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Recently the spin susceptibility p of a one-band model for a disordered binary alloy with intra-
atomic Coulomb interactions and short-range scattering potentials was calculated using the co-
herent-potential approximation (CPA). The formal expression for g, which is applicable to al-
loys of arbitrary concentration and potential-scattering strengths, was found to reduce to pre-
viously obtained expressions for the susceptibility in the dilute-alloy limit and to contain as a
special case the uniform-enhancement model for y. In the present paper this theory for the spin
susceptibility is applied to several binary Ni, Rh, and Pd alloys. Good agreement with experi-
ment is obtained for y as a function of x in Pt„Pd& „Rh„Pd& „, ¹i„Rh~„, and Ni„Pd& „when a
simple "steeple model" for the density of d-electron states is used. The sign of the potential-
scattering parameter is obtained from renormalized-atom calculations; its magnitude is al-
lowed to vary arbitrarily. Good agreement between theory and experiment makes it possible to
determine the physical mechanisms which govern the behavior of X in the four alloy systems
considered. It is shown that potential-scattering effects which change the density of states at
the Fermi energy in the alloy from the value in the pure crystals must be included in calcula-
tions of p in Pt„Pd~ „. A uniform-enhancement model, in which the alloy is replaced by a
periodic crystal at each site of which the Coulomb interaction energy is given by the average
of the intra-atomic Coulomb energies, is found to approximate the calculated spin susceptibil-
ity in Pt„Pd& „to within an accuracy of 10%. For Rh„Pd& „alloys it is concluded that it is more
likely that the nonmonotonic z dependence of p is due to a relatively large contribution to the
susceptibility associated with Rh sites than to a rigid-band density-of-states effect. This
conclusion is in agreement with recent NMR data. The theoretically determined spin suscep-
tibility in Ni„Rh& „alloys for g- 0.50 may be approximated to within an accuracy of 10% by a
uniform-enhancement model, providing the density of states at the Fermi energy is calculated
self-consistently at each concentration x using the CPA. Thus both the Ni and Rh atoms may
be viewed as participating equally in the ferromagnetic phase transition in Ni„Rh~ „which
takes place for xo 0.63. By contrast, for Ni„Pd& „alloys in which it is found that the Ni sites
make a relatively large contribution to the susceptibility, the Ni atoms appear to be mainly
responsible for the ferromagnetic phase transition which occurs at very low Ni concentrations
xo 0. 022.

I. INTRODUCTION

There exist a number of disordered magnetic or
nearly magnetic alloys A@, „which form solid
solutions over a wide range of concentrations.
Among these are Pt-Pd, Rh-Pd, Ni-Rh, and Ni-Pd.
All of these systems show interesting and different
magnetic behavior in the nondilute alloy limits.
For example, the susceptibility in the Pt+d, „
system'~ monotonically decreases with increasing
x. In Rh„Pd, „, the spin susceptibility g exhibits
a maximum at x= 5 at. /p and then decreases mono-
tonically. ~ Ninth, „ is ferromagnetic at low tem-
peratures T for x = 63 at. /&,

' whereas Ni„Pd, „ is
ferromagnetic at T 0 for x~ 2. 2 at %%up.

'—.
Until recently the theoretical understanding of

the susceptibility of exchange-enhanced alloys has
been limited. Previous theories were only valid
for dilute alloys6-ig or uniformly exchange-en-
hanced alloys'3 and were thus of limited applica-
bility. Within the last year several authors'4-"
have used slightly different approaches to apply the

coherent-potential approximation (CPA)" to cal-
culations of the susceptibility of nondilute alloys.
However, none of these authors has attempted to
explain the experimentally observed concentration
dependence of the susceptibility in Rh-Pd and Ni-
Rh. While Harris and Zuckermann' examined the
concentration dependence of X in Ni-Pd alloys and
Levin et al." studied that of g in Pt-Pd, both of
these sets of authors used approximate forms of
the more general. CPA expressions in the numeri-
cal analysis. In addition, the effects of potential
scattering, which are important in these alloy
systems, were ignored by both groups of investi-
gators.

It is the purpose of the present paper to discuss
in detail a theory for the spin susceptibility of non-
dilute alloys which was briefly presented in an
earlier paper. " The general theory which includes
potential-scattering effects is then applied to four
transition-metal all. oy systems: Rh-Pd, Pt-Pd,
Ni-Rh, and Ni-Pd. Good quantitative agreement
with experiment is obtained for the concentration
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dependence of X in all these alloys.
The binary alloy A„B, „is approximated by a

simple one-band model with self-consistently de-
termined short-range scatter ing potentials. The
intra-atomic Coulomb interactions are treated in
the Hartree-Pock approximation. Because only
the diagonal matrix elements in Wannier space of
the alloy Hamiltonian K are random, the coherent-
potential approximation' may be easily applied to
3C to obtain an approximate configuration-averaged
one-electron Green's function for the alloy. The
uniform static spin susceptibility is then easily cal-
culated from the average Green's function com-
puted in the presence of an external magnetic field.

In calculations of the susceptibility of transition-
metal alloys it is assumed for simplicity that Ni,
Pd, Pt, and Rh have the same d-band shape (i. e. ,
a rigid-band model for the pure metals" is adopted)
which can be approximated by the simple steeple
model considered in previous"' calculations of
transition-metal alloy properties. While the theory
presented here can easily be generalized to treat
hybridizing s and d bands, ~' the numerical calcula-
tions become excessively complicated when s elec-
trons are included; consequently s electrons will
be neglected here. The Fermi energy in the alloys
is calculated by assuming conservation of d elec-
trons. For simplicity it is also assumed that Ni,
Pd, and Pt, which are in the same column of the
Periodic Table, have the same number of, d elec-
trons. Hh which lies directly to the left of Ni in
the Periodic Table is assumed to have approxi-
mately one less d electron than Ni. Despite these
approximations it is believed that the results ob-
tained here for the concentration dependence of y
are qualitatively correct.

The relative positions of the center of gravity
of the d bands, &'"", in the pure crystals can be
calculated from a renormal. ized-atom theory.
The sign of the potential-scattering parameter of
the pure metals which is measured relative to the
average half-bandwidth 5' and given by P"
= (e" '" —c '" )/W is taken from these calcula-
tions. In order to fit the susceptibility data in the
alloys the magnitude of P", which is allowed to
vary arbitrarily, is in general found to be smaller
than that predicted theoretically ~ (by at most a
factor of 4). This suggests that charge-transfer
effects may be important in the alloys.

A detailed outline of the paper will now be given.
In Sec. II a model for the alloy in a uniform exter-
nal magnetic field II is discussed and the configura-
tion-averaged single-electron resolvent G(z, H) for
the model is calculated using the CPA.

