
PHYSICAL REVIE W B VOLUME 6, NUMBER 5 I SEPTEMBER g972

Spin-Wave Theory of a Finite Concentration of impurities
in a Ferromagnet; Effects to c'~

Eugene Shi.'es
department of Physics, Elorida State University, Tallahassee, I'/oneida 32306

(Received 21 March 1972)

Green's functions are used to study a simple-cubic Heisenberg ferromagnet containing a
small finite concentration of randomly oriented substitutional magnetic impurities, including
effects to second order in the concentration. The results involve the effects of spin-wave
scattering from one impurity or coherently from two, and reflect the properties of single iso-
lated impurities and distinct impurity pairs. Impurity excitations at energies within the host
spin-wave energy band are emphasized. Several types of experiments are discussed, and a
simple numerical comparison shows that the magnitude of the deviation from pure-crystal be-
havior due to the pairs as compared to that due to single isolated impurities depends essentially
only on the relative concentrations of the various species. Only zero temperature is con-
sidered.

I. INTRODUCTION

There has been considerable recent interest in
systems containing a finite concentration of sub-
stitutional impurities, where the perturbation due
to individual impurities is of the type described by
Lifshitz. Essentially the finite spatial extent of
the perturbation, which is not restricted to be
small in magnitude, makes an expansion in powers
of the concentration valid if one is not concerned
with the nature of the Van Hove critical points of
the excitation spectral density. An ordered mag-
netic insulator containing substitutional magnetic
impurities is a system of this type. It has not yet
proved possible to carry out an explicit calcula-
tion for arbitrary concentrations, and the recent
work has essentially been restricted to small con-
centrations. Izyumova and Jones, s for example,
have considered the problem to first order in the
concentration and obtained results that may be de-
scribed as spin-wave scattering by single isolated
impurities. Jones initially uses a "mean-lattice"
approximation to make the formalism symmetric
in both types of ion, but completes the calculation
only for small impurity concentrations, whereas
Izyumov begins with a calculation not symmetric in
the two components. Murray considered a com-
bined perturbation theory and variational calcula-
tion valid for arbitrary concentrations in the limit
of low-energy spin waves. The latter work in-
cluded, for arbitrary energies, a calculation linear
in the concentration, and quadratic in the concen-
tration for the special case of nonmagnetic impuri-
ties. The present paper contains a calculation
similar to that of Izyumov or of Jones but carried
out to second order in the concentration of impuri-
ties; this includes the coherent scattering of spin
waves by impurity pairs. The theory is valid for
arbitrary impurity spin and for the full range of

spin-wave energies.
When experiments are done on crystals contain-

ing 1-3% impurities, the effects of impurity pairs
should be observable since the pairs will be pres-
ent in substantial numbers. Effects of groups of
three or more impurities, proportional to third
and higher powers of the concentration, will be
small in this concentration range. Therefore,
the accurate interpretation of the experimental
results and the extraction of all the useful in-
formation contained in the data require that the
pair effects be considered. For example, one may
wish to learn more about the superexchange mech-
anism in a given material by determining experi-
mentally the exchange coupling strength between
two host ions, a host ion and an impurity ion, and
two impurity ions. The theory of the impurity
modes associated with a single impurity pair in a
face-centered-cubic ferromagnet has been con-
sidered by Frikkee, and the local modes due to
impurity pairs in a simple-cubic ferromagnet, for
which the isolated-pair problem is adequate at low
concentrations and at energies well separated from
the host energy band, have been examined by Shiles
and Hone. s White and Hogan7 have also studied the
problem of two impurities in a magnetic lattice
and discussed the splitting of the single-impurity
states due to impurity-impurity interactions. Since
a theory that considers only a single impurity or
impurity pair is inadequate for energies near or
within the pure-host continuum when the concen-
tration is large enough for the pair effects to be
observable, the present paper in effect extends
some of the calculations of Ref. 6 to all energies;
this includes the resonance modes associated with
impurities, which are at energies within the host
spin-wave energy band and have important effects
on the thermodynamics of the systen|. Resonance
modes have been seen, for example, in inelastic
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neutron scattering. " The preliminary results of
Ref. 6 are utilized in the present work, as a theory
quadratic in the impurity concentration leads to
results that reflect the properties of isolated single
impurities and impurity pairs.

