar effect occurs in C» since the two quan-
tities are symmetry related. ' It is therefore
of interest to compare the ultrasonic elastic be-
havior with much-higher-frequency "hypersonic"
behavior derived from the initial velocities of the
acoustic phonons as determined by neutron scat-
tering. Five of the six existing constants in I'-E

could be derived from the squares of measured
velocities as shown in Table V. C&z was obtained
indirectly from the velocity of a q= [$/)] branch
of undetermined polarization, by insisting that it
satisfies the Christoffel equation for the [111]
direction. This led to two possible values of C»,
of which only one satisfies the necessary stability
conditions. The PE elastic constants are given
in Table VI.

The diagonal elastic constants C» have been mea-
sured at room temperature in GMO by Epstein
et al. Making due allowance for the temperature
dependence of C„(see below), our data for TMO
are in quite close agreement, except for C66, for
which our values are some 20 /~ higher in both PE

and FE. We have no explanation for the discrep-
ancy. One possible source of systematic discrep-
ancy we looked into is the renormalization of the
elastic constant due to piezoelectric coupling. The
effective elastic constants depend explicitly upon
the direction of plane-wave propagation in this
case. For example, in tetragonal TMO the velo-
city of modes polarized along [110]and propagating
along [001] is determined by C44 . For modes
with polarization and propagation vectors reversed
the effective elastic constant is C~~ + 4mB, 4/e, ,
where B,4 and &, are elements of the piezoelastic
and dielectric tensors, respectively. While such
differences can be quite important in some ferro-
electrics, we find no observable difference in
TMO for C44 measured in these two ways. Cum-
mins also found no detectable piezoelectric effects
on the elastic constants he studied in GMO.

We studied the temperature dependence of C66
=A (Table V) at temperatures between 20 and 130
'C and found no change within our accuracy. Fur-
thermore, the values in PE and FE we find to be
comparable. We take this as an indication that the
anomalous temperature dependence seen clearly
at lower frequencies (although, to be sure, as yet
only in GMO) is less pronounced at hypersonic
frequencies. However, a really definitive neutron
study of this behavior very near To was not at-
ternpted.

VI. CONCLUDING REMARKS

Using neutron-diffraction techniques, we have
been able to test and confirm in a direct and un-
ambiguous way the recently suggested mechanism
for ferroelectric phase transformations in rare-
earth molybdates. It is now clear that these ma-
terials furnish nice examples of displacive phase
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TABLE V. E1astic propertie s of Tb2 (Mo 04)3 in the paraele ctric (PE) and the ferroe le ctric (FE) phase (transition
temperature To = 159 'C) ~

Temperature
('C)

Dire etio n~

of q

Direction of
po 1ariz ation

Velocity v
(10 cm sec')

~2 b

(10 ~ dyn cm )

Equality of pv2

in PE in FE

260

260

184
295

184

260

184

[110]

[110]

[001]

[110]

[110]

[001]

[100]

[111]

[110]

[110]

[001]

[001]

[001]

[110]

[010]

(hI l) plane

2 ~ 60

4.39

4.68

2 ~ 37

2 ~ 39

2 ~ 40

2 ~ 49

1 ~ 80

3 ~ 11+0~ 15

8 ~ 9 + 0 ~ 45

10~ 1 + 0 ~ 9

2 ~ 60 + 0 ~ 13

2.64+0 ~ 13

2 ~ 67+0 ~ 13

2 ~ 87+ 0 ~ 15

1~ 49 + 0.15

1 (CPE C PE)

(CPE + C PE + 2CPE)

CPE
33

CPE
44

CPE
44

CxK

CPE
66

CFE
86

FE

Cion%

22

CFE
33

FE
C44, ss

FE
C44, 5s

FE
C44, I
Ac
gc

20

20

20

[100] [010]

[100] [001]

[170] [110]

