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We consider a sixteen-vertex ferroelectric model defined on a square lattice and deduce the
nature of the phase transition in this model from its equivalence with an Ising model with a non-
zero magnetic field. We find that, as the value of a parameter which occurs linearly in the
Hamiltonian is varied, the model may exhibit a first-order transition, a second-order transi-
tion with an infinite specific heat, or no phase transition.

INTRODUCTION

There has been considerable recent interest in
the eight-vertex lattice model which is a general-
ization of the Ising and ice-rule ferroelectric
models of phase transitions. ' In vew of the unex-
pected behavior of a variable exponent found to
exist in the eight-vertex model, ' it seems appro-
priate to investigate a further generalization of
these models, the sixteen-vertex model. The
sixteen-vertex model can be defined on any lattice
of coordination number 4, and encompasses,
among others, the eight-vertex model and the
Ising model in a nonzero magnetic field as special
cases. Very little is known about the behavior of
this general lattice model, except in a few special
cases in which the model can be shown to be di-
rectly equivalent to an Ising model, hence exhibit-
ing the usual Ising-type transition. ' Any result
which leads to different types of phase transition
would be very useful and illuminating.

In this paper some new findings are reported in
this connection. A certain class of the sixteen-
vertex model is considered and the behavior of
this model at the transition point is deduced. It

is found that, as the value of a parameter which
occurs linearly in the Hamiltonian is varied, the
model may exhibit a first-order transition, a
second-order transition with an infinite specific
heat, or no phase transition. It is of interest to
note that a first-order transition results and per-
sists in a region in the parameter space. In the
potassium-dihydrogen-phosphate (KDP) model of
a ferroelectric which also exhibits a first-order
transition, the transition becomes a second-
order one when an infinitesimal electric field is
present.

DEFINITION OF THE MODEL

Vfe first define the sixteen-vertex problem.
Consider a lattice of coordination number 4, which
has N vertices. Each of the 2N lattice edges
(assuming periodic boundary conditions) may or
may not be covered by a bond. A definite bond
covering of the lattice will be called a state so
that there are 2 " distinct states. A fixed energy
is assigned to each of the 2 = 16 bond configura-
tions that may occur at a vertex, and the energy E
of a state is taken to be the sum of all vertex en-
ergies. The partition function of the sixteen-ver-
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tex model is then

Z= e-'~,

where P= I/kT and the summation is extended over

the 2 " states. This completes the definition of
the model, which can also be interpreted as a gen-
eral ferroelectric model without the ice rule. '

The model we propose to consider has the fol-
lowing energy assignment:

vertex energy=&I& for vertices having n( 0=, 1, 2, 3) bonds

= gE for vertices having 4 bonds,

where a is a variable parameter. Furthermore,
we shall restrict our considerations to a square
lattice. The key step is that, using a result due
to Mermin, ' one can relate the partition function
of this model in the case of a square lattice to
that of an Ising model with a nonzero magnetic
field. One can then deduce the nature of the phase
transition in the present model from the established
results of the Ising model. We first summarize
the main findings: (i) For 2 &0 and ao&a & 0, where

ao = 4 —2ln(18+ 12')/In(2+ 2W2)

= —0. 515033.. . ,

the model exhibits a first-order phase transition
with a latent heat. The transition is also charac-
terized by discontinuities in the order parameter
and the specific heat. The specific heat does not
diverge. (ii) For c & 0 and a = a2, the model ex-
hibits a second-order phase transition with an in-
finite specific heat. Both the energy and the order
parameter are continuous. (iii) For e &0, a &0

and «0, a ~4+5 for some positive 5, the model
exhibits no phase transition. The regions of no
transition can presumably be extended to E &0,
a & ao and E & 0, a & 4+ 6, but we have no rigorous
proof in the latter cases. Some of these results
can be easily checked. For a =4 the model can be
alternately described by assigning an energy 2& to
each bond. Since a bond may or may not be pres-
ent on a given lattice edge, the partition function
can be trivially summed in this case to yield
Z= (1+e ') " which shows no phase transition.
This is in agreement with (iii). For e & 0 and a & 3,
the vertices with the lowest energy are those with
three bonds. The ground state is highly degenerate
and, consequently, there can be no phase transi-
tion.