To keep algebraic difficulties to a minimum, we
have chosen to examine an impure simple-cubic
Heisenberg ferromagnet with only isotropic near-
est-neighbor exchange interactions. While this
simple model cannot be expected to allow a detailed
study of the real crystals, the qualitative features
of the problem will not be greatly affected. The
ferromagnetic salts EuO, EuS, and EuSe may be
useful host crystals for eventual study; they have
cubic, although not simple-cubic, magnetic struc-
ture, but may have important exchange interactions
beyond nearest neighbors in the pure crystal as
well as more complex impurity exchange. '0 To
examine the spin dynamics of the system we employ
the method of two-time Green's functions, express-
ing these functions directly in terms of the spin
operators. Only the lmv-temperature limit is con-
sidered, so that our calculation is equivalent to that
of the simple spin-wave approximation. We initial-
ly express the Green's-function equation of motion
in terms of a definite, although not specified, im-
purity configuration (for experimental purposes,
the impurities are randomly oriented). Averaging
over all possible impurity configurations restores
translational invariance, making the calculation
tractable. A diagrammatic technique due original-
ly to Edwards" is utilized to extract the single-im-
purity and impurity-pair effects, ignoring coherent
scattering from more than two impurities.

An approximate dispersion relation is obtained
from the resulting Green's function. The behavior
of the spectral weight function, as well as scatter-
ing cross sections, may be determined from the
imaginary part of this Green's function. As our
Green's function is defined directly in terms of
the spin operators instead of using the simple spin-
wave approximation in the Holstein-Primakoff
transformation, we avoid the introduction of the
square-root spin factor found in the results of
Izyumov. This difference was pointed out by
Jones. 3 Our results, to terms in the self-energy
quadratic in the impurity concentration, reflect the
effects of the resonances and/or local modes asso-
ciated with single isolated impurities and with the
distinct impurity pairs, that is, those pairs which
have their own distinct perturbation scheme. The
perturbation is limited, in our approximation, to
the impurities and their nearest neighbors, so that
the distinct pairs are those that are nearest neigh-
bors themselves or share one or two common near-
est neighbors.

We develop the Green's-function formalism and
calculate the configuration-averaged Green's func-

tion in Sec. II. In Sec. III we discuss the result,
make a simple numerical comparison of some im-
purity-pair effects to the effects of single isolated
impurities, and comment on experimental applica-
tions.

II. GREEN'S-FUNCTION FORMALISM

The Heisenberg Hamiltonian for the ferromagnet
containing substitutional impurities, including a
Zeeman term that may involve both an external
magnetic field and an effective Single-ion anisot-
ropy field, is

(2. 1)

We consider only nearest-neighbor exchange, so
that the exchange integral J,, takes on the values
J, J', and J" for i and l two-nearest-neighbor host
ions, an impurity and a host ion that are nearest
neighbors, and two-nearest-neighbor impurities,
respectively, and is zero otherwise. For simplic-
ity the values of the various exchange parameters
are chosen so as to give a ground state with all
syins "up."

The two-time Green's functions are defined'~:

(2.2)

where 8(t) is the unit step function and the angular
brackets denote the thermal expectation value.
Following standard procedures we first write the
equations of motion for the G„(t) and decouple the
resulting set of equa. tions via the random-phase
approximation (RPA); only a low-temperature limit
equivalent to the simple spin-wave approximation
is considered in this discussion, so that the oper-
ator S', , which appears in higher-order Green's
functions that describe spin-wave-spin-wave inter-
actions, is in effect replaced by its maximum value
S for l a host ion or S' for l an impurity ion. The
finite temperature notation will be retained. We
then take the time Fourier transform and obtain a
set of algebraic equations for the energy Green's
functions G„(E). Defining the reduced Green's
functions 1'„=(12Jzs/S, )G«(E), where z is the
number of nearest neighbors to an ion, the set of
equations becomes, when written in terms of the
pure-crystal, Green's functions 1,

(2. 3)

where I'0, is the familiar expression

The k summation is over the first Brillouin zone
of the crystal, N is the total number of ions in the
crystal, &u = Z/2Jzs is the energy in natural units,
&o& = 1 —(1/z)pre' ' + h is the dispersion relation
for the yure host, A is summed over all nearest-
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We next transform I' to wave-vector space.
Lack of translational invariance in the impure
crystal precludes a simple Fourier representation
of 1„, that is, I', , II'(i -1). We may make the
following transformation, retaining in the Green's
function one of the spatial indices,
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FIG. 1. Four distinct impurity clusters. Types
2 and 3 have three possible orientations, with the inter-
impurity axis parallel to the x, y, and g axes, respective-
ly, and type 4 has six orientations, along the six (110)
directions. The labeling conventions fox the impurities
(open circles) and host neighbors (dark circles) are indi-
cated.

