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Critical Behavior of the Anisotropic n-Vector Model

Michael E. Fisher and P. Pfeuty
Bakes Laboratory, ComeLL University, Ithaca, Nero Yo~k 14860

Qeceived 17 November 1971)

The critical behavior of a system of n-component classical "spins" with anisotropic pair
interactions is discussed using renormalization-group techniques for dimension d=4-e. To
first order in g the correlation and susceptibility exponents in the isotropic limit are 2p = y= 1
+ [(n+ 2)/2(n+ 8) ]e, while the anisotropy or crossover exponent is P = 1+ [n/2(s + 8)]e. When n —~
these expansions agree with exact spherical-model results. For n = 3 and d = 3 series expan-
sions indicate (t) =1.2 (compared with y =1.38).

X...=--,'Z Z J.S.(R),
g=g

S,(R) =Zo„(R)o,(R+ i)),

in which E runs over the q nearest-neighbor lattice
vectors. We introduce anisotxopy Parameters g
by J = Jp(1+g ) &0.

On rewriting oo as —,'[o +o —(o —o ) ), which
introduces the square of a (discrete) gradient, and
substituting o (X) =(2dksT/qJ )'~ s (x), we obtain
a reduced Hamiltonian" Xp of the general form

K,(g(x)] = —1 dX[-,'
i
VÃ(x)

i

'+ Q, (X(x))], (2)

q, (s) =Z r '."s.'+ Z u.",'s'. s', + ~ ~ ~,
e a,g

with (for l = 0) the initial values

'=d[(ksT/qJ ) —1]=d(t -g ),
u', tI = d f (k s T) /q Z Jp = d f,

(4)

(5)

In recent work' the critical exponents for gen-
eralized classical Ising and XY models were derived
for dimension d =4 —E with E small, by using re-
normalization-group techniques. ' For d) 4 the
critical exponents assume classical mean-field
values independent of E; for d (4 the exponents 2p

and ) were calculated' exactly to order e (and ap-
proximately to order e ). In this paper we report
similar exact first-order calculations for the
classical Heisenberg (n= 3) and general n-compo-
nent spin models, with anisotropic pairwise cou-
pling. We also present, for the first time, an esti-
mate based on series expansions, for the crossover
exponent'4 P for the standard anisotropic Heisen-
berg model (n= 3, d=3).

Let o(R) denote a classical vector "spin" at lattice
site R, with n continuously variable components
o (o,'= 1, 2, . . . , n). The pha, se-space weight factor
for a (noninteracting) spin is taken to be

exp(- —,
'

I o l

' ——,
' f i o i') with f [= O(g)] small so that

(o', )p = 1+O(f). For simplicity we consider only
the anisotropic ferromagnetic -interaction Hamilto-
nian

I 6] 2 2u, =b [u, —2u~(u, q +2u„q q, +u„q, )

-Z„u„u„sq„+O(~')], (10)

where the prime denotes superscript (l + 1), while

on the right-hand side the superscript (l) has been

dropped.
In (A) the isotronic case (g =0) the recursion

formulas simplify since x = r and u 6= u. As in
the Ising case (n= 1)' one then finds a "Gaussian"
fixed point, u = 0, z = 0, and associated classical
exponent values. These exponents apply for
d &4 (e &0) but when d &4 with u ' &0, this fixed
point is unstable. Following Ref. 1, the stable n-
vector fixed point is found to O(e), to be

u*=e/(n+8), r*=u*(n+2)/(1 —b ),
where E= b' —1=& lnb. The critical exponent v is
now calculated' by linearizing (9) and (10) about
this fixed point and looking for solutions in which
Ar"' diverges as A. '; one then has v = lnb/ink. .
This leads easily to

2v = 1+[(n+ 2)/2(n+ 8) ]E + O(c ), (12)

which is independent of b indicating its exactness
to first order. " To this order we have' q= 0 so

and v,z'„= ~ ~ ~ = 0. The approximate equalities hold

to leading order in the g, and in the reduced tem-
perature

t=(T —Tp)/Tp with ksTp=qJp .
The renormalization-group recursion formulas

for deriving X„&from X, by a momentum cutoff
reduction factor of b( & 1), as found by Wilson,
now read'

e„,(y) = - b" »[f, (b' ""'y)/I, (0)], (7)

I,(z) = f dy, ~ J„dy„exp[ —~y~' —2 Q, (z+y)

——.
"

Q (z —y)] (8)

To leading order in the u, p
= O(e) one then finds,

with q = 1/(1+r„),
r' =b'[r, +2u„q +Z„u„,q„+O(e')], (9)
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that y = 2v + O(e ). For n = 1 (Ising) and n = 2 (XY)
the previous results are recaptured; for n- ~,
which corresponds to the spherical model, the
formula is consistent with the exact result 2v =y
= (1 —pE) (0 & e & 2). The thermodynamic exponents
n, p, ~ ~ ~ may be derived to O(E) from the standard
two-exponent scaling relations ' and also agree
with spherical-model results when n- .