DETAILS AND DISCUSSIONS

To deduce the behavior of our model, it is use-
ful to introduce the dual lattice D which is con-
structed by drawing a perpendicular bisector to
each lattice edge. The dual lattice is also a square
lattice of N vertices. If on each edge of D we
draw a bond whenever the corresponding edge of
the original lattice has a bond, our model can be

restated as follows: Each edge of D may or may
not be covered by a bond. To each bond we as-
sociate an energy 2& and to every four bonds
forming a square we associate an extra energy
(a —4)a. This is then the bar model considered

by Mermin. In fact, the partition function (1) is
precisely the grand partition function of Mermin's
bar model provided that we identify 8 ~~' as the
fugacity z. By considering the system as a mixed
two-component model, Mermin showed that the
bar model is equivalent to a nearest-neighbor lat-
tice-gas model. Since the latter system is also
known to be identical to an Ising model in a non-
zero magnetic field, ' we can therefore relate the
partition function (1) to that of an Ising model.
The related Ising Hamiltonian

Ising ~ I i (4)

is also defined on the square lattice. In (4), —J
is the nearest-neighbor interaction and -H repre-
sents the magnetic energy of a spin. Let K—= PJ,
L =- PH, and denote the Ising partition function by

Z„„,(L, K). Using Mermin's result and the re-
lationship between a lattice gas and an Ising mod-
el, we are led to the identity

Equation (5) leads to

g(a, p)= -4pa+ 2 ln[(e " ' —1)(1+e ')]
+2i.i.g(L K) (7)

Clearly the analytic properties of 2 will follow
from that of z&,.,~. It is therefore useful to first
summarize the established analytic properties of
z„„g(L, K) for K& 0: (a) 2„,~(L, K) is analytic
in L and K for L si 0.2 (b) For K &Kg= y In(~2+ 1)

g. e-4Ngs [( (4-s&24 1)(1 2Bs)] N /2 g (L K)
(5)

where

L —In [(I + 224)( I4 s&gs I)-I&'2]

K= —,'In(I+e224) & 0 .
Here K & 0 implies that the related Ising model is
ferromagnetic. Let

1
g= lim —lnZ .
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=0.44069. . . (or K &Ko'= 2. 26919. . . ), the mag-
netization per spin,

M(I. , K)=, — z„...(L, K),

is discontinuous at L = 0. The amount of discon-
tinuity is

M(K) =-M(0+, K) -M(0 —,K)

= 2(1 —sinh 42K) ~8, K&Ko .

(c) As K-Kowe have' '

8

L=p

(9)

(io)

-0.5

l.0 2.0

8
—,-z z„„,(0, K)-In~K -K,

~

.
(d) For sufficiently smallK(K= uKO, n&1),

'(L, K') is analytic in I.and Kat I.= 0. zz The
current belief is that this analyticity can be ex-
tended to E =Kp —but there has been no rigorous
proof.

We now proceed to examine the analytic proper
ties of z using (a)-(d). Since both L and K are
analytic in P, we observe from (a) that z(a, P) can
be nonanalytic in P only when L = 0, or

(1 + 286) 2 (4-sNzs (i 2)

This then defines the transition temperature T, if
a phase transition exists. Equation (12) has no
solution for «0, a 4 and & & 0, a-0. This estab-
lishes the first statement in (iii).

To see whether indeed a phase transition occurs
at the temperature defined by (12), we compute
the corresponding value of K, which we denote by

One finds that, in the case of c &0 and a&4
[for which (12) has a solutionj, K, is always less
than Kp In particular, the value a = 4+ corre-
sponds to K, =0+. It then follows from (d) that no
phase transition exists for a &4+ 5, for some posi-
tive 6, and presumably for all a&4." Similarly
for E&0 one finds that, as a decreases from 0-,
K, decre~es monotonically from ~ to —,

' ln2&Kp
and equals Kp at a =ap The remaining part of
(iii) now follows from (d).

