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The combination C„+2C„,is proportional to the
specific heat and varies as &T; but, since yo = 2P
+ n —2& n, all other linear combinations should
diverge as &T'~. The only available series are
for S = 2, although very erratic, they are not incon-
sistent with yo -—2(1.2) +(-0.1) —2 =0.3. It is
gratifying that our tentative numerical estimates
are in accord with the small-e prediction, 1& Q &y.
However, derivation of longer series (including the
XI' case) is under way.

Note added in Pv oof. The initial estimates from

the longer series indicate Q = l. 25 with a smaller
uncertainty. Details of the analysis will be pub-
lished. An account of the exact calculation of the
e2 terms (Ref. 7) has now appeared: K. G. Wilson,
Phys. Rev. Letters 28, 548 (1972).
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Critical indices for isotropic systems of n-dimensional spins in (d =4-&)-dimensional lat-
tices are calculated to order &. All critical indices corresponding to perturbations of the
spin probability distribution are given. Such perturbations might arise from the effects of
external or crystal fields on the spin system.

Recently, Wilson and Fisher~ calculated some
critical exponents for the Ising model and the XF
model for dimension d=4 —& with q small. This
calculation was based on the renormalization-group
techniques for critical phenomena by Wilson. 2 Here

we use this theory to calculate the critical indices
for isotropic systems of n-dimensional spins. 3 n
= 1, 2, 3 corresponds to the Ising, the XF, and the
Heisenberg model, respectively. We calculate all
critical indices corresponding to perturbations of



1892 FRANZ J. WEGNEH

the probability distribution exp[- Q„(y)]for the
total normalized spin y of a block of length 2".
These perturbations might arise from the effect of
external fields or crystal fields. No perturbations
which include space derivatives like the stress ten-
sor are considered. The transformation properties
under rotation of the spins are conserved by the
renormalization procedure and therefore give the
correspondence between the crystal fields and the
perturbations of the probability distribution. We
start from Wilson's recursion formula4

Q», i(y) = —2'»II»(2' ""y)/I»(0)l

I (z) = f dyexp[-y'--, 'q„(y+z)--,'q, (-y+z)] . (2)

At criticality Q, (y) approaches a "fixed point" of
the recursion formula Q*(y) = lim„„Q„(y).To
first order in q, one obtains an isotropic solution

q "(y)=r*y'+u*(y')',

with

erator algebra. e

The singular contribution to the expectation value
of the operator 0 is proportional to 7"", the sin-
gular contribution to the "susceptibility" fdr
x((00(r)) —(0)') is proportional to r ""~', and
the conjugate field to 0 scales like v"'" "', with
v = (T —T,)/T, . Within the theory of scaling the
exponents vx, v(d —2x), v(d —x) are commonly
called9 p, y, a, respectively, if 0 is the magneti-
zation, and they are defined 1 —n, o, , 1, respec-
tively, if 0 is the energy density.

Now we consider the eigenvalue problem, Eqs.
(5) and (8). Expanding 6Q in powers of y and eval-
uating the expectation values, we obtain

(6Q)= exp[a/4(1+r*)] gq,
where 6 is the Laplace operator. Similar expres-
sions can be derived for (y'gQ), (yzy26Q), and
((yz)2$$). Substituting these expressions in Eqs.
(5) and (8), we obtain, to order e,

r* = -4(n+2)& ln2 [3(n+8)]-',

u "=e ln2 (n+ 8) ' . (4)

Xvq(2"2 'z)= 2'(I- u*[-,' z' n+z, z, S, S, .

+-,'(n+2)a+~za2]}

g q =-,'g Q(y+ z) +-,'g Q(- y+ z),
A = u*[(y'+ z )'+4(yz)'],

(8)

(B)=f dy 8exp[- (1+r*)y']

x(f dyexp[- (I+r*)y2]}' . ('I)