2.61

2 ~ 37

2 ~ 45

3 ~ 15+ 0 ~ 2

2.60+0 ~ 15

2 ~ 77 + 0.25

1 (CPE CPE)

( PE
44

( PE
66

CFE
66

FE
C44, 5s

~Coordinate system in PE is rotated by 45' with respect to that of FE.
tVe used density p=4 ~ 62 g cm ~, Ref. 3 ~

c g & (QFE + CFE +2CM86 ) 1 [(CFE CFE)2 ~ 4 (CFE + CFE)2]i/2

8 = g(C(g 22+ C33 + 2C4g55) -g f(C(g 22
—C33 ) + 4(C(P 23 + C44 55) ]

transformations. There are, however, some novel
features which distinguish them from other d is-
placive transf ormations which have been studied
previously. Unlike the perovskite ferroe lectrics,
for example, in these materials the primary order
parameter (by which we mean the parameter asso-
ciated with the soft mode, and which therefore
shows large fluctuations near Tc) has no macro-
scopic polarization, but is instead antipolar and

seemingly unrelated to the fer roe lectr ic phase
which is produced.

Antipo lar displace ments resulting from a short-
wavelength phonon instability are not new. What
is different is the particular combination of induced
secondary (perhaps we should say secondary and

tertiary) order parameters which constitute the
spontaneous strain and polarization. If there is a
general lesson to be learned, it is the importance
of distinguishing between primary and secondary
order parameters and second the richne ss of be-
havior which the second ary parameters make pos-
sible . As Cochran ' has recently emphasized, the
possibility of secondary order parameters is an
elaboration not contained in Landau' s original
discussion of phase tran sformations .

The rare -earth mo lybdates al so differ from the
other well- studied materials undergoing d isplacive
phase change s in that the composition of the spon-
taneous d isplacements, expre ssed in terms of the
degenerate soft-mode e igenve ctor s, is not fixed by

symmetry considerations but is governed by a
pair of coupled eq uations . This allows for a con-
tinuous variation in both the magnitude of the order
parameter (q) and its direction (Q) in the space of
a fixed set of eigenvectors (R, , R2). Q may be
called a secondary order parameter as well as
those discussed in the foregoing paragraph . We
have shown that the temperature dependence of
is described reasonably well by an approximation
which renders P temperature independent, but we
know of no fundamental reason why this is so.
Undoubtedly, therefore, other materials exist or
will be found in which this interesting compl ication
of a varying angle Q coupled with the order param-
eter cannot be so easily dealt with.
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APPENDIX

We wish to work out the soft-mode frequencie s
associated with the free energy given in Eq. (14),
which, written explicitly, is

j 2 2 2 2 j 4 4 4 1 4 2
2 ~ n(ys1 + y2) + 4fl1& (~i + ~2) + 2~26 Yl Y2
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TABLE VI. Elastic constants in the tetragonal phase (PE)
at 260 'C in 10' dyn cm ~.

C33 C» &4~ &66

9.1 + 0.5 10.1+ 0.9 2. 9+ 0.5 6.7 + 0.7 2. 65 + 0.10 2.87+ 0.15

If we assume that „depends linearly on the tem-
perature in FE as found in PE, we can write Eqs.
(20) and (21) for T ~ To:

T —Tc
N No T T0 C

6 10 (yl+ y2) + 2~29 (yl Y2+ yl Y2)+' ''. (Al)

I 1/2-
a ga 2 4 3

T Tc
(A9)

As discussed in the text we assume that the param-
eters are such that the equilibrium conditions BE/
&(qy, )= ~E/&(qy~)= 0 are satisfied in FE with y&/y2
independent of temperature. With no further loss
of generality, the basis vectors can be chosen
such that y&= 1, ya= 0. The soft-made frequencies
are simply related to the curvature of the free
energy about its minimum:

The soft-mode frequencies in FE are then given by
P

2 iB 2 & 3 T TC+~= 3 ~~o
To Tc

+ 1 —g A10

~a=3 ~~o 2 W
—

B +
16

Q +2
2s(&yg) „'=i, p, =o 8( 1y2) 2=i, y2=o

T- Tc 1 'Wax +
To —Tc 2 W B& )

We find

~i = ~~(T) + S»U'+ 5%a',
~2= ~~(T)+ Ban'+ ~an'.

