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In bulk superconducting systems the large intrinsic range of the pair coherence length im-
plies an extremely narrow critical region. However, as is well known, the size of the criti-
cal region becomes larger as the dimensions of the system decrease below the coherence
length. An interesting limiting case corresponds to particles with all dimensions less than a
coherence length which form essentially zero-dimensional systems. Here we calculate the
thermodynamic properties of small superconducting particles using a static approximation.
Within this approximation, both the order parameter and the quasiparticle contribution are

explicitely studied.

I. INTRODUCTION

In bulk superconducting systems the large in-
trinsic range of the pair coherence length implies
an extremely narrow critical region so that, for®

example, the observed specific heat follows the
classic mean-field behavior. However, this large
coherence length £ also means that systems with
dimensions less than & can conveniently be studied
experimentally. Fer such small particles the de-
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viations from the results of mean-field theory be-
come important, and furthermore, they are sim-
pler to treat theoretically because of the resulting
suppression of spatial variations. Hurault, Maki,
and Béal-Monod have examined the effects of these
fluctuations to lowest order and found a large crit-
ical region.! Here we calculate the thermodynamic
properties of small superconducting particles with-
in the static approximation and compare our re-
sults with those obtained by Hurault ef al. as well
as with the mean-field limit. We explicitly con-
sider the thermodynamic contribution of the quasi-
particles and the effects of finite level spacing.

When the dimensions of the small particle are
much less than the coherence length ¢, spatially
uniform fluctuations of the order parameter domi-
nate the thermodynamics. In Sec. II we integrate
the Ginzburg-Landau free-energy functional over
all such static uniform order parameters. This
provides a simple approximate description of the
thermodynamics of small particles. However, it
not only treats the order parameter statically, but
in addition it fails to treat the effect of quasiparti-
cles and the structure of the one-electron spectrum
in small particles.

The important parameter characterizing the
shift from the mean-field results is the ratio of the
average single-electron level spacing 6 to 27T,

5=6/kT,=1/N(O)QRT, . ()

Here N(0) is the single-spin energy density of
states per unit volume and  is the small-particle
volume. The width of the region AT/T, in which
deviations from the mean-field BCS results occur
is proportional to 5. For particles of order 100 A
in size § is of order 0.1-1.0. The resulting
broadening of the thermodynamic transition be-
comes sufficiently wide so that the quasiparticle
contribution must be included on the same footing
as the order-parameter-fluctuation contributions.
In Sec. III we use a functional method, introduced
previously for the bulk superconducting problem, 2
to carry this out within a static approximation.

In addition to explicitly considering the thermo-
dynamic contribution of the quasiparticles, the ef-
fects of the finite level spacing can also be exam-
ined. As § increases from the bulk limit of 0, the
effects of the discrete level spacings can become
important. From our ana.lysis3 of small normal-
metal particles, we expect that the actual distri-
bution of energy levels must be considered for
values of §/kT such that /T >10. However, for
small superconducting particles, important de-
viations from the mean-field theory already enter
for 5< 1. Therefore, in the range of tempera-
tures which we will study here, the actual details
of the level distributions can be neglected. In
Sec. III we have considered the simple case of

|o»

equal level spacings to determine if the discrete
effects are important for §<1. Any effects due to
the finite level spacing should be indicated by a
variation in the thermodynamic properties as the
chemical potential u is varied. We have calculated
the specific heat and spin susceptibility for the
cases in which u is fixed to coincide with a single
electron level and when it occurs halfway between
the levels. For values of §<1, the variations

were found to be negligible.

It should be pointed out here that in calculating
discrete effects we retain the influence of static
fluctuations by performing the full functional in-
tegration. This differs from a treatment of size
quantization in small particles by Strongin et al. ,4
which ignores the influence of fluctuations on ther- -
modynamical properties by using only the zeroth-
order saddle-point approximation for the partition
function.