I" =(I/X)ZG (k)e"'"-"
k

For the pure crystal, the corresponding expres-
sion is

(2. 6a)

I"' = (I/N)Z-G'(k) e'" ' "-" (2. 6b)

so that we have the familiar result Go(k) = (~ —~&) ~.

The scattering equation becomes

G, (k)=G (k)+Z„.(1" V),„G„(k)e'"' " (2.V)

By iteration this expression is expanded to give,
where we choose I = p~ + b,~ restricted to be the in-
dex of any perturbed site,

neighbor vectors, and h = g peH/2JzS is the Zee-
man energy for the pure host. V is the perturba-
tion matrix of the crystal containing a particular
configuration of cN impurities and is of block-
diagonal form due to the finite extent of the per-
turbation due to each impurity. Ignoring c3 and
higher effects, the elements of V „ for the simple-
cubic crystal are

Gq, ~ (k) = G (k) + G (k)Z —Z Z G (k')

x V„" "(k, k') e " ' ~ p„(k'-k)

xV„& ~(k, k')Go(k")V„~ ~(k, k")

V . =Z Z Z V~ g 5„~,g 5„@,g (2. 6)
xe ""-"""p„(k'-k")p„(k"-k) + ~ ~ ~,

(2. 6)
where the primed sum is over all the clusters, as
shown in Fig. 1, of types g =1, 2, 3, 4, including
all possible orientations of the pairs. Types 2 and
3 have each three possible orientations, with the
interimpurity axis along the x, y, and z axes, re-
spectively, and type 4 has six orientations, with the
interimpurity axis along the six (110)directions.
The site index p„ is summed over the sites labeled
1 of all clusters of type g, and the indices L„and
a„' over all sites of the type q cluster. The vectors
6„, included in later expressions, have their ori-
gin at the site labeled 1 of a given cluster (thus
1„=0in all cases). V'"' is the perturbation matrix
associated with the type-g cluster, and these ma-
trices are listed in the Appendix. Equation (2. 3)
describes the impure crystal in terms of four dis-
tinct kinds of scattering centers, the impurity
clusters of types 1, 2, 3, and 4. Reference 6 dis-
cusses the various impurity excitations associated
with each type of cluster; in the present calcula-
tion these may be local modes and/or resonance
modes. We point out that the energy of a given
mode associated with a given type of pair cluster
is independent of the orientation of that cluster.

where

V""(k k')=Z V'"'
d, tl

X6- &(k-%'& ~ 01 -Z&) (2. 9)

p„(jt)=Re '"''~ .
Sr(

(2. 10)

We seek the quantity (G, (k) ), where the angular
brackets denote an average over all possible im-
purity configurations, noting that, for a large
crystal, G- (G) for the overwhelming majority of
possible configurations. 3 The E dependence of
(G, (k) ) vanishes after the averaging is carried out,
as the translational invariance introduced by aver-
aging implies it must. The average involves only
the products of p„(k) in Eg. (2. 6); the explicit ex-
pressions are discussed, for example, by Kohn
and Luttinger, '3 by Yonezawa, ' and by Izyumov,
and we will not reproduce the results here. We
may apply the earlier results to our crystal by
averaging over the different types of clusters
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separately, for example,

~ &P.(k)P.(k') &-~ &P,,(k)P.(k') )

+ &' (p„(k) & (p, (k')
&

FIG. 2. Diagrammatic representation of Eq. (2.11'.

This expression includes unphysical terms that
involve two clusters of different types that are
counted as occupying the same sites, but these
contribute to order c3 and higher and are neglected.

In general, the scattering equation for the
Green's function can be written in the familiar
form

(G)=G'+G ZG +G ZG ZG + ~ ~ ~

=G'+c'z(c), (2. 11)

where Z is the "proper self-energy. " The solution
is, of course, (G) = (1 —Goz) 'Go. The expression
(2. 11) is easily expressed in diagram form, as is
shown in Fig. 2. In these diagrams the double line
refers to the perturbed Green's function (G), the
single line to the unperturbed Green's function Go,

and the square to the proper self-energy. The
single horizontal lines thus describe the free prop-
agation of a particle (spin wave in our case), and

the self-energy parts describe all possible inter-
actions or scatterings due to the yerturbations;
the expression can be interpreted as the sum of the
contributions from any number of alternating in-
teractions and free yroyagations. The advantage of
the diagrammatic technique is that it provides a
systematic means of keeping track of the terms (or
processes) contributing to Z and retaining only
those we wish to consider. In this calculation we
want the self-energy terms linear and quadratic
in the impurity concentration c, which are the
terms that describe the scattering from one im-
purity or coherently from two.