In Sec. IIIA a general expression for the para-
magnetic susceptibility X for the model alloy is ob-
tained from G(z, H). The weak-scattering limit of

y is discussed in Sec. III B. It is shown that, in

this limit, X can be written in the usual RPA form
with an effective Coulomb interaction energy U'"
which satisfies an equation analogous to the Soven
equation for the self-energy in the CPA. The ex-
pression obtained for X can be viewed as an exten-
sion to nondilute alloys of the Lederer and Mills
theory which is appropriate to isoelectronic alloys
in which there is no potential scattering. In Sec.
1II C, the dilute-alloy limit (x « I) of Z is discussed.
It is shown that there are three contributions to y
which are linear in x. a potential -scattering term
which reflects the first-order change with x in the
alloy density of states, a Coulombic-scattering
term, and a mixed term which contains combined
potential- and Coulombic-scattering effects. Com-
parisons with other dilute-alloy theories are also
discussed in Sec. III, and it is shown that the pres-
ent theory contains those terms previously con-
sidered.

Finally in Sec. IV the theoretical expression for
X is applied to the four alloy systems: Pt-Pd,
Rh-Pd, Ni-Rh, and Ni-Pd. In Sec. IVA a brief
discussion of the pure-metal parameters used in
the model is given. In Sec. IV 8 the susceptibility
of Pt„Pd& „alloys is discussed. The theoretical
curves of y vs x are plotted for several values of
the potential-scattering parameter 5 ". It is
shown that potential-scattering effects which change
the density of states at the Fermi energy in the al-
loy from the value in the pure crystals must be in-
cluded in calculations of g in Pt„Pd& „. A uniform-
enhancement model' in which the alloy is replaced
by a periodic crystal at each site of which the Cou-
lomb interaction energy U'" is given by the average
of the intra-atomic Coulomb energies U'"=xU '
+(1 -x)U is found to approximate the calculated
spin susceptibility in Pt„Pd& „ to within an accuracy
of 10%. Good agreement with experiment for a.ll x
is found for 5~"=0. OV. No theoretical estimates
of 5'""for this alloy system are yet available, but
arguments are given which show that a positive
sign of 5'"" is reasonable.

In Sec. IVC the concentration dependence of y

for Rh„Pd& „alloys is discussed with particular
attention given to the low-concentration (x & 0. 10)
limits where it is found experimentally that X ex-
hibits a maximum as a function of x. The two
mechanisms which have been postulated to explain
this maximum a.re as follows: (i) The maximum in

X is due to a maximum in the density of states at
the Fermi energy which arises in the rigid-band
approximation. (ii) The initial increase in g at
small x is due to a large contribution to the sus-
ceptibility associated with Rh sites 4; for larger
x, g must decrease (since X, in pure Rh is less than
that in Pd), thus giving rise to a maximum in the
susceptibility. Renormalized-atom-theory calcula-
tions indicate that 5'""=0.7 for Rh„Pd, „. If the



CALCULATION OF THE SPIN SUSCEPTIBILITY. . . 1867

first mechanism is responsible for the maximum,
it is shown here using two different band models
that agreement with the susceptibility data is only
possible when 6'"" is chosen to be = 0. 01. In view
of the fact that this value of 5'"" seems improbably
small, it is argued that the first mechanism is un-
likely to occur in Pd-Rh. On the other hand, good
agreement with experimental values of g for all x
is obtained for larger 5'""= 0. 2. For this value of
the scattering parameter it is shown that in the di-
lute limit the contribution to the susceptibility of a
Bh site is several times larger than that of a Pd
site. Because this larger value of 5'"" is in rea-
sonable agreement with renormalized-atom calcu-
lations, it is concluded that the second mechanism
is more likely to be responsible for the maximum
in y than the first. This conclusion is consistent
with recent NMR data. Arguments are given to
explain why the present value found for 5'"" could
be smaller than that calculated using renormalized-
atom theory for the pure metals.

In Sec. IVD the concentration dependence of X

for ¹Pth,„and for Ni„Pd, „is calculated and com-
pared with exyeriment. 4' Emphasis in this section
is on explaining why ¹i„Pd&„becomes ferromagnetic
for much smaller x than Ni„Rh&, . The much larger
contribution to the susceptibility of a ¹isite com-
pared to that of a Pd site is seen to be mainly re-
sponsible for the tendency to ferromagnetism as Ni
is added to Pd. The Ni atoms thus appear to trigger
the ferromagnetic phase transition which occurs at
very low Ni concentrations x~ 0. 022. Qn the other
hand in Ni„Rhi „ the present calculations demonstrate
that the theoretically determined spin susceptibility
for x& 0. 50 may be approximated to within an ac-
curacy of 10% by a uniform-enhancement model'P
in which the effective Coulomb energy at each site,
0", is given by the average of the intra-atomic
Coulomb energies in Ni and Rh U"=xU"'
+ (1 -x)U ". However, the density of states at the
Fermi energy which is found to increase mono-
tonically with x must be calculated self-consistently
at each concentration x, using the CPA. Thus both
the Ni and Rh atoms may be viewed as participating
equally in the ferromagnetic phase transition which
takes place for x~ 0. 63. Good agreement with the
experimentally observed concentration deyendence
of X is obtained for Ni„Rh& „when 5'""=—0. 125 and
for ¹i„Pdq„when 6'""=0.16. These values are in
reasonable agreement with renormalized-atom
calculations which predict values of 5'""equal to
-0.075 and 0.78, respectively.

II. DESCRIPTION OF THE ALLOY MODEL AND ITS
ONE-ELECTRON PROPERTIES

In this section the one-electron properties of
single-band disordered binary alloys A„B& „are re-
viewed within the context of the coherent-potential

approximation. ' The tight-binding Hamiltonian
assumed to describe the essential features of either
ferromagnetic or paramagnetic alloys in an external
magnetic field H is given by

K= Z T,ja;,a;, + Z E,'(H)a, ,a,, (2. 1)

K= T+V(H), (2. 2)

where e,'(H) can take on one of two x-dependent
values ep+U"n, (H) or ep+U n (H) depending on
whether an A or a B atom is at site i, and U" and
U are the intra-atomic Coulomb repulsion energies
onA and Bsites, respectively, which are treated in
the Hartree-Fock 'approximation. The Hamiltonian
is thus a Hartree-Fock Hubbard Hamiltonian for
the binary alloy. In Eq. (2. 1) the T,&are the. hop-
ping integrals assumed to be the same for both
pure-A and -B crystals. Thus, the operator T is
translationally invariant. The alloy disorder is
described by the short-range scattering term V(H).
Since the present paper will not be concerned with
diamagnetic effects, the field dependence of the
kinetic energy term T is neglected. In addition
spin-orbit couyling effects are neglected in the
present calculations. The fact that the energy lev-
els at a given site are constrained to take on one of
two values, which corresponds to the average d-
level position on A and B sites independent of the
atomic configuration on nearby sites, is an over-
simplification without which the problem is not in
general soluble. It is expected that this assump-
tion will not lead to significant errors in calcula-
tions of bulk or average properties which are in-
sensitive to the spatial variation of the d-level
positions, such as the density of states or the uni-
form static spin susceptibility.