Perhaps the most important small-particle effect
is the restriction to fixed electron number. In
our work on normal-metal particles this, rather
than the discrete levels, caused the dominant effect
for 6/kT<1.0. In the superconducting case in
which pairing plays a major role, the restriction
to fixed electron number is surely even more
important. The calculations of Sec. III are based
on a grand canonical ensemble, with the electron
level spacings taken to be equal. In an attempt
to determine the importance of fixed particle num-
ber, we have considered in Sec. IV the projection
of the canonical ensemble from the grand canonical
representation by means of a saddle-point integra-
tion. This is known® to be a satisfactory approxi-
mation for small normal-metal particles when
6/kT<1.0, but it could simply be fortuitous.
Further work on developing a canonical description
for small superconducting particles is needed.

Finally some comments on the static approxima-
tion used in these calculations are appropriate.
Practically, it allows results to be obtained over
the entire temperature region. It therefore leads
to definite predictions which can be checked
against experiment. Second, we believe it pro-
vides a useful initial approximation at T, and at
small temperatures compared to T,. Further
work, in which the fluctuations about this static
approximation are treated, would be extremely
useful.

II. GENERALIZED GINZBURG-LANDAU
APPROXIMATION

In their original treatment of the thermal equi-
librium properties of the superconducting state
near T,, Ginzburg and Landau® (GL) introduced a
free-energy functional which depended upon a com-
plex order parameter ¥(x):

F{y}=[ @x(a|v|®+50|0|*+c|ve|?) . (2.1)
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The parameters b and ¢ were positive while a van-
ished linearly as T approached T,:

a=a (T-T,) (a'>0). (2.2)

The equilibrium properties were determined by
evaluating F for the order parameter which made
it stationary,

0=0F/6y*=(a+b| y|%-cvdp . (2.3)

More generally, one can view Eq. (2. 1) as a re-
duced energy in which all degrees of freedom have
been taken into account except those associated
with the order parameter . Then the partition

function becomes a functional integral of ¢*F ¥
over all order parameter fields y(x):
Z= f SpetFW (2.4)

where Bis (¢T)™. This is in fact just the static
limit of a functional form for Z, near the transi-
tion temperature, derived from the microscopic
theory by Hurault and Maki.® The GL treatment
corresponds to a saddle-point evaluation of Eq.
(2. 4).

While for a large system the generalized GL ex-
pression (2.4) for Z has eluded evaluation, it
greatly simplifies for the small system of inter-
est here. "™™® For particles whose dimensions are
less than the coherence length (c/a)'/?, the uni-
form spatial mode dominates and (2. 4) reduces to
the quadrature

z=2x["alu| o] expl- p(alp|*+5b]4]*)],
(2.5)

where Q is the volume of the particle. Near the
transition temperature, where (2. 5) applies, we
can replace g by 3,. With a normalization in which
¥ has dimensions of the energy gap, the param-
eters a and b are given by

a=N0O)(T -T,)/T,, b=17¢(3)N(0)/8n*kT,)?,
(2. 6)
where ¢(x) is the ¢ function. Changing variables
to 2= g, | ) /7, the expression (2.5) for Z be-
comes.
# (" 72 — g
Z= —2~f dxexp(— = [@- 1)A+b7\2]>,
Be Jo 5
(2.17)
with
§=8,/N(0)2=06/rT,,
(2. 8)
b=1¢(3)/16=0.526 , t=T/T,.
The integral over ) can be expressed in terms of

the error function, and we find to within an unim-
portant multiplicative factor

Z=e[1zerf(| AT |)], (2.9)
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where the upper sign applies for Af <0 and the low-
er when A7>0, with

Al=in(t -1/A5D) 2. (2.10)

The free energy associated with the supercon-
ducting part of the system is then
F

3 _
f= m: - 3.7 t5[InZ(t) + const] ,
(2.11)

where f is measured in units of T, times the nor-
mal-state specific heat at T,.