The dominant physical processes, the scattering
from single isolated impurities and the coherent
scattering from impurity pairs that form clusters
of types 2, 3, and 4, are described by the proper
self-energy diagrams linear in the concentration
c„of each of the clusters of type g. For a large
crystal c„has the expected values, to order c,
c&=c —24c, and c2=cs=c4=c for each of the vari-2 2

ous orientations of the pair clusters. These pro-
cesses are described by the diagrams of Fig. S(a),
where we keep all orders in the perturbations V'"'.
X„carries concentration c„, the labels k on the
horizontal lines indicate the argument of the G (k),
the dashed interaction lines represent V„& ~(k, k')
where k' is the label on the solid line immediately
to the left of the interaction line, and all internal

(G(k) ) = G'(k)+G'(k) Z(k, ~)(c(k)), (2. 12)

where Z(k, v) is the self-energy term. Solving for
(G(k) ) then gives, using Ga(k) = (&o —cu„") ',

(G(k) &=](e —[ur„+Z(k, (u)]]. ', (2. 13)

k s and L's are summed. The k sums also include
the factors 1/N. The papers by Edwards" and by

Izyumov describe the graphs and their relation-
ships to the expressions more fully. Wave vector
k is conserved in the scattering in the translation-
ally invariant crystal, as expected. There are
other diagrams that contribute terms in the self-
energy yroyortional to c . These describe the co-
herent scattering from pairs of impurities more
widely separated than those forming the types 2,
3, and 4 clusters. Their diagrams are shown in
Figs. 3(b) and 3(c). Each of these diagrams is
assumed to include all possible separations g
+my+n2, of the two impurities, for which t

L'l

+ I m I + I nI' & 2 (for unit-lattice constant). The sig-
nificant difference between the two sets is that in
the first the initial and final interactions are with
the same impurity and in the second with different
impurities; this introduces different phase factors,
and we found it necessary to sum the two types of
terms separately. These contributions to the self-
energy are less important than those linear in the

c„, due to the decrease in communication between
spins as they find themselves farther apart. This
is evidenced by the fact that the pure-crystal
Green's function I'„,which describes the free
propagation of a spin wave from site i to site l, is
a sum over the first Brillouin zone of a function
proportional to e'"'" ". As i-1 gets larger, the
oscillations in this factor cause cancellations that
greatly decrease the value of the sum; this can be
seen from the tabulated numerical values of l «
given in Ref. 15. These less important terms in
the self-energy will not significantly affect the gen-
eral discussion of this paper, and they will not be
included. The analytical expressions, which re-
flect the properties of the type-1 cluster, may be
found in Ref. 15.

Including only the dominant self-energy contribu-
tions, to order c, the Green's function has the
diagrammatic representation of Fig. 4. Then we
may write
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FIG. 3. (a) Diagrammatic repre-
sentation of the self-energy terms
linear in the concentration c„; (b) and
(c) diagrams that describe the co-
herent scattering from pairs of impuri-
ties farther apart than the distinct
pairs of types g=2, 3, 4.

(c)

+ I ~ ~

which describes the average spin correlations in
the crystal. We note that additional diagrams,
similar to those called interference diagrams in
the work of Jones, do not arise here. This is due
to the fact that we have used I'«rather than G«,
where a factor of S, /S has been removed. The
dispersion relation is not affected by this proce-
dure. The factor S, /S must be reinserted when
calculating such quantities as the neutron scatter-
ing cross section.

As (2. 13) clearly shows, if Z(k, ~) were inde-
pendent of w it would simply represent a correc-
tion to the spin-wave energy &g. This self-energy

expression may be written in terms of functions
g„describing scattering from a single cluster of
type g,

Z(k, a))=Dc„W„$,, &u) .