The parameters characterizing the alloy Hamil-

Here (n, )'""and (ns)'"" are the number of electrons
per atom in the yure-A and -B crystals. In order
to satisfy the Friedel sum rule

dp/dxi„p=dp/dxt, =o

these parameters must got be chosen independent-
ly. ~ However, because the present Hamiltonian
neglects s electrons and thereby only approximates
that appropriate to real transition metals, the
Fermi energy p. is not computed here exactly. It
therefore seems unreasonable to force the alloy
parameters to satisfy the Friedel sum rule in the
present paper. Consequently, all the alloy param-
eters except 5,'""will be chosen to be consistent
with spin-susceptibility data and band calculations
for the pure-A and -B crystals. The parameter
6,'"' will be an adjustable parameter in the theory.

The x-dependent quantities n,"(H) and n, (H)
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represent the contribution of A and B sites to the
total number of electrons per site in the alloy.
n,'(H) can be obtained from the configuration-aver-
aged resolvent:

C. (z, H)=-[z-Z. (z, H)-r] ' (2. 2)

where y= 1 -x and

F(z —Z, (z, H)) =N 'TrG, (z, H) . (2. '7)

The spin- and x-dependent potential-scattering-
strength parameter 6, (H) is defined as

6.(a) = ~."(H) —~.'(H) . (2. 6)

It is convenient at this point to establish some
notational conventions. All energies are measured
relative to the half-bandwidth 4'. Consequently,

using

n,'(H) = —(nN) Im Tr f„dEG,'(E, H)f(E —p, +p.za),
(2 4)

where

C.*(z, H)=C. (z, H)

+C.(z, H) [~.'(H) -Z.(z, a)]C.'(, , H), (2. 6)

and the minus and plus signs in Eq. (2. 4) corre-
spond to electrons whose spins are, respectively,
parallel and antiparallel to the external magnetic
field. Z, (z, H) is the self-energy operator, f(E) is
the Fermi function, and p, and p, & are the Fermi
energy and the Bohr magneton, respectively. It
may be seen from Eq. (2. 5) that G"(z, H) and
G (z, H) are just the propagators for an electron in
the configuration-averaged alloy in which single-A
or -8 atoms are substitutionally embedded.

The Hamiltonian of Eq. (2.1) differs from the non-
magnetic Hamiltonian which has been commonly
adopted by other investigators ' ' ' in two respects:
(i) Anintra-atomic Hartree-Fock Coulomb interac-
tion term acting between opposite-spin electrons
is added to the short-range scattering term of
Refs. 16, 20, and 21; and (ii) the energy levels e,'(H)
are assumed to depend upon an externally applied
magnetic field as well as on the concentration x.
Because of the dependence of e,'(H) on ~,'(H), the
quantities G, (z, H) and G, (z, H) must be calcu-
lated self-consistently using Eqs. (2. 4) and (2. 5).
In the zero-magnetic-field limit, the Hamiltonian
has been previously considered. +'

An approximate form for G, (z, H) may be obtained
from the coherent-potential approximation' which
is a self-consistent procedure based on a single-
site decoupling of the multiple-scattering equations.
It follows from Ref. 18 that the self-energy of the
model Hamiltonian is given by

Z, (z, H) =xc, (H)+yE, (H) —[e, (H) —Z, (z, H)]

&&E(z —Z, (z, H))[&, (H) —Z, (z, H)], (2.6)

fI' and 5, (H) will be treated as the dimensionless
variables U'/W, 5,(H)/W, etc. Additionally if the
argument H is omitted in n„z,(z), etc ,. it is un-
derstood that these quantities refer to their zero-
field counterparts. The Fermi energy p. is always
understood to be independent of the external mag-
netic field.

The electronic density of states per atom of spin
cr is given by

p, (E, H) = —m 'I mE( E+i0 —Z, (E+i0, H)) . (2.9)

Similarly the contribution to the density of states
associated with A or 8 sites and spin o is given by

p,
' (E, H) = —(Nm) ' Im Trc,' (E+ f,0, H), (2. 10)

where i= 2 or B. Thus, using Eqs. (2.4), (2. 9),
and (2. 10) it follows that

n,'(H)= ——Im dEf(E —p, + pa)F(E ,—Z.(E, H))
1

x (I - [ '.(H) -Z.(E, H)]F(E -Z.(E, H))] '.
(2. 11)

From now on the small positive imaginary part of
E will not be written explicitly even when Z, (E, H)
is real.

Using Eqs. (2.6) and (2„11)in the ferromagnetic
case a set of seven coupled integral equations for
p, , Z, (z, H), Z, (z, H), n,"'a(a), and n",'a(H) is ob-
tained. In the paramagnetic case these seven equa-
tions reduce to four.

It may be verified from Eq. (2. 6) that p, (E, H)
= xp", (E, H) +ypa(E, H). Thus the average number
of electrons of spin o per atom, given by

n, (H)= —w ~Im f dEf(E pvpza)—
&& F(E-Z, (E, H)), (2. »)

satisfies the particle-conservation equation

~.(a) = xn". (H)+ yrP. (H). (2. 12)

In the zero-magnetic-field limit, Eq. (2. 12) is used
to determine the Fermi energy p in terms of the
number of particles per site (n, +n ).