A phase transition can therefore occur only in
the region & &0, ap&a &0. What happens in this
cise can be visualized from Fig. 1 where L is
plotted against K ' for different values of a. The
heavy line segment on the L = 0 axis is thepoints at
which gz, z,g(L, K) becomes nonanalytic. As tem-
perature varies, L and K ' vary along the curves
in Fig. 1. The nonanalytic points are reached
only when ap —a & 0. The temperature at which the
nonanalyticity occurs is the transition temperature
T, defined by (12). In Fig. 2, T, is plotted as a
function of a. The solid curve denotes the physical
transition temperature, whereas the dashed curve

FIG. 1. L vs K ~ for &&0. %0~=2.26919... .

28@c=kP
(13)

can be computed at T, a. It follows from (9) that
the energy is discontinuous at T, for ap&a &0.
The latent heat

I =Z(T, +) -Z(T, -)
can be computed using (V)-(9) and the fact that
(BL/BP) & 0 at T,. The result is

8L
Iz = —M (K,), ao & a & 0

(14)

(i6)

where all quantities are evaluated at T,. The
transition is therefore of first order. Similarly
we find that the specific heat is finite but discon-
tinuous at T,. As a- ap which corresponds to
K, -Kp, the latent heat approaches zero and the
energy becomes continuous. When a = ap the energy
attains the value E/z = 23&2 —32+(9-6 v 2)ao
= 0. 261814. . . at T,. The specific heat diverges
in this limit because of (c). Since the dominant
divergence is that of (10), we find, after using the
fact that K, is analytic in a,

(i6)

Therefore a second-order transition with an infi-
nite specific heat occurs when a =ap.

does not correspond to any physical transition. It
is a curious fact that T, should be discontinuous at
a=ao [corresponding to kT, /z= 2/ln(2+ 2&)
=1.27022. . . j.

In the region & & 0, ap & a & 0 where a phase tran-
sition occurs, we can compute the energy per
vertex E and the specific heat per vertex c at
T, s. The derivatives Bz/BI, Bz/BK, etc , occ.ur-
ring in the expressions

8z 8z 8L 8z 8K
+

BP BI, BP BK BP
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1s= ——z(a, P) .
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Following the same reasoning as above, we find
that s is discontinuous at T, for ao&a &0. The
amount of discontinuity can be computed, and we
find

0.5

s(r, -) -s(r, +) = [1+(1+2") ]~(Z,),

ao&a &0 (18)

—I.O —0.8

I I I

—0.8 —0.4 —0.2

FIG. 2. Transition temperature T~ vs a for q &0.
a0=-0. 515033... and T~ is in units of e/k.

For & & 0 and a & 0, the favored vertex configura-
tions are those with four bonds. We can therefore
consider the fraction of vertices having four bonds,
s, as an order parameter:

where all quantities are evaluated at T,. When

a = ao the order parameter becomes continuous
and attains the value s = 9 —6v 2= 0. 614718.. . at
Tc0

Finally, to those who are accustomed to the
spin language, it is useful to point out another
connection of the present model with the Ising
model. As in the case of the eight-vertex model,
the general sixteen-vertex model can also be
transformed into an Ising model whose interaction
strengths are some linear combinations of the
vertex energies. In the equivalent Ising model the
spins are located on the lattice edges. For the
present model the Ising Hamiltonian turns out to

Xq„~ =
6

[2(a + 4)Z o+ (4 -a)Z oo'+ (a —4)Z o o' o" + (4 -a) Z oo 'o "o"' —(a + 28)N j, (19)

where except in the first term all interactions are
within the sets of four spins surrounding every
vertex of the square lattice. It is an interesting
result that the Ising model described by the Hamil-
tonian (19) leads to a first-order phase transition
for &&0 and ao&a &0.
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