The W„(k, &o) are lengthy and will not be given here.
They are given explicitly in Ref. 15. Each term
in W„(k, ~) is of the same simple form: a product
of an impurity perturbation parameter, a phase
factor describing coherence in scattering, an en-
ergy denominator D,„'(v) associated with modes of

FIG. 4. (a) Diagrammatic repre-
sentation of the Green's function, in-
cluding only the dominant self-energy
parts; (b) definition of the self-energy
diagram ~

k k
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symmetry t relative to clusters of the type g, and
a minor of the matrix whose determinant is D,„(+).
[We note here that, as discussed in Ref. 6, the im-
purity modes of symmetry t for a single cluster of
type g are found at the energy zeros of the real
part of D, „(&u); the expressions for the D,„(~)are
given in Ref. 15.1 There is a term in Z(k, +) for
each impurity mode associated with each cluster
type, and these contributions are proportional to
the concentration of that cluster. Simplified cases
are examined numerically in Sec. III. Separating
the real and imaginary parts of Z(k, ur), the expres-
sion (2. 13) becomes

u& =&of. +ReZ(k, &u) . (2. 16)

Of special interest are the energy regions near the
impurity-resonance energies in the host band,
where ReD, „(&u)=0. [We comment that ReD, „(&o)
may also vanish elsewhere in the band, at the anti-
resonances; Wolfram and Callaway'6 discuss the
resonance modes for a single impurity. ] The func-
tion ReZ(k, ~) changes rapidly in these regions and
the imaginary part, which defines a damping due to
resonance scattering by the impurities, has peaks.
Section III discusses the results in more detail.

III. DISCUSSION

The configuration-averaged Green' s function de-
scribing the propagation of spin waves in a cubic
ferromagnetic insulator containing a finite concen-
tration of randomly oriented magnetic impurities,
including the effects of scattering from one im-
purity or coherently from two, has been calculated
in Sec. II. The neglect of groups of three or more
impurities, a cs effect, should be valid for con-
centrations up to about 3%. In this section we dis-
cuss the results in more detail, and make a simple
quantitative estimate on the magnitude of the ef-
fects, comparing the impurity-pairs contribution
with that of single isolated impurities. Of course,
our simplified model cannot give a detailed pre-
diction of the results of experiments on actual

(G(k) ) =((o —[urf+ReZ(k, (u)t —ilmZ(k, (u)}
' .
(2. iS)

In the pure and really translationally invariant
crystal, where Z(k, &) vanishes, this function has
a simple pole at the pure-crystal spin-wave energy
&uf (we recall that the normal modes of the system
are at the poles of the Green's functions). In our
averaged impure crystal we can obtain approxi-
mately the spin-wave energies from the real part
of the denominator of (2. 15), and we write the
dispersion relation as

&u =to„-+ReZ(k, u&f) (3.1)

and the damping term becomes Im Z(k, &uf). The
energy shift and the damping are most important

crystals, but a reasonable estimate on the size of
the effects can be made if the numerical values of
various parameters are chosen from those ex-
pected in actual crystals. A quantitative study of
our results also requires numerical evaluation of
the pure-crystal Green's functions I'0« for various
energies and various pairs of indices i, l. These
universal functions of dimensionless energy w,
which are purely real outside the host-spin-wave
band but have finite imaginary parts for energies
within the band, have been tabulatedie, iv for those
pairs of indices i, / related to the single impurity
problem. To study the pair clusters, the I'„ for
other sets j, l are needed; we have calculated
and tabulated in Ref. 15 all the necessary cases.
Our method of calculation of the pure-crystal
Green's functions was similar to that of Wolfram
and Callaway. '6

Equation (2. 16) gives an approximate dispersion
relation for the crystal. The total spin of the sys-
tem commutes with the Hamiltonian even in the
impure crystal, so we require that the spin-wave
energy vanish at k = 0 when the Zeeman term is
absent. It is, of course, true that in this case
-„0= 0, and it is easy to show that each contribu-
tion to Z(k =0, ~), from each of the impurity modes
of each cluster type, also vanishes. As has been
pointed out by Izyumov, this correct result is ob-
tained only if all orders of the perturbation terms
V are retained in the diagram sums.

When local modes exist, the dispersion relation
(2. 16) describes the impurity band, correct to
order c~ if all pair effects are included. The
structure of the band will include the splitting of
the single impurity states due to interactions be-
tween pairs of impurities. We will not discuss
the local modes in any detail here as a study of a
crystal containing a single cluster, as is given in
Ref. 6, should be adequate for many problems
when the modes are well localized and the impurity
concentration is small.