III. PARAMAGNETIC SPIN SUSCEPTIBILITY IN THE
COHERENT-POTENTIAL APPROXIMATION AT 7= 0

A. General Expression for X

The uniform static spin susceptibility is given by

For simplicity only the paramagnetic case at T=O
is considered here; the theory can be easily ex-
tended to ferromagnetic alloys and to arbitrary
temperatures. For this reason the spin index o

on &„Z„etc., will often be omitted. From the con-
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X=xX +g X p

where (i=A, B)

n'(a) —n'. (a)
X =llm pg

0 0

(3.2)

servation-of-particles equation [Eq. (2. 13)] it fol-
lows that X can be written

f""=-y xo —~p(p) (s. 8)

B. Expression for X in the Weak-Scattering Limit

In the weak-scattering limit (5«1) it follows
from Eq. (2. 6) that the self-energy Z(z) is given

by Z(z) = xe" + yz . In this limit the quantities f""
and f"z appearing in the general. expression for
y" and yz [Eqs. (3. 5) and (3.6)] become

The quantities X" and X~ can be viewed as the con-
tributions to the total susceptibility of A and B
sites, respectively. By writing

and

f"' =x No —p(p)] (s. 9)

n.'(a) = n.'+ —,
' p,a y'+ o(a'), (3.4)

where the plus and minus signs refer to electrons
with spins parallel and antiparallel to H, respec-
tively, Eq. (2. 11) may be expanded to first order
in the magnetic field H. A set of simultaneous
equations for X" and X then results. These equa-
tions may be easily solved to yield

p" (p)(I+ U'f")- p'(p) U'f
I {{p {(AfAA)({ {(Bf3 ) A (ff(AffBA)

(s. 5)

where

p (p)(1+ U f ) p (p)U f' ({+&f )({+ 'f") —{("o'f f'" )'
(s. 6)

(3.Va)

and

p (p)= e~
~

(s. 7b)

Recently, Hasegawa and Kanamori ' obtained an

expression for y equivalent to Eqs. (3.2), (3. 5),
and (3.6). These three equations express the
paramagnetic susceptibility per atom as a com-
plicated function of the (zero-field) self energy-
and the quantities z" and p . All of these variables
may be eliminated by solving Eqs. (2. 6) and (2. 11)
self-consistently in the limit H = 0. The present
theory may be directly applied to transition-metal
alloys. In the model for these alloys adopted here,
it is assumed that the five d bands for a single-spin
state are degenerate. The expression for p [Eqs.
(3.2), (3. 5), and (3.6)] is then the susceptibility
per atom for a single one of these bands. While
numerical techniques must be used in the general
case, it is possible to obtain in a simple way some
information about X by considering two special
cases which have been considered previously.
These are (i) the weak-scattering limit (6«1) and

(ii) the dilute-alloy limit (x«1).

where

g, = w-'lm f' dE[S(E- Z(Z))]'. (s. io)

The equations for fzz and f~ may be obtained from
Eqs. (3.8) and (3.9) by replacing A ~ B and x ~ y.
Equations (3.2), (3.5), and (3.6) may then be writ-
ten

X= 2 u, ' p(p)[1 —U"'p(p)] ",

where

jeff UA, UB

(s. is)

(Uft Ueii) &O (Ua Uett)
tleff @

(3.12)

In Eqs. (3.8)-(3.11), p(il) = —)l 'ImE(il —Z(li)) is
the density of states at the Fermi energy in the
alloy which like Xo is independent of x for iso-
electronic alloys.

Equations (3. 11) and (3. 12) may be compared
with the expression for the paramagnetic spin
susceptibility found by Harris and Zuckermann.
In the theory of Ref. 16, which is applicable to iso-
electronic alloys in which there is no potential
scattering, the susceptibility is given by Eqs.
(3. 11) and (3. 12) with Xo(1 —U'"y )0replaced by

g, y(q)[l —U'" y(q)]-', where y(q) is the wave-
number-dependent static susceptibility of the pure-
unenhanced crystals. For isoelectronic alloys Xo
reduces to gu y(q). Consequently, in the weak-
scattering limit the present theory and that of Ref.
16 are similar. The difference between the two
theoretical results arises from the different de-
coupling assumptions made in treating the intra-
atomic Coulomb interactions and the multiple-scat-
tering equations.

where

~t{uru+ ~pot (&)+ ~Coul (&) mixed(&) (3. 13)

C. Expression for X in the Dilute-Alloy Limit

In the dilute-alloy limit (x«1) the self-energy is
given by Z (z) = zz+ x &'/[I —6' Z (z —zz)], where
&0 is the value of ~ at x= 0, and it is understood
that e" and &~ are evaluated at x= 0. Using Eqs.
(3.2), (3. 5), and (3.6), the susceptibility to first
order in x is
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x2gB'[(n")'" —(n )'" ] Bp (p')/Sp0[pB(p0)] ' 2, [ep (p,')/Sp, '][p (g')] 'Imln[1 —60E(g' —2 )]

—x2pB2 vr
' S(imln[1 —6'E(p0 —eB)]}/&p0
[1 UB pB (p0)]2

(3. 14)

(X Elu1%)2 (U A UB)
X ( ) 2 2[1 (UA UB) ] (s. is)

2„([p"(p')]' —[p'(V')]'}(U" —U')+ [p"(V') —p'(p')]' U'
~B [l UB B( 0)]2(1+ UAfAA) (s. i8)

The susceptibility in the pure host crystal is

X'2" = 2u B2p'(u')/I 1 —U'p'( p') ] (s. Iv)

X = —f "o"/(1+U'f"o") (3.18)

In Eqs. (3. 14)-(3.IV), p (p, )= —2 imF(p —q )
is the density of states at the Fermi energy p, of
the pure host crystal and p (p, ) = —2 Im(F(p —& )/
[1 —6 E(g —e )]}is the partial density of A states,
for a single A atom in a I3 host, at the host Fermi
energy The q.uantity f0" appearing in Eq. (3. 18)
which is equal to f""evaluated at x = 0 is

f = —vIm
J ~oo

F(E &B)
dE

1 60'(E B) (3 19)

and (n")'" and (n )'" represent the number of
electrons per atom in the pure-A and -8 crystals,
respectively. It can be seen that in the dilute-
alloy limit X contains a pole when 1+U"f0"= 0. This
coincides with the condition for local magnetic
moment formation derived by Moriya. It follows
from Eqs. (3. 5) and (3.8) in the limit x- 0 that
the impurity contribution to the susceptibility X"
will be very much larger than the host contribu-
tion X when 1+U"f0"= 0. It should be emphasized
that the quantity f0" which plays an important role
in determining the behavior of the susceptibility at
low concentrations depends only on (a) the pure-
host band shape, (b) the host Fermi energy p, ,
and (c) the scattering parameter 60.

The first x-dependent contribution to X appearing
in Eq. (3.13), called X"'(x), arises from potential-
scattering effects. For isoelectronic alloys in
which (n")'" = (n )'"", X"'(x) is proportional to
(e —e ) = (6 ) and thus vanishes when there is no
potential scattering. The second x-dependent con-
tribution to X called X '"'(x) arises from Coulomb-
ic-scattering effects and is proportional to (U" —U ).
The last contribution to X called X

"' (x) is propor
tional to (U" —U )6 . It thus arises from a com-
bination of potential and Coulombic scattering.