The contribution to the specific heat obtained
from (2. 11) is

C _ 3t ( [ %87 -2(55/m) 2] e-@D?
lterf(lAf |)

Cy 2mb

teten® ,
[1xerf(laf] )]?“'(zt—l)) , (2.12)

where, as before, the upper signs apply for AZ<0
and the lower are appropriate when A7>0. If § is
small, then there is a region near the transition
temperature, where | 1-¢| <1, but with the con-
dition | A7 | > 1 also satisfied. In this temperature
region C/Cy has the asymptotic behavior

3 1 —
AT aT>0

£
Cr T%—-(l+4(t—1)+—:1%—e’“a> , A7<0.
(2. 13)
In the limit of a bulk system § vanishes and there
is a jump in the normalized specific heat of
3/4b=1.43 at T,. The asymptotic form for A7 >0
given in Eq. (2. 13) agrees with the mean-field
treatment of the fluctuations obtained by Hurault
et al.! However, as noted by these authors, this
limiting form fails when Af <1. This is just the
criterion <7, in their paper. The present calcu-
lation gives results within the static approxima-
tion for Af inside this so-called critical region.
In Fig. 1, results for the superconducting part
of the specific heat obtained from Eq. (2. 9) are
plotted for the value §=0.01, To facilitate com-
parison with the bulk answer’ we have added a
linear term ¢ to Eq. (2. 12). This is the specific
heat of a normal metal normalized to Cy(T,).
Clearly, at temperatures where the gap becomes
significant this procedure is artificial. However,
near T, it allows.a more meaningful comparison
in the spirit of the two-fluid model. The perturba-
tion-theory result obtained by Hurault et ql., but

with the added term linear in ¢, is given by
C/Cy=t+3/8b(81)% . (2. 14)

This is plotted as the dashed line in Fig. 1 for
§=0.01. Although perturbation theory breaks down
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2.6 T T T T T T T depth. Under these conditions, the rate of change
2.5k % b of the transition temperature with magnetic field
241} Il . is given by
il | | dar De?

N m e 2
22 | — - o —— .
il | | dH 0 & B (2.15)
|
2.0t PERTURBATION : i ic di i -
o) where D is the electronic diffusion constant ap

1.9}

= | 1 1 | 1 1 1 1 1

O e or 08 09 10 i1 12 13 14
T/ T

FIG. 1. Comparison of the normalized specific heat

calculated using perturbation theory with the results from
the generalized GL approach near T'=T,. Here the pa-
rameter 6=06/kT, has the value 0. 01.

as t approaches 1, the generalized GL treatment
leads to a specific heat which remains finite at
t=1. The finite-size effects are clearly evident,
giving rise to both a shift and broadening of the
peak in the specific heat.

As § goes to zero, the results approach those for
the bulk near f=1. Typically a particle of size
~1000 A has 6~ 10" K, so that if T, is of order 1 K
it would correspond to 5~ 103, Since 6 varies in-
versely as the volume, if the particle size were re-
duced to ~ 100 A then & would approach unity. Thus
it should be possible to study this behavior over a
wide range of § if the size distribution can be ade-
quately controlled.!’ In Fig. 2 the specific heat
given in Eq. (2. 12) is plotted for several values of
5. Here also the term linear in ¢ has been added.
It is seen that § must become quite small before
the bulk limit at #=1 is approached. On the other
hand, as § approaches 1, the specific-heat anom-
aly is washed out. The discrete nature of the one-
electron spectrum can also become important for
§ of order unity, and this is discussed in Sec. IIL

To complete this section we now consider the
diamagnetic susceptibility within the framework
of the generalized GL scheme. Here we consider
the weak-magnetic-field limit and take the particles
to be spheres of radius R less than the penetration

propriate for the small particle. Since the free
energy depends upon H through T, only, the mag-
netization becomes

aF 9T, oF
= e T e —
M oH 0H 8T, (2. 16)

Then, from Eq. (2. 15) it follows that the linear
field dependence of the magnetization is