Let us consider the situation where the impurity
parameters are such that impurity modes exist
inside the host-spin-wave band, and examine the
self-energy Z(k, ~). ReZ(k, co) gives an energy
shift (though &o dependent) from the pure-crystal
energy w„- for a spin wave of wave vector k, while
Im Z(k, ~) defines the damping due to impurity scat-
tering of the spin wave. To obtain a rough esti-
mate of the energy shift and the damping due to the
impurity pairs as compared to that due to isolated
impurities, we take &u = &u„- in Z(k, &u). Then the
dispersion relation becomes
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near the resonance mode energies, where the vari-
ous energy denominators ReD«(~) vanish, so we
examine their values in these regions. We con-
sider first the single-impurity (type-1) effects;
the expression W, (k, ~-„), from which the contribu-
tion of the type-1 clusters to Z(k, &u„") is obtained,
is similar to that given by Izyumov, so we will not
include it here. Choosing a typical set of impurity
parameters S'/S=O. 5 and J'/J=O. 25, and assum-
ing no external or anisotroyy fields, we have an
S-type resonance associated with the type-1 clus-
ter at & =0.24. Near this energy the contribution
of the type-1 impurity cluster to the energy shift
ReZ and the damping ImZ is about (3—

5)%%u0 of &u„-

for c=0.03. For the pairs case, since the expres-
sions for Z are very complicated algebraically,
we choose a simplifying set of parameters. For
J'/J=1. 0, S'/S=1. 0, and 8"/F01. 0, only a p-
type mode of the type-3 pair cluster contributes to
Z. The contribution comes from the term W~(k, e-„)
which, for this special case, hasthe simple form

W~(k, &o-„)= (ReD~S —iimD~~)

(Z"/Z-1)gl-cos[ . (1-2)]].
(ReD )'+(ImD )

as a function of energy. This function may be ob-
tained from the imaginary part of the Green's func-
tion and is given by

X(~) = —(I/&) ImZ, G„. (3.3)

This is equivalent to a sum over the Brillouin zone
of the imaginary part of the k-dependent Green's
function. Also the scattering cross section for
spin waves, which is used, for example, to study
the thermal conductivity at low temperatures
(where impurity resonance-mode scattering is im-
portant), as well as the cross section for inelastic
neutron scattering by creation or annihilation of
spin waves, are determined by the imaginary part
of the spin Green's functions. Of course in these
calculations the S, /S term left out in calculating
(G(k) ) (as well as other terms, in the case of
neutron scattering, that derive from the neutron-
crystal interaction Hamiltonian) must be inserted,
so that other diagrams similar to the interference
diagrams of Jones~ will be added to the results.
This will not change the denominator of (G(k) ) and

the behavior discussed briefly here. The imaginary
part of (G(k) ) has the form

where
(3.2a) im(G(k) ) =

[(u —(of —Rez (k, (u)]3+ [Imz (R, (o)]~

(3 4)
ReD„= —,'(J"/J —1)[1—ar„-Rel'„(~„-)]+1, (3. 2b)

ImD~~ = ——,'(J"/8- 1)~f, Iml', ~(&ul) . (3.2c)

1 —2 is the vector connecting the two impurities,
and the expression must be summed over the three
orientations, so that the cosine term becomes
1 —(I/z)g~ 8'" ' = ar„-. Choosing J"/8= —1.0, where
the resonance is at +=0.30, we find that BeZ and

ImZ are about I%%up of ur„- near the resonance for
c=0.03. Examination of these numbers for the
singles and the pairs indicates that the average con-
tribution from each of the 3c N type-3 pairs (three
orientations, but resonance energy does not depend
on orientation) is approximately equal in magni-
tude to the contribution from each of the (c —24c )N
isolated impurities, that is, the deviation from
pure-crystal behavior near a resonance essentially
depends only on the concentration of the relevant
cluster. The effects are found to be roughly of the
same size for other sets of parameters that pro-
duce impurity modes in the same region of the
band.

A function that is useful in predicting many ex-
perimental results in a system, for example the
specific heat, is the spectral weight, which is es-
sentially the smoothed distribution of excitations

For a pure crystal, this expression is simply the
5 function 5(~ —+„-), that is, it has a peak of zero
width at the host spin-wave energy ~-„. When im-
purities are present the resonance scattering
broadens this peak; the width is determined by
ImZ(k, w), which has its peaks at precisely the
resonance energies. As a function of energy
Im(G(k) ) has, for a given wave vector k, a peak
of width ImZ(k, ar) at ~ = ~f+ReZ(k, &e). There are
additional peaks at each resonance energy, due to
the peaks in ImZ(k, ~), which exhibit the concen-
tration dependence of the respective impurity clus-
ters. The deviation from pure-crystal behavior at
a specified energy therefore depends on the various
contributions to the self-energy term Z(k, ~), and

will be greatest at the resonance energies (and

proportional to the concentration of the relevant
cluster types). To examine the spectral weight
we add together the functions Im(G(k) ) for all k
in the first Brillouin zone. The result, for large
X, is approximately a smooth function, with peaks
at the resonance energies where the density of
states has increased. Since the number of states
remains constant, this requires that the density be
reduced elsewhere (at the antiresonances). The
size of the peaks, that is, the magnitude of the
deviation from pure-crystal behavior, is propor-
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tional to the probability c„of finding the relevant
impurity clusters. Experimental resolvability of
the various effects, of course, requires that the
resonances be sufficiently separated.