The numerator in the expression for X~'(x) di-
vided by 2p, ~ represents the first-order change in
x in the density of states at the Fermi energy. The
three contributions in the numerator may be under-
stood as follows. The first term reflects the fact
that the density of states at the Fermi energy
must change if the number of electrons per atom
in the host metal is different from that of the im-
purity metal. The second term arises from the
effect on the density of states of the shift of the
Fermi energy with x. The last contribution to the
change in the density of states arises from the
change in band shape with alloying. The last two
terms have opposite signs, a,nd for small & they
completely cancel one another. Numerical calcula-
tions 2 for several different band shapes show that
for isoelectronic alloys with nearly filled bands as
in¹,Pt, and Pd the contribution of X'"(x) is
almost always negative for all reasonable & . On
the other hand, for the band model that will be
used here to approximate transition-metal band
shapes, it is found that, for isoelectronic alloys,
X

' (x) is positive for all reasonable 6 when the
host Fermi energy p is chosen to be appropriate
to that of pure Rh. For nonisoelectronic alloys,
however, the first term in Eq. (3. 14) may be im-
portant in determining the sign of X'"(x).

In the limit U = U the expression for X.
" (x)

contains all terms formerly considered by de
Gennes22 (U"= U = 0) and by Fulde and Luther2
(U"= U o0). While these authors included terms
up to second order in 6, the present theory treats
60 to all orders. The expression for X"'(x) also
contains that found by Yamada and Shimizu who
included only first-order terms in & .

The Coulombic-scattering contribution X '~(x)
is very similar to the expression for the suscep-
tibility found by Lederer and Mills. In the limit
U = 0 and & = 0 the Lederer and Mills theory,
which is applicable to isoelectronic alloys in which
the potential scattering is negligible, is identical
to the present one. For isoelectronic alloys, when
U 4 0 but & = 0 the present theory coincides with
that of Ref. 6 if
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X = &,X(e)/4 —U'&, X(q)1

in Eq. (3.18) is replaced by

&,fX(~)/h —U'X(q) L
where as in Sec. III B y(q) is the wave-number-
dependent susceptibility of the pure crystals. The
difference between the present theory in the dilute
limit and that of Lederer and Mills (which gives an
exact RPA expression for X in the limit & =0 for the
Hubbard Hamiltonian~~) arises from the assump-
tion in the model Hamiltonian that the energy levels
at a given site can take on only one of two values
corresponding to the average d-level positions in
the alloy of A or B sites. In the single-impurity
limit this means that all host levels, even those
near the impurity site, are the same as in the pure-
host metal. However, because the quantity y is
generally determined empirically "6it is felt that
the difference between the present theory in the
dilute limit and that of Lederer and Mills is not
significa t.

While the separate potential- and Coulombic-
scattering contributions to y in the dilute limit
have been considered by previous authors, X

'"'"
has only been considered in the limit U =0, in
which limit the present theory contains the expres-
sion for the impurity contribution to the suscepti-
bility derived by Anderson.

Which of the three terms, if any, dominates the
behavior of X at small concentrations depends sen-
sitively on the specific alloy parameters &, U,
U, (e")' ', (n )'" and the band shape. It should
be noted that if the impurity atoms are on the verge
of having local moments (i.e. , 1+U"fo =0) then

[g '"'(~)+ lt '*'~(x)] will be dominant. Qn the other
hand, if the impurity atoms are far from satisfying
the local-moment-formation criterion (i.e. , 1+U"
fo"= 1) then any one of the three contributions to

p may be dominant. The transition-metal alloy
systems to be discussed in Sec. 1V demonstrate
clearly the competition between the three mech-
anisms —potential scattering, Coulombic scattering,
and combined potential and Coulombic scattering—
which contribute to the susceptibility in the dilute-
alloy limit.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Parameters for the Pure Metals and Dilute Alloys

With the exception of Ni and Pd, 3 band theory
for the transition metals is relatively incomplete.
In this paper, because of the difficulty of numerical
calculations in alloys involving both s and d bands, the
s electr ons have been neglected altogether. It seems
reasonable, in view of this approximation and of
the dearth of reliable band calculations for Rh and

Pt, to adopt here a steeple model similar to that
previously used by Kirkpatrick et al. 20 and by

Hasegawa and Kanamori" for the d bands. This
band shape contains a peak in the density of states
at the top of the d band, approximating that found

from band calculations for Ni and Pd, which peak is
thought to play an essential role in the magnetic
properties of Ni ' as well as in the other transition
metals. The steeple model is illustrated in the in-
sert of Fig. 1(a). Because Ni, Pt, and Pd are all
in the same column of the Periodic Table, it is
assumed that they have the same number of d elec-
trons. This assumption, which is consistent with
the neglect of s electrons and the overly simplified
band shape, is not entirely justifiable. However
it is made for simplicity and in order to keep the

number of parameters which vary at a minimum.
Because paramagnetic band calculations show that
the Fermi energy of Ni 7 and that of Pd lie
slightly to the right of the peak in the density of
states near the top of the d band, it is assumed that
in the steeple band shape the number of d electrons
in pure Ni and Pd is 9. 5. This number, which is
somewhat higher than the number 8. 8 found from
band calculations for Ni, is chosen in order to
make the Ni and Pd band shapes near the Fermi
energy coincide with those found from band theory.

While the band theory for Rh is not as complete
as that of Ni and Pd, recent calculations o show
that the density of states at the Fermi energy in
Rh is about 60%%uo that of Pd. Because Rh has one
less electron per atom than Ni, the Fermi energy
of Rh is placed to the left of the peak in the density
of states at a position such that the number of d
electrons in Rh is 8. 2 per atom, or approximately
one less than the number of d electrons in Ni or
Pd. This corresponds to a density of states at the

Fermi energy in Rh of about 60% of that of Pd.
This choice of the Fermi energies of metallic Rh

and Pd relative to the peak in the density of states
coincides with the usual rigid-band picture~3 which

has been previously adopted to analyze the suscep-
tibility data in Pd-Rh alloys.

The approximations used for Ni, Pd, and Rh are
considerably less appropriate for Pt, in which the
d-band width is expected to be comparable to that
of the s band. A tight-binding approximation may
not be reliable for Pt, and the present theory may
be regarded with some skepticism. Nevertheless
in the absence of any better or more complete cal-
culation it is not entirely unreasonable to apply
the present theory to Pt alloys.

The additional parameters needed for the alloy
calculations are the relative positions of the para-
magnetic d bands, the d-band widths, and the ex-
change-enhancement factors in the pure metals.
In Table I are shown the positions of the center of
gravity of the d bands and the d-band widths 2%'

as calculated from renormalized-atom theory by
Hodges et al. The Pt calculations have not been
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3.0

UA

siderably in going from Ni to Rh. Thus the assump-
tion that the hopping matrix elements in the alloy
Hamiltonian T;, are independent of i and j repre-
sents an approximation (without which the problem
is not easily solvable).