(A2)

(ASa)

(ASb)

&4o = &4(To) = rs (Bx/ll'i)

no = n'(To) = —-'(Bi/lf'i)

~io= ~i(TO) = 4~uo i
2 2 2

~so = ~3(TO) = ~ma [1+S(W2/W, ) —4(B2/Bi)] .

(A4)

(A5)

(A6)

(A7)

These frequencies are degenerate in PE (q= 0),
but in general this degeneracy is removed in FE.
At the transition temperature To [compare Eq.

x 1 —— . A11
~1/2-

o —Tc)
co, in FE is the frequency of the mode representing
fluctuations in the order parameter {eigenvector
proportional. to the static displacements [Eq. (6)]]
and &2 is the frequency of the orthogonal mode
which has no average static value.

In order to get some impression of the behavior
of (u2 given by (A11) we can make what is perhaps
the simplest of the three decoupling assumptions
mentioned in Sec. IV; namely, isotropy in the
sixth-order terms W& = Wa. The behavior of ~&

and +2 for different ratios of B2/B, is shown in
Fig. 9. (The conditions B, ~ 0 and B, &Ba are
necessary for the equilibrium solution y, = 1, ya
= 0.)
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Two new inequalities, (i) y' a2P(2 —q)/(d-2+q) +2$[2P/(d —2+q) —v e] and (ii) (5 —1)/5
~ 2(2- q)/5(d- 2+g) +2(II) [2/g(d —2+q) —pz J, are derived among critical-point exponents that
describe the behavior of the two-spin correlation function C&(T, H, r) = (so sp) (so)' (s $), sub-
ject to plausible assumptions (rigorous for Ising magnets). Here v& and p, describe the di-
vergence as T —T and as H —0', respectively, of the "generalized correlation length" gz(T, H),
defined as the 2(II)th root of the normalized 2/th spatial moment of C~(T, H, r). Also
derived are the corresponding inequalities among exponents that describe the behavior of the
energy-energy correlation function. Inequality (i) is shown to lead to an inequality between
primed and unprimed exponents. Moreover, if v& is independent of Q, then (i) implies that
v' ~ 2p/(d —2+q) and 'y' ~ (2 —q) v', while if pe is independent of p, then (ii) implies p
~2/6(d —2+)) and (6 —1)/4 ~ (2 —g)p.

I. INTRODUCTION

Rigorous inequalities among critical-point expo-
nents have served to assist in the interpretation
of experimental data and, perhaps more significant
historically, have contributed to the formulation
of the static scaling hypothesiss (which has the fea-
ture that most inequalities are predicted to be
satisfied as equalities).

These inequalities may be classified into two
groups: (i) relations among critical-point exponents
characterizing the behavior of thermodynamic func-
tions, ' and (ii) relations among exponents charac-
terizing the behavior of the static correlation func-

tions. ' '
Inequalities belonging to category (i) (e. g. ,

+ 2p+ y' ~ 2) are frequently found to be satisfied as
equalities by experimental results and by calcula-
tions on model systems. 6 On the other hand, cer-
tain of the inequalities belonging to category (ii)
are almost invariably not obeyed as equalities, with
the notable exceptions of the two-dimensional Ising
model (d = 2) and the three-dimensional spherical
model. Thus, for example, dv 2 —n is satisfied
as an equality for the d = 2 Ising model (v = 1, o.'= 0),
but for the d = 3 Ising model, numerical-approxima-
tion methods indicate that dv is about 2% larger
than 2 —+.