(.7 D* ,\ 8F
M—(l() P R) o7, T,

(2.17)

with F evaluated in the zero-field limit.'? For
temperatures near 7,, only the variation in the
parameter a is significant, so that using Eq. (2.5)
we can write

8F  N(0)& 2
WL, (wl?y . (2. 18)
Then combining Egs. (2.17) and (2. 18) we find that
the zero-field diamagnetic susceptibility per unit
volume for small spherical particles can be ex-

~— =0 (BULK)

—8=0.001 -

L 1 Il 1

1
0.6 o7 08 09 1.0 1 1.2 1.3 14
T/ T

FIG. 2. Normalized specific heat near T =T, calculated
in the GL approach for several values of the parameter
5=6/kT,. For reference the bulk BCS limit is also
shown.
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pressed in the form

@ De’R® N(0)

X"~ & T, (l9]? . 2. 19)

In order to compare this with experiment, it is
convenient to write y in a form given by London, 13
x=—(1/47) R¥/100%(T) . (2. 20)

Here, we find for T near T, an effective tempera-
ture-dependent penetration depth

o/ MD)E=2(] »|2)/(akT,)?, (2.21)
with
A§=mc*/dmne’)g . (2.22)

X¢ is Gorkov’s impurity function, which is equal to
1. 331/£, when the electron mean free path [ is
small compared to the BCS coherence length. For
the small particles under consideration here 1
varies as the particle radius R.

Within the generalized GL formulation, it is
straightforward to calculate { | |2):

1 5 172
(| 9|2y = (arT,)? 2_77(7>

-2
-Af
x( 2 e

7 lierf(IATI)_ZM> » (2.23)

where as before the upper sign applies for Af <0
and the lower when Af>0. For Af negative and

| a7 1> 1, (| p1?) approaches the usual mean-field
result with an exponentially small correction:

(2. 24)

while for A7 positive and large compared with 1,
we obtain the lowest-order perturbation-theory
limit

(Af < =1).

(ar>1). (2. 25)
In Fig. 3, these two asymptotic forms are plotted
as dashed lines while the full expression (2.23) is
shown as a solid line. As one expects, { |§]2)
shows a continuous onset, remaining finite at T,
and approaching the mean-field result at low tem -
peratures.

Returning to the diamagnetic susceptibility, the
expression for (|9 |2) given by Eq. (2.23) has been
used to determine x(T) for various § values.

These results are plotted vs ¢ —1 in Fig. 4.

Here it is clear that deviations from the bulk limit
are important over a substantial range of reduced
temperatures even for relatively small § values.
In fact, as this region extends below reduced tem-
peratures of order 0. 9, deviations arising from
the inadequacy of the phenomenological GL theory
should be taken into account.

Finally, before leaving this case in which exact
results for the generalized GL theory can be ob-
tained, it seems worthwhile to compare it with an
approximate scheme often used in higher dimen-
sion. In dealing with the |¢|* term at high tem-
peratures, a simple approximation is to replace it
by the Hartree-Fock approximation 2{ | |2} |2,
Here the factor of 2 arises from the two ways in
which the four-field term can be reduced. We
anticipate that this should be a reasonable approxi-

FIG. 3. Mean-square order
. parameter in reduced units is
plotted as the solid curve vs Af,
The dashed curve for Af <0 is
the mean-field result and for Af
>0 represents the first-order
fluctuation correction to the
mean-field result.

Cyl? 1 L(L)"z -af2
et~z v \as ) e
\\ T T T l T T
\ l
\
- \ 60_I| -4
|
|
~ 5.0—‘ —
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|o

T T T T

>
3

|

X
o

T T

FIG, 4. Zero-field diamag-~

N netic susceptibility per unit
volume of a small superconduct-
ing particle vs reduced temper-
ature. The normalization fac-