As can be seen from the table, for alloys A.Q~ „,
the separations of the paramagnetic bands in the
pure crystals relative to the average half-band-
width is

guure && &&+ UA(+A)uure U&(&&)rure=&o &0+

1.0— A pure B pure (4 l)

dx )x

PtxPdi-x
4

"xP I-x

I I

-0.3 -0.2 -O. I

3.0

I

0
8'

I

O. I

I

0.2 0.3

(b)

UA

I.O—

Pdx Rhi-x

I

—0.3 -0.2 -O. I

I

O. I

I

0.2 0.3

FIG. 1. Phase diagrams for the formation of local
moments in steeple band for alloys 4+~ „, x «1. (a)
corresponds to Ni, Pt, or Pd hosts, and (b) to a Rh host.
The insert in (a) plots schematically the steeple band
shape.

which equals 0. 78 for Ni„Pd& „, P '=-0.075 for
Ninth, „, and P" =0. 705 for Rh„Pd, „. If the rel-
ative positions of the center of gravity of the d
bands of Ni, Pd, and Pt are the same as those of
the noble metals Cu, Ag, and Au, then it follows
that the Pt d-band center of gravity lies above that
of Pd but below that of Ni. It will be shown in Sec.
IV B that reasonable agreement with the experi-
mentally observed values of y vs x for Pt„Pd, „al-
loys is obtained when &"~ is greater than zero.

It is probable that in the transition-metal alloys
as in some noble-metal alloys there is a transfer
of s charge from one type of atom to the other.
As has been discussed in connection with Au-Ag
alloys this s charge transfer will change the
relative positions of the spin-independent part of
the d-energy levels in the alloy, a~0 and e'~~, and
thus affect &P" . The value of &'" computed from
alloy calculations may then not be the same as that
computed from properties of the pure crystals. If,
for example, the Fermi energy of Ni lies higher
than that of Pd, then a Thomas-Fermi calculation
indicates that in the alloy s electrons are trans-
ferred from Ni to Pd sites. As a result of s-d
Coulomb repulsion this charge transfer decreases
e~' and increases &0 . The net result is that &""
may be effectively decreased. As will be discussed
in the following sections, susceptibility data show
that the values of P"" in Ni-Pd and Rh-Pd are
smaller than renormalized-atom-theory calcula-
tions indicate, which suggests that s charge may be
transferred from Ni sites to Pd sites in Ni-Pd and
from Rh sites to Pd sites in Rh-Pd. Because the

performed as yet. The values for the quantities
[Upo( p) j of Ni ' and of Pd 6'7 were taken from pre-
vious theoretical calculations. For Rh and for Pt
they were determined by fitting the end points of
the calculated susceptibility versus x curves of
Pd-Rh and of Pd-Pt alloys to the experimental
values. The chosen values for Pt and Rh agree
with other theoretical estimates which give
Upo(p, ) = 0. 4 for Pt 4O and Upo(p, ) = 0 to 0. 4 for Rh. 6

It should be noted that the d-band widths vary con-

Ni
Pd
Rh
Pt

gPox'e (Ry)

—0. 31.
—0.47
—0. 28

2m" (Ry)

0. 35
0. 48
0, 60
?

Upo(P)

1.2'
0. 86
0.45
0.51

~Reference 22.
Reference 41.

Reference 6.

TABLE I. Parameters for paramagnetic transition
metals.
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d bands of Ni and Rh lie considerably higher than
those of Pd, this direction of s charge transfer
seems consistent with Thomas-Fermi theory.

The susceptibility calculations for alloys A„B,
which are discussed in Secs. IV B-IVD were done
numerically using Eqs. (3.2), (3. 5), and (3.6) by
solving simultaneous equations for the Fermi en-
ergy p. and & as functions of concentration. The
quantity

—60 sA ~B+ UA ~A
~

U B( s)yule (4 2)

was used as the arbitrarily chosen input parameter
instead of &'" . In this way it was possible to use
a two-dimensional iterative Newton-Raphson tech-
nique ~ to obtain p, and & at each concentration x,
with the starting values for the iteration scheme at
concentration x chosen to be the solutions for p. and
& at a slightly smaller concentration x-4x. Once
& and the pure-metal parameters are selected the
susceptibility over the entire concentration range
0 &x &1 is determined. For each all. oy system
A„B, , 60 is chosen to give the best (visually ob-
tained) fit of the theoretical curve of y vs x to the
experimental data. When & is determined, the
quantity &'""may be obtained from the equation
&~"'= & + U"[(n")'" —n" I„o] and compared with the
value predicted by renormalized-atom theory. In
all four alloy systems considered here, the sign
of 6o which coincides with the sign of f& + U

x [(g")'""—g"
~ „o]] was chosen to agree with the sign

of P" as calculated from renormalized-atom the-
ory.

The importance of choosing the correct sign of
in calculations of X can be demonstrated by ex-

amining in detail the condition for the formation
of local magnetic moments: 1+ U"fo" «0, where fo"
is defined in Eq. (3. 19). The phase diagrams for lo-
cal moment formation in the steeple band shape used
here are illustrated in Fig. 1 for the value of the
host Fermi energy corresponding to that of ¹i,
Pd, or Pt. [Fig. 1(a)) and that of Rh [Fig. 1(b)].
Also indicated are the values of & and U" chosen
for the dilute alloys (x«1), Pt„Pd& „, Pd„pt& „,

quantity 6 for the alloy B„&,„ is related to &

for the alloy A„B, „. The parameter & for each
of these alloys will be discussed in more detail
in Secs. IV B-IVD. Local moments are stable
for all pairs of values of U" and & which lie above
the curve corresponding to the appropriate host
Fermi energy. It can easily be noted that it is
difficult to satisfy the local-moment-formation
criterion in transition-metal hosts when the im-
purity level lies lower than that of the host (i. e. ,
50&0). On the other hand for positive &0(=0. 1 in
the present band model) it is easier to satisfy the
local-moment-formation criterion. These argu-
ments are expected to be independent of the band

shape and to depend only on the fact that the host
band is nearly full. For nearly empty host bands,
local moments are most easily formed for nega-
tive &o.

It follows directly from the renormalized-atom
calculations summarized in Table I (from which
the sign of &o is obtained) that ¹ or Pd impurities
in Rh are far from satisfying the local-moment-
formation criterion, whereas Rh and Ni impurities
in Pd nearly form local moments. These results
are also summarized in Fig. 1.