The eigenfunctions

&6Q»(z) = —2"[lnI»(2' " 2z) —lnI*(2' ~ 2z)] (8)

lead to solutions

Q»= Q*+&'&Qo

If X is smaller than unity, then the perturbation
vanishes for k- ~, and the corresponding operator
is thermodynamically irrelevant. If A is larger
than unity, then the perturbation leads away from
the "fixed point" Q* either to another fixed point
Q*' oraway fromcriticality. If 1=1, then Q*+a&qo
(with a infinitesimally small) might be a fixed
point' too. We expect that for Baxter's eight-ver-
tex model the fixed points form a "fixed line. " The
exponent x of an operator 0 scaling like7 x ' is re-
lated to X by

logan' =d —g . (10)

Therefore, a perturbation 6 Q, with P. = 1 (yielding
a fixed line) corresponds to an operator scaling
like y " in agreement with the prediction from op-

A small perturbation Q, = Q'+6Q» gives rise to the
linear response

lnI»(z) —InI~(z) = —(5Q» )+ (&5Q» ) —(&) (5Q» ),
(8)

with

xexp[n/4(1+r*)]5Q(z) . (12)

The solutions of Eq. (12) are polynomials in z,
since the operator on the right-hand side gives only
contributions z, z», . . . upon application on z».
Since the operator is rotationally invariant, the

. solutions are of type

qq. , = J., (z')H, (z) .
Here H, (z) is a harmonic polynomial of degree l in
z (compare p. 23V of Ref. 10) defined by AH, (z) =0
and H, (//z) = //, 'H'(z), whereas P, ( )zi2s a polynomial
of degree m in z'. Matching the highest power in
z we find

log2&~, = d —x, =4 —2m —l + &(m+ —,'I —1)
—zg. , /(n+ 8), (14)

g, =m(2m —2+n+2l)+(2m+i) (2m+i —1) .
We note that for &- 0 the eigenfunctions 5q„„are
the polynomials of the harmonic oscillator

g q L(n/2+(-1& (2 z2)H (z)

where L"' are the Laguerre polynomials (see p.
188 of Ref. 10). The degree of the polynomial pQ,
is 2m+ l. The exponents d —x, are listed in Table
I for 2m+I (4. We use the spectroscopic notations
s, p, d, f, g for l=0, 1, 2, 3, 4. The perturba-
tion with the quantum numbers ml = Os corresponds
to the operator 1, Op corresponds to the magneti-
zation, 1s corresponds to the energy density.
From the corresponding exponents g one obtains,
within the theory of scaling the critical exponents,

n= (4 —n)»/2(n+8)+0(e2),
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TABLE I. Exponents d xml

Os

Og

1s
Od

1p
Of
2s
1d
Og

2m+i

3 —pE'

2 —(n+2) ~/(n+ 8)
2 —2&/(n+ 8)
1 ——E'1

2

1+(n-4)~/[2( +8) l'

—«l(n+8)
(n-4)~/( +8)

P = —.
' -3~/2(n+ 8) +O(&'),

2v = y=1 +(n+2)&/2(n+8) +O(qa) .
For n- ~ one obtains the critical exponents n
=(d —4)/(d —2), P= —,', y=2/(d —2) for the spherical
model to order &. This checks against Stanley's
proof" of the equivalence of the spherical model
with a system of infinite-dimensional spins. A

crystal field of type H, (y) gives rise to perturba-
tions of type pQ, . Since Xo, ~ X, , the most sin-
gular contribution comes from ml = Ol. Therefore

the corresponding field scales like T~ with P
= v (d —xz ). An anisotropic interaction of type
(y, —y,.) gives rise to a perturbation BQO, . The
critical exponent P of the corresponding field ~ is
obtained from

Q =v(d —xo~) =1+no/2(n+8)+O(e ) . (l8)

According to this result the conjecture Q = l by
Suzuki'3 is an underestimation, whereas the esti-
mation Q =y by Riedel and Wegner' is an overesti-
mation. A more detailed discussion of P will be
given in the accompanying paper by Fisher and
Pfeuty. The perturbation Og corresponds to a,

crystal field of cubic symmetry of type y&+y~+y~
—3 ( y, ym+ y, y~ + ya y~) for an isotropic Heisenberg
model (n=3). The exponent d —xo, =-p q is ex-
ceptionally small. If higher-order terms in &

raise d —go, to or above 0 for d = 3, then such a
crystal field is thermodynamically relevant; that
is, the critical exponents may be changed by such
a field.
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