A tor X, is equal to — R%/407)3,
where ) is the low~temperature
penetration depth (mc?/4me’xg)/2,

mation for A7>1. However, at temperatures less
than T, where Af<« -1, one would guess that
{19l*) should in fact approach simply the Hartree
term ( [912)2. In order to see how this happens

in the special case of small particles, we have
evaluated ((Ip1*) - ([912)%)M2/( | pI?) and plotted

it vs A7 in Fig. 5. It can be seen that (| p[*)
follows a smooth variation from the high-tempera-
ture form 2( [ | 2)2 to the low-temperature form
(19I2)%. It is also clear that theories in which
the Hartree-Fock (Hartree) replacement is made
fail in the critical region, as well as at low (high)
temperatures. Note: we have just learned that,
interestingly enough, a similar GL approach has
been applied by Grossman and Richter to describe

the photon fluctuations at the laser threshold.

II. SMALL-SIZE EFFECTS WITH STATIC
APPROXIMATIONS

As discussed in Sec. I, when the particle size
becomes sufficiently small that the discrete nature
of the one-electron spectrum becomes important,
it is no longer sufficient to use the results of Sec.
II. In addition, the quasiparticle behavior is not
adequately treated within the GL framework. As
§ increases toward unity, the width of the tem-
perature region of interest broadens so that it be-
comes essential to account for the quasiparticle
contributions to the thermodynamic properties.
Finally, in order to treat specific quasiparticle
effects such as the spin susceptibility, one must

T T T T T

o 1.0+~
Wiyt
47
FIG. 5. rms deviation of

L 051 - (1% from (I 9|32 vs AF.

| I ] | 1

-4.0 =30 -2.0 -1.0 0] 1.0 2.0 3.0 4.0
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also develop a more complete description,

Here we extend the functional-averaging method
of treating the BCS Hamiltonian to the problem of
a discrete level system. A pairing interaction is
taken between the time-reversed states of the
small particle and treated in the reduced BCS form

H=E€a(na+n&)_g6 E, b:x bar s (3.1)
3 aa’

The time-reversed
J

i
where n,=cl ¢, and bh,=clcz .

Z= [6¢(r)exp| - ﬂfold’r | £(7)| 111 Tr exp[ ~fold'r{3(€a -

Proceeding in the same spirit as Sec. II we in-
vestigate the static limit of (3. 2) in which ¢(7) is
replaced by a complex number ¢. The trace ap-
pearing in (3. 2) can now be performed giving

et CamtrFal (14 ¢ a)?, (3.3)
with
BEq=[B¥eq— 1) +mgps|c|2]M2. (3.4)

Changing the integration variable to s=ng|¢|?, the
static approximation for (3. 2) becomes

1 (7 s
z= gL dsexp(—g —Za?[ﬁ(ea—u)

- BE, —21n(1+e'BE°)]) ,

(8.5)
with

BE,=[ B2(eq — )2+ B0s]Y2 . (3.6)

Actually, the interaction cutoff is not yet prop-
erly included in (3. 6). This can be easily remedied
by dividing by the free-fermion partition function

Zo=gexp{—ﬁ[(<a - -leg—ull}

><(1+e‘5|5a"‘|)2 (3.7)
to obtain
z 1(°
——==\ dse™® 3.8
ZO g 0 ( )
with
A@)=2 + 2 [Blea-n| -BE,
g «

+2In(1+e® e ) ~2In(1+e*Ea)], (3.9)

where the prime implies a cutoff at e, —pl=wp .

In order to understand the relationship between
this static functional expression and the general-
ized GL theory discussed in Sec. II, we examine
the continuum limit of (3.9). Replacing the «
sums by integrals
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single-electron states have been labeled by « and
a, and g is the usual dimensionless phonon-ex-
change coupling constant which is of order % to 3
and 6=[N(0)R2]™! with © the particle volume. The
prime on the aa’ summation implies a cutoff for
states outside an energy shell + w, about the Fermi
energy.