B. Concentration Dependence of X in Pt Pdl „
In Fig. 2(a) are plotted the experimentally de-

termined~ values of y at each concentration x for
Pt„Pd& „alloys. Also shown is the theoretical
curve of gvs x for & =0.06. This value of 6

corresponds to ""= 0. 07. Very good agreement
with experiment is obtained throughout most of
the concentration range for thisvalue of & . There
is some deviation from the experimental data
around 60 at. % Pt; the measured susceptibility
appears to be independent of x between 40 and
60 at. /q Pt, unlike the calculated susceptibility.
This feature of the experimental curves'~ cannot
be reproduced within the present theory. Within
an accuracy of 10/o the theoretical curve for y
vs x with & =0.06 can be analytically described
by the equation y~ p( p) /[1-U'" p( p)], where U"
= x UP" + y Up', and p( p) is the density of states
in the alloy. This corresponds to a uniform-en-
hancement model. 's The calculated values of p(p)
show that p(p) exhibits a shallow minimum at
x —0.4.

Also plotted in Fig. 2(a) is the theoretical curve
of y vs x for Pd-Pt when ~ =0.01. This curve
represents the weak-scattering limit of the pres-
ent theory which was discussed in Sec. IIIB. In

a previous paper'4 this special case of the more
general theory was applied to Pt-Pd alloys. The
quantity yo defined in Eq. (3. 10) was chosen arbi-
trarily to fit the experimental data. The measured
susceptibility per gram rather than that per atom
was incorrectly used in this previous paper so
that the good agreement found between experiment
and theory was partially accidental. In the present
paper using the experimental values for the sus-
ceptibility per atom, it is clear that the weak-scat-
tering theory is probably not appropriate to Pt-Pd.
Thus distortion of the band shape with alloying
must be taken into consideration in this alloy sys-
tem.

In order to investigate the effects resulting from
changing the sign and magnitude of & in Pt-Pd al-
loys, the theoretical curves of p vs x are plotted
in Fig. 2(b) for &0=+0.15 and &0= —0. 15. The
experimental points are also shown. The differ-
ences between the behavior of X in the low-con-
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FIG. 3. Susceptibility vs x
in Rh„Pd& „for two different
band shapes. In the inserts are
plotted the densities of states
for the pure crystals; also in-
dicated is the position of the
pure-crystal Fermi energies:
(dotted lines). The solid lines
are the theoretical curves of
gvsx for (a) & =0. 17 and (b)
6 =0. 14. The dotted line in

(b) plots the calculated suscep-
tibility for g =0.08 and for
small x.
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C. Concentration Dependence of X in Rh„Pd, „

The experimental data~ for the susceptibility in
Rh-Pd alloys are plotted in Fig. 3(a). The maxi-
mun in Z at x= 5 at. % has been the subject of con-
siderable interest and controversy. As stated in
the Introduction there have been two theories ad-
vanced to explain the maximum. One, ~3 it arises
from a maximum in the rigid-band density of

states as Rh is added to Pd. Using the insert
of Fig. 3(a), this can be simply understood. Be-
cause pure Rh has fewer electrons per atom than
pure Pd, according to rigid-band theory43 the den-
sity of states at the Fermi energy will first in-
crease and then decrease with x as Rh is added to
Pd. Two, the maximum arises from a relative-
ly large contribution to the susceptibility of Rh
sites in Pd, which indicates the existence of real
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or incipient local moments on Rh sites. The sus-
ceptibility will then initially increase. It must
decrease eventually, however, because pure Bh
has a smaller susceptibility than pure Pd. This
then leads to a maximum in g. In support of the
second mechanism, NMR data2' have shown that
the local susceptibility of Bh in Pd is, indeed,
strongly enhanced, and the low-temperature
(T = (1-4)'K) data suggest that Rh in Pd does
not have a local moment. (The temperature de-
pendence' of the Knight shift at higher tempera-
ture has been interpreted as indicating that Bh
may have local moments in Pd. ) In addition, x-
ray experiments, ~ which indicate that the density
of states at the Fermi energy in the alloy does
not exhibit a maximum as a function of x, also
provide evidence against the first mechanism.

The theoretical curve of g vs x for & =0. 17
shown in Fig. 3(a) has a maximum at small x
qualitatively similar to the experimentally ob-
served susceptibility. For this value of 50 the
contribution to the susceptibility of Rh y~ is
several times larger than g, and there is
almost, but not quite, a local moment on Rh sites
[(I+ U""fo"""}= 0. 3 at x =0 ]. The density of
states at the Fermi energy decreases for all x,
and the absence of a maximum in p(p) is con-
sistent with x-ray data. ' Itfollows that the maxi-
mum in p arises solely from the large suscepti-
bility associated with Rh atoms in Pd. This
shows that for 6 = Q. 1'7, which corresponds to
&'""=0. 1&, the second mechanism is entirely
possible within the present theory. This value
of &'"" should be compared with the value 0.71
predicted from renor malized-atom calculations. a~

As discussed in Sec. IV A the discrepancy in
magnitude may be due to s-charge-transfer ef-
fects.

In connection with NMB experiments, it should
be mentioned that the usual expression ' for the
local susceptibility on the A. -impurity site mea-
sured in an NMR experiment coincides with
y" („o,o providing Eq. (3. 18) is used to define

In interpreting NMR data, however, it is nec-
essary to know the magnitude of the indirect con-
tribution of the d-electron spin polarization to the
effective magnetic field experienced by the nuclei.
NMB experiments are not a direct measure of

The present calculations show that in
Bh„Pd& „ the ratios of the component spin suscep-
tibilities to the susceptibility in pure Pd P"/
(y~'" ) and y'd/(g, „'""')reach a maximum of V. 35
and 1.25, respectively, at x= 0. 05. Consequently,
the component susceptibility of the Pd atoms is a
also enhanced over that of pure Pd as is suggested
by NMB experiments. ' It must be emphasized,
however, that in the present theory it is not pos-
sible to determine the spatial dependence of p; only

the uniform spin susceptibility has been calculated.
The quantities p and p which are calculated by
averaging over all atomic configurations around the
A or B sites, in general, provide only a crude es-
timate of the magnitude of the local susceptibilities
associated with the different sites in the alloy.
They do not necessarily give information about the
local susceptibility on a given site for a specific
configuration of surrounding atoms.

If & is chosen to be less than =0.06, rigid-band
theory ' is appropriate for describing the concentra-
tion dependence of the density of states at the
Fermi energy. However, for the present band
model for & =0.06 the system undergoes a ferro-
magnetic transition at x=0. 2 and then becomes
paramagnetic again at x =0.35. Consequently, for
this band model good agreement with the experi-
mentally observed susceptibility is not obtainable
in the rigid-band appr oximation.