The inelastic neutron scattering cross section,
including effects to c~, is calculated in Ref. 15.
This calculation proceeds from an expression
given by Van Hove, ' where the cross section is ex-
pressed in terms of the imaginary parts of two-
time spin correlation functions, which may be
written in terms of the Green's functions. ' The
results are very complicated algebraically, and
we will include only a simple case here. For S'
= S and F& = F&, where F& and F& are the neutron-
scattering form factors at scattering vector q for
impurity ions and host ions, respectively, the in-
elastic neutron differential cross section for crea-
tion of a spin wave of energy & and wave vector q
—G (G is a reciprocal lattice vector, keeping j
—G in the first Brillouin zone), to first order in
the neutron-crystal interaction, is, at zero tem-
perature,

[I + (8 ~ z) ]F g Im (G(j, (d )).

~0 is the classical electron radius, go is the mag-
netic moment of the neutron, p and p' are the ini-
tial and final momenta of the neutron (q = p —p'),
& = q/q, 2 is the unit vector in the direction of
spontaneous magnetic moment of the crystal, and
& is the energy change of the neutron upon scatter-
ing (we have indicated the energy dependence of the
Green's function for clarity). We have assumed
that the incident neutrons are unpolarized and that
the slow neutrons do not create electronic orbital
excitations. The cross section is just proportional
to Im(G(q) ) and the neutron scattering will reflect
the behavior of this function. As we have discussed
in Ref. 6 with respect to scattering by local modes,
the effects of pairs will be difficult to observe with
present neutron technology due to the lack of reso-
lution. Our result in Ref. 6 was essentially that
the cross section for scattering by a single impuri-
ty pair was comparable to that for scattering by a
single isolated impurity, so that the difference in
intensity will be due only to the concentration fac-
tors; the same will be true for scattering by reso-
nance modes when comparing impure-crystal data
to pure-crystal data. It may be feasible to use
neutron scattering to detect the p-type mode, dis-
cussed earlier in a special case, that involves the
two impurities that are themselves nearest neigh-
bors. This is the only mode in our theory whose
energy is dependent upon the impurity-impurity
exchange coupling J", so it may be possible to
have the mode well separated from other resonance
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APPENDIX

The perturbation matrix V'"' is determined from
the equation of motion for the energy-dependent
Green's function G,'", ' characteristic of a crystal
containing a single type-q impurity cluster. The
site numbering is as shown in Fig. 1, and the sym-
bols are defined q = J'/J —1, p = (J'/J)(s'/S) —1,
p'=(Z"/J)(S'/S) —1, o =6(v+q)+(p' —q), and v= p,
x (H'g' —Hg)/2zJS. For the type-1 cluster, that
of the single isolated impurity, where seven ions
are involved,

6(~+ ~)

v"'=~
6

p 0 0 0 0 0

0 p 0 0 0 0

0 0 p 0 0 0

0 0 0 p 0 0

0 0 0 0 p 0

0 0 0 0 0 p

This expression was given by Hone. ~o The type-2
cluster, where the two impurities share one com-
mon nearest neighbor located on the interimpurity
axis, has 13 ions:

(or local) modes. This was pointed out by Frikkee'
in reference to the nearest-neighbor impurity pair
in a face-centered-cubic ferromagnet. We note
that the Eu salts mentioned earlier are not good
candidates for neutron-scattering experiments, due
to the high absorption in these materials.