Introducing a time-dependent complex random
field £(7), the grand canonical partition function
can be represented by2

1) Rgrtngs) = (mgBO) 2 [E(T)bY+ ¥ (T)boo} . (3.2)

_s. 28 (* A
A(S)—g+ 5 J; dE[€—(€ +—B_s> ]

+ %J:de [ln(l +e™)~In {1 +exp [— B<€a+ % S)Ua]}] J

(3.10)
where the cutoff can be neglected in the second in-
tegral as long as e™®“p is negligible. Setting
x=p6s/7° and carrying out the first integral in Eq.
(3. 10), one finds, neglecting terms of order
()\ﬂ/Bwn)zv

AQ) = (7?/6) (A In(T/T ) +a(\)] ,
with
a()=5+A\[In(y A% -] - @/7)

(3.11)

Xfoﬁ dxln(1+ M) - (3,12)

where Iny is Euler’s constant 0. 5772. Here, as in
Sec. II, 3 is the ratio of the average level spacing
6 to kT, with

kT,=1.14wpe™/e . (3.13)

This equation is the defining equation for the tran-
sition temperature T, in terms of the BCS param-
eters wp and g. Certainly for small particles the
values of w, and g would be expected to deviate
from their bulk values. For the purpose of calcu-
lating the effects on the superconductivity as &
varies, however, they are treated here as phenom-
enological constants. Near the transition tem-
perature small values of X dominate, and it is ap-
propriate to expand a()) in a power series’:

== 3 ';3 —9-(@v-1) _ v
a(n) 4%?2(”)(1 2 Ye(2y =

=@M (3. 14)
Thus in this limit
AN = (7/8) [\t - 1) + 15 £(3)A%] (3.15)

and Eq. (3.8) for Z/Z, reduces to



1774 MUHLSCHLEGEL, SCALAPINO, AND DENTON 6
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2.4 .
2.3 -
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1.2
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FIG, 6. Comparison of the normalized specific heat
from the static functional calculation with that from the
GL calculation, for the special value of §=0,01. For
reference the bulk BCS limit is also included.

A - 11'2 ® 772 2
7{)~=——L dx exp (-? ME-1)+ f5 23 ]) .

g
(3.16)

In these two equations the variable t=7/T, has
been replaced by unity except in the critical term
(t - 1) arising from the logarithm in the equation
(3.11) for A(A). The resulting expression for Z/Z,
differs only by a multiplicative constant from the
generalized GL expression (2.7) studied in Sec.
1I.

Returning to the general result (3. 8) for the
static approximation of a discrete level system,
we express the total free energy normalized to
Cy(T )T, as

_F
Cy(T)T,

== '%z—gt [ln(Zo)+1n <~ZLO):| .

The normalized specific heat is given as before by

C 8%
Cory Tt/

f= - 2 tIn(2)

(3.17)

(3.18)

Although one could choose to consider first the
exact expression for the continuum limit (3. 11),
passing to this limit immediately might appear in-
consistent for values §=5/kT, of order unity. In

addition, 6/kT can become large compared to unity
as the temperature is lowered, and effects from
the discrete sums can enter. Since we are inter-
ested in a range of values for § including values
approaching unity, we have just gone directly to a
calculation of the special case of equal level spac-
ings, with the discrete sums being done numerical-
ly. In these calculations g was set equal to 3 and
two u values corresponding to setting u at a level
and halfway between two levels were used. The
sensitivity of the results for these two different
values of the chemical potential provides a mea-
sure of the importance of the discrete effects. The
differentiation (3. 18) is first performed. This
results in several integrals over s, in which the
integrands contain either the discrete level ex-
pression (3. 9) for A(s) or derivatives of A(s) with
respect to £. The discrete sums have been evalu-
ated numerically as a function of s, and then, of
course, the integrals over s were computed nu-
merically.