For (8) the anisotropic case we may, with no
loss of generality, suppose g, =0(J = Jp) for o. &m,
andg &0(Z &J'p) for n &m, i.e. , dominant m
isotropy. We now study the recurrence relations
(9) and (10) with the initial conditions (4) and (5)
and vary t (i.e. , T) to find the critical value
t,(g,' f) which will yield an asymptotic fixed point.
Now, recalling up =d f= O(c), the relations (10)
give u p= u p[l+0(e)], so that the u,'p' vary slowly
with t. Conversely, (9) shows that, in general,
x~ =b r~ so that x "-b ', which diverges rapidly
(and yields no fixed point). However, if t is chosen
so that r, =dt, satisfies

(b p 1)
2up g up(l+gq)

(13)0 1+ra+ ~ 1+ra dg

we find from (9) that the r " for o.'-m become
slowly varying; but the rp" for P&m still diverge
rapidly, forcing the coupling factors qz to zero,
and hence becoming thermodynamically irrelevant
variables. After a relatively few iterations, there-
fore, we effectively obtain a seduced, m-isotropic
set of recurrence relations (for u, P&m). The
appropriate fixed point is thence given by (11)with

m replacing g. All the exponents are, likewise,
just m- vector-like. This establishes the expected
dominance of the m largest 4 (= Jp) in determining
the critical behavior. Previously this dominance
has been demonstrated only by series-expansion
techniques (for n= 3, d= 3). 'P

To discuss the case (C) of weak anisotropy we
linearize the full recursion relations about the g-
vector fixed point ' (ll) and look for solutions with
&r "=c A.'. To leading order this yields the eigen-
value equation

Ac~ = b [(1—2u*)c„-u*Z„c„],
which has a single nondegenerate root Ao= b
X[I —(n+ 2) u*]. This represents the dominant tem-
perature instability, having a totally symmetric ei-
genvector, c, = 1, andleadsbackto (12). Inaddition,
there is an (n -1)-fold-degenerate eigenvalue
A.'= b [1-2u*], with orthogonal eigenvectors g„c~
= 0. With g ~ = c~ g, these eigenvectors correspond
to anisotropic perturbing spin operators of the
form, say,

I I0 y
= O'„0'~ —0'y 0'

y ~

I 1 I I
Qp=gggg — (pg» »av+y(T~) q

TABLE I. Estimates for the crossover exponent p (see
text) for the spin ~ Heisenberg model (d =3, n =3).

Lattice

bcc

0.1
0.2
0.1
0

k=2

l.220
1.331
1.288
l.240

1.191
1.248
l.175
1.188

1.189 1.192
1.227 1.220
1.208 l.189
1.206 1.198

The exponent v' = ln b/1'' now describes the criticyl-
point divergence of the correlation length ( as g"
(g-0). On introducing the crossover exponent Q

through the scaling formula

h(T, g) = » "X[g/(t T)'] =g ""X[g/(I T)'],
(16)

with &T= T —T, , we obtain

P = v/v'= 1+[n/2(n+ 8)]+0(e') .
When g- ~ this is again consistent with the exact
spherical-model result &f&

= (1 ——,'e) '. In this limit

Q = y but for n & ~ and small e we evidently have

Q & y. On the other hand, Suzuki's conclusion'p

P = 1 is generally incorrect. As suggested by
Qlegner, "the error arises because Suzuki con-

I
siders only the tensorially mixed operator o,o, in
first order in g, rather than introducing the anisot-
ropy through properly symmetrized operators like
the g&. In that case ( g&), p= 0 and one must go to
second order in g. For completeness we note that
the operators f& all scale as' x "~, where the
anomalous dimension" is ~o =d —(g/v), while the
corresponding susceptibility y diverges (when

g= 0) with exponent ytp = 2Q -d v= e(n+ 4)/2(n+ 8) & o. .
A more complete analysis of the isotropic fixed
point under all perturbations (of the single-spin
weight factor) has been carried out independently
by Wegner. "

Finally (D) we have made a direct estimate of Q

for the standard (d = 3, n = 3) anisotroPic Heisenberg
model using series-expansion data. ' The appro-
priate isotropic critical temperatures are known

quite reliably' '" but the series for the free energy
and susceptibility g(g), are rather short (only five
terms) so that our results must be considered tenta-
tive. With g(g) =gap(g)E and Z= J/ksT, it is re-
warding4 to analyze the function' (sx/sg)p- &T "
Using the T, and y (= l. 38) estimates of Ref. 18
and standard ratio techniques, we find P = l. 2 for
fcc, bcc, and sc lattices with 8=. As usual the
series for small S are rather irregular. Further-
more, independently of the estimates for T, and y
the series h„= [d lna~(g)/dg]p, yields the direct-
ratio slope estimates P, = [(h„/h„,) —1](k—1+6)

These are displayed, for stated choice of 6,
in Table I and support our over-all estimate Q = 1.21
+0.05. Q7e have also examined the partial energy
fluctuations C„and C„„where
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The combination C„+2C„, is proportional to the
specific heat and varies as &T; but, since yo = 2P
+ n —2& n, all other linear combinations should
diverge as &T'~. The only available series are
for S = 2, although very erratic, they are not incon-
sistent with yo -—2(1.2) +(-0.1) —2 =0.3. It is
gratifying that our tentative numerical estimates
are in accord with the small-e prediction, 1& Q &y.
However, derivation of longer series (including the
XI' case) is under way.

Note added in Pv oof. The initial estimates from

the longer series indicate Q = l. 25 with a smaller
uncertainty. Details of the analysis will be pub-
lished. An account of the exact calculation of the
e2 terms (Ref. 7) has now appeared: K. G. Wilson,
Phys. Rev. Letters 28, 548 (1972).
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Critical indices for isotropic systems of n-dimensional spins in (d =4-&)-dimensional lat-
tices are calculated to order &. All critical indices corresponding to perturbations of the
spin probability distribution are given. Such perturbations might arise from the effects of
external or crystal fields on the spin system.

Recently, Wilson and Fisher~ calculated some
critical exponents for the Ising model and the XF
model for dimension d=4 —& with q small. This
calculation was based on the renormalization-group
techniques for critical phenomena by Wilson. 2 Here

we use this theory to calculate the critical indices
for isotropic systems of n-dimensional spins. 3 n
= 1, 2, 3 corresponds to the Ising, the XF, and the
Heisenberg model, respectively. We calculate all
critical indices corresponding to perturbations of