In conclusion we comment that it would be alge-
braically prohibitive to attempt to carry out this
theory to higher orders in the concentration. The
next step involves impurity triples, for which
there are many possible distinct arrangements,
each of which has a large perturbation matrix
and many possible impurity modes. Impurity band-
ing becomes important, and a new model is needed
to discuss experiments on the substitutionally dis-
ordered systems such as those examined in the
neutron-scattering experiments of Buyers et g$. ,

"
where the "impurity" concentration is in the range
of 20-30/o.
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6(v+ e) 0 -p -p 0 0 0

6(v+f) —p 0 —p 0 0 0

2p 0 0 0 0 0 0 0 0 0 0

y(2)
B

0 p 0 0 0 0 0 0 0 0 0

0 0 p 0 0 0 0 0 0 0 0

0 0 0 p 0 0 0 0 0 0 0

0 0 0 0 p 0 0 0 0 0 0

0 0 0 0 0 p 0 0 0 0 0

0 0 0 0 0 0 p 0 0 0 0

0 0 0 0 0 0 0 p 0 0 0

0 0 0 0 0 0 0 0 p 0 0

0 0 0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 0 0 p

(A2)

The two impurities are themselves nearest neighbors in the type-3 cluster, and there are 12 perturbed
ions:

I-p -p 0 -p -p —p -p 0 0 0 0

p 0' 0 —p 0 0 0 0 —p —p —p —p

y(S)
8 0

0

0 0 0 0 p 0 0 0 0 0

0 0 0 0 0 p 0 0 0 0

0 —q 0 0 0 0 0 0 p 0 0 0

0 p 0 0 0 0 0 0 0 0 0

0 —6 0 p 0 0 0 0 0 0 0 0

0 0 0 p 0 0 0 0 0 0 0

0 0 0 0 p 0 0 0 0 0 0
(AS)

0

0

0

0 0 0 0 0 0 0 p 0 0

0 0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 0 p

The type-4 cluster, which also has 12 ions, has two common nearest neighbors shared by the two impuri-
ties:

6(v+ 6) 0 ~p ~p ~p ~p ~p ~p Q 0 0

6(v+ E') —p —p 0 0 0 Q ~p ~p ~ p

y(4)
8

2p 0 0 0 0 0 0 0 0 0

0 2p 0 0 0 0 0 0 0 0

0 0 p 0 0 0 0 0 0 0

0 0 0 p 0 0 0 0 0 0

0 0 0 0 p 0 0 0 0 0

0 0 0 0 0 p 0 0 0 0

0 0 0 0 0 0 p 0 0 0

0 0 0 0 0 0 0 p 0 0

0 0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 0 p

(A4)
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Phase Transition in a Sixteen-Vertex Lattice Model
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We consider a sixteen-vertex ferroelectric model defined on a square lattice and deduce the
nature of the phase transition in this model from its equivalence with an Ising model with a non-
zero magnetic field. We find that, as the value of a parameter which occurs linearly in the
Hamiltonian is varied, the model may exhibit a first-order transition, a second-order transi-
tion with an infinite specific heat, or no phase transition.

INTRODUCTION

There has been considerable recent interest in
the eight-vertex lattice model which is a general-
ization of the Ising and ice-rule ferroelectric
models of phase transitions. ' In vew of the unex-
pected behavior of a variable exponent found to
exist in the eight-vertex model, ' it seems appro-
priate to investigate a further generalization of
these models, the sixteen-vertex model. The
sixteen-vertex model can be defined on any lattice
of coordination number 4, and encompasses,
among others, the eight-vertex model and the
Ising model in a nonzero magnetic field as special
cases. Very little is known about the behavior of
this general lattice model, except in a few special
cases in which the model can be shown to be di-
rectly equivalent to an Ising model, hence exhibit-
ing the usual Ising-type transition. ' Any result
which leads to different types of phase transition
would be very useful and illuminating.

In this paper some new findings are reported in
this connection. A certain class of the sixteen-
vertex model is considered and the behavior of
this model at the transition point is deduced. It

is found that, as the value of a parameter which
occurs linearly in the Hamiltonian is varied, the
model may exhibit a first-order transition, a
second-order transition with an infinite specific
heat, or no phase transition. It is of interest to
note that a first-order transition results and per-
sists in a region in the parameter space. In the
potassium-dihydrogen-phosphate (KDP) model of
a ferroelectric which also exhibits a first-order
transition, the transition becomes a second-
order one when an infinitesimal electric field is
present.

DEFINITION OF THE MODEL

Vfe first define the sixteen-vertex problem.
Consider a lattice of coordination number 4, which
has N vertices. Each of the 2N lattice edges
(assuming periodic boundary conditions) may or
may not be covered by a bond. A definite bond
covering of the lattice will be called a state so
that there are 2 " distinct states. A fixed energy
is assigned to each of the 2 = 16 bond configura-
tions that may occur at a vertex, and the energy E
of a state is taken to be the sum of all vertex en-
ergies. The partition function of the sixteen-ver-