In the insert of Fig. 3(b) is shown a slightly dif-
ferent band model from which a maximum ean be
obtained in the calculated susceptibility curves for
sufficiently small 6 . The value of the enhancement
factor in Bh is different from that used in the pre-
vious Rh-Pd calculation in order to fit the end points
of the yvs x curves. The solid line plots gvs x
for 6 = 0. 14. In this band model, for ~o = 0. 14,
y""/yp~ &1. Thus, the Rh sites do not make as
large a contribution to y as in the previous model
for & =0. 17, and the slight maximum in g shown
in the curve is due entirely to a density-of-states
effect. Agreement with experiment in the low-con-
centration range is not particularly good. Also
shown in Fig. 3(b} (dotted line) is the calculated
value of y for small x with 6'= O. 08. For this value
of ~ the rigid-band theory is roughly applicable and
the maximum in y, which reflects the maximum of
the density of states at the Fermi energy, is in fair
agreement with experiment. This value of & cor-
responds to a value of P""= 0. 01 which is about —.'o

of the value of 6'""predicted from renormalized-
atom calculations. ~~

In summary, it appears that good qualitative
agreement with the experimentally observed values
of p vs x can be obtained in the present theory as-
suming either of the two mechanisms is responsible
for the maximum. The evidence, however, sug-
gests that the maximum in p is not entirely due to
a maximum in the density of states at the Fermi
energy which results from rigid-band theory be-
cause (i) this would require an unreasonably small
value of the potential-scattering parameter P""
and (ii) recent NMR data~' suggest that the Rh sites
make a relatively large contribution to the suscep-
tibility of the dilute (x«1) alloy. It is neverthe-
less possible that a combination of a maximum in
the density of states at the Fermi energy and a
large ratj. o of y "to y at x&& 1 is responsj. ble
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FIG. 4. Suscep-
tibility vs x in Ni„ah& „.
The solid line plots
g ' for the "best" val-
ue of & = —0. 12. In
the insert is plotted
the density of states
for the pure crystals;
the pure-crystal Fermi
energies are indicated
by dotted lines.
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for the observed concentration dependence of g in
Rh-Pd alloys.

D. Concentration Dependence of X ln NlxRhl. „and NlxPdl. x

The experimentally observed spin susceptibilities
for Ni-Hh 4 and for Ni-Pd' are plotted as a function
of x in Figs. 4 and 5, respectively. It is seen that
Ni-Pd becomes ferromagnetic at much lower Ni
concentrations than Ni-Rh. The solid line in Fig.
4 plots the calculated susceptibility in Ni„Hh, „al-
loys for 6 = —0. 14. This value of &, chosen to
make y diverge at the critical concentration, cor-
responds to &'""=—0. 125 which compares favor-
ably with the value of P" = —0. 075 obtained from
renormalized-atom calculations. Unexpectedly
good agreement with experiment is obtained over

the entire paramagnetic concentration range. As
a result of the position of the Fermi level of pure
Rh and the value of 5, at x = 0, y"' is not larger
than y"", and the Ni atoms are far from having
local moments in Rh [(1+U"'foN™)=0.7]. Instead,
the increase of g with increasing Ni concentration
arises from an increase in the density of states
at the Fermi energy. The theoretical curve for X

vs g in Fig. 4 for g &0. 50 can be approximated to
within an accuracy of 10% by the equation 10:p(p)/
[1 —U'" p(p)], where U'"=x U"'+yU~ and p(p) is
the density of states at the Fermi energy in the al-
loy. This corresponds to a uniform-enhancement
model for the susceptibility. Thus both the Ni and
Rh atoms may be viewed as participating equal. ly
in the ferromagnetic phase transition which occurs

x"
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FIG. 5. Suscep-
tibility vs x in ¹i„Pd~„..
The solid line plots
g

' for the "best" val-
ue of & =0. 10. In the
insert is plotted the
density of states for
the pure crystals; the
pure-crystal Fermi
energies are indicated
by dotted lines,
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at. % Ni

1.5 2.0
I
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for x ~ 0. 63. The critical concentration in the
uniform-enhancement model is x-—0. 60. This pic-
ture is in qualitative agreement with previous
analyses of the magnetic behavior of Ni-Rh alloys
which show that the ferromagnetism in Ni-Rh is
itinerant in nature and is not associated with lo-
calized moments on the Ni sites. It further sup-
ports a conjecture of Schindler 7 that the uniform-
enhancement model might be applicable to para-
magnetic Ni-Rh alloys.

The behavior of y vs x in Ni„Pd& is strikingly
different as can be seen from Fig. 5. This system
becomes ferromagnetic at x= 0.022. The solid line
plots the calculated susceptibility for 6 =0. 10
(which corresponds to P""=0.16). This value of
& was chosen to make g diverge at the experi-
mentally observed critical concentration x= 0. Q22.
The quantity f"'"', and hence the critical concen-
tration, are extremely sensitive to & for 6 =0.10.
Agreement between experiment and the present
theory is fair for this alloy system. Better agree-
ment with experiment can be obtained by using the
weak-scattering limit of the present theory [Eq.
(3. 11)] and choosing ye arbitrarily. ss Harris and
Zuckermann, ' using their weak-scattering theory,
also obtained more satisfactory agreement with the
experimental data. However, renormalized-atom
calculations, which indicate that &'""for Ni„Pd&
is 0. V8 (and is thus not small), suggest that such
weak-scattering approximations are not valid.

The ratio of the contribution to the susceptibility

of Ni to that of Pd in Ni„Pd, , y "'/y~, is several
times larger than one, and the Ni atoms almost
satisfy the local-moment-formation criter ion
[I + U"'fP"' = 0.25]. In addition, the system be-
comes ferromagnetic at small Ni concentrations x.
This suggests that the Ni atoms appear to be mainly
responsible for the transition to ferromagnetism.
The present calculations show that the density of
states at the Fermi energy decreases with g. This
behavior should be contrasted with that of Ni in Rh
which was discussed above. As discussed in con-
nection with Fig. 1 the difference in fsN' "' and thus
in the x dependence of p for these two alloy systems
in the dilute limit arises mainly from the difference
in the sign of & . It is, therefore, clear that poten-
tial scattering plays an important role in these al-
loys. Within the present model, very poor agree-
ment with the experimentally observed suscepti-
bility in both Ni„Pd& and Ni„Rh& „ is obtained when

it is assumed that &=0.
In summary, the present theory provides an in-

ternally consistent explanation of the observed con-
centration dependence of X in Pt-Pd, Rh-Pd, Ni-Rh,
and Ni-Pd despite the fact that s electrons are
neglected and an overly simplified d-band shape is
used. The greatest uncertainty in the present cal-
culations probably arises from the uncertainty in
the magnitude of the concentration-dependent scat-
tering-strength parameter 5. It is of considerable
interest to perform photoemission and x-ray studies
of these alloys to determine & more accurately.
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