In Fig. 6, the results for the specific heat ob-
tained in this way for §=0.01 and u at a level are
compared with the bulk specific heat and the result
obtained in Sec. II. Near T, there is good agree-
ment with the generalized GL result for this rel-
atively small value of the level spacing. However,
away from T, the generalized GL result fails to
adequately describe the quasiparticle contribution,
while the equal level result approaches the bulk
behavior as expected. Continuing with the numer-
ical results obtained from the static approxima-
tions (3. 8)and (3. 9) in the equal level case, Fig. 7
shows how the specific-heat anomaly is washed out
as § increases. Also for these curves, p was
taken to coincide with a level, and g=3 was used.
By the time the level spacing is equal to ¢T,, only
a very broad remnant of the specific -heat anomaly
remains. Furthermore, the numerical results
indicate only an ~3% variation of the specific heat
for u between two levels with § as large as unity,
and this variation decreases as § becomes smaller.
Since for these values of § the specific-heat anom-
aly is already washed out, the effects are relatively
uninteresting in considering the specific heat.

From a formal point of view it is also of interest
to investigate small-particle effects on a purely
quasiparticle property such as the spin susceptibil-
ity x,. In order to explore this behavior without
competing effects, spin-orbit coupling will be ne-
glected although it can produce important modi-
fications in x,. Since for our present considera-
tions the spin is a good quantum number, the term
€(ny,+ng) is replaced by

(3.19)

with h=4gugH. With this modification the trace
given by Eq. (3. 3) becomes

(e+h)ng+ (e -h)ng,
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e a1 Fal (14 o8 Eath) (14 eBFah) | (3.20)

Expanding the sum of the logarithms of the field-
dependent terms to the second order in g7 yields

In(1+e®€e*M) i In(1+e?Ca™)=2In(1+ePFa)

+(BR)Ef(BEL) [1-£(BE,)], (8.21)
J

0

zZh) 2 A e
Zo 7 <1+J' dse A<)(Bh)z§f(3Ea)[1-f(3Ea)]/fo dse‘“)),

where f is the Fermi function. Then the generaliza-
tion of Eq. (3.9) for the case in which a magnetic
field couples to the spins is

Agpin(8)=A(s) = (BR)? 2o f(BE,) [1 - f(BE,)]
(3.22)
Using (3.22) the partition function to order (84)?
can be written

(3.23)

where Z/Z, is the zero-field partition function, Eq. (3. 8). Computing the free energy and susceptibility
from (3. 23) in the usual way, one finds the ratio of the spin susceptibility to the normal-state Pauli sus-

ceptibility:

X~ 0 [

Before evaluating this, it is interesting to ob-
serve how it reduces to the bulk result as & goes to
zero. First the discrete sum over « is converted
to an integral, and the integration variable s is
again changed to 1= 86s/7°. The integrand can be
simplified by using an identity which follows from
the form of a(x), Eq. (3.12):

28 [, de f(BE)[1 -f(BE)|=1-2xa""(\) .

We then obtain the simple form

(3. 25)

_&L:I e A1 - 22" ()] fd)\e"‘"').
Xn 0 0
(

3.26)
In the bulk limit where § vanishes the above inte-
gral can be evaluated by steepest descent, and we
obtain

Xo/ Xy =1=2xa"" (1) , (3.27)

with

E=[e2+(n/8)%x ]2 .
Here A is determined from the saddle-point con-
dition

Int+a'(Ay)=0. (3.28)

This is just the BCS gap equation with A= (1/8)x3%%,
so that (3. 27) is the well-known bulk result for
Xs/Xy-° This is shown in Fig. 8 along with the
numerical results obtained from (3. 24) for several
values of §. For the numerical results the special
case of equal spacings was again calculated with
g=% and u coinciding with a level.

With reference to the specific-heat curves, it is
interesting that when § approaches unity, there is
hardly a remnant of the superconducting phase
transition at T=7,. One might then be inclined to

Ko o s 074 D 6, [1 - (BE) /| Casehw.
0

(3.24)

assume the superconducting effects are essentially
washed out by this time. On the other hand, the
spin-susceptibility curves give clear evidence of
the superconducting effects, even for § as large as
unity.

IV. CANONICAL PROJECTION FOR B6< 1

We consider briefly the canonical projection of
the partition function onto N particles. For the
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FIG. 7. Normalized specific heat calculated in the
static functional approximation for several values of 6
=6/krT,. For reference the bulk BCS limit is also shown.
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FIG. 8. Spin susceptibility normalized to the Pauli
value 214 gug 1%/6. The results for several values of 6
=06/kT, are shown together with the BCS limiting value.

case of small normal-metal particles at tempera-
tures with 27 << §, the exact projection leads to
thermodynamic behavior which varies depending
on odd or even conduction-electron number. At
higher temperatures, however, such that 27> 9,

a saddle-point integration of the canonical projec-
tion yields the most important consequence of the
fixed electron number. In the case of the specific
heat, this results in its being lowered by k5 per
particle. Also for superconducting small parti-
cles, we expect to find a variation in the thermo-
dynamic behavior at low temperatures, depending
on odd or even electron number. Corresponding to
the normal case, for 7>05, one might expect a
saddle-point integration to yield the first effect due
to fixed particle number. It will be shown below
that the saddle-point integration for the supercon-
ducting case also leads to a lowering of the specific
heat, similar to the normal case.

Formally the canonical projection on N particles
is given by a contour integration around the origin
of the grand canonical partition function,

Z(N)= (1/200) § (ap/$") Z(p) , @.1)
where p=¢**. Here Z(u) is given in Eq. (3.5) with
the cutoff being handled appropriately. The reason
for the difficulty in an exact calculation, such as
can be carried out for normal metals, lies in the
appearance of u in the expression for E:

|

BE,=[B*(eq - u)?+ pos]'/?
=[B%2 —2Be, Inyp+ (Iny)?+ Bos ]2 . (4.2)

Z(N) can be rewritten in a form which lends itself
to the saddle-point integration over i:

Z(N)= _1__f ds e-s/z ﬂ_ ew(w,s) , (4. 3)
gh 2w
where
o, s)==(N+1)1np
-2 [Bey ~Ing— BE, —2In(1+e7Ea)] . (4.4)

In the case of normal metals there is an analo-
gous ¢(y) given by setting E, =€, — 1, and so ¢
does not depend on s. The integration over s is
then trivial. We review this case, since the super-
conducting case involves a simple generalization.
It is found that provided g5 << 1 a saddle-point in-
tegration is justified. One has

d L
Zua W)= W e W, a.5)

where ) is determined by

m] =0. (4.6)
)

8y
This last condition is just an implicit equation for
the chemical potential in terms of the particle
number N. One finds that the contour integration
must be taken parallel to the imaginary axis, with
the contour passing through ¢,. The integration

gives

Z roemar (N) = €° 0 /[ 210" (39)]*2, @.7)
with

@' (%) = (2/48) (1/85) . (4.8)

For this last result, Eq. (4.6), which defines ¥,
in terms of N, was used to eliminate the particle
number N which appears in ¢’ (), and the o sum
was converted to an integral. The ¢(y,) term is
responsible for the usual linear law for the specific
heat, while the ¢'’(3}) term leads to a correction -
of — 3k in the specific heat of normal-metal small
particles.

The superconducting case is analogous although
somewhat more tedious. Because of the s de-
pendence in ¢(y, s), Eq. (4. 6) determines the crit-
ical value ¥, as a function of s: =yy(s). The ¢
integration passing through y,(s) then gives

e’ (¥g (5)s8)

=_]_'. ” -s/e
gjo dse (270" (9 (s), )"

where ¢ (¥, s) was given in Eq. (4.4). The ¢"’

(% (s), s) term in the above equation reduces to a
simple form after again using Eq. (4.6) and con-
verting the o sums to integrals:

4.9)
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2 1
@' W), 8)= —ZLY gy

2 1/2
(% g+B0s) -1 2

X € —=
X<W IR Y TR HPETES ) , (4.10)

where
%= (1/1) et’4/1.14 .

Note this expression for ¢'’(yy(s), s) just reduces
to the normal result, when the variable s is set
equal to zero.

Because of the s dependence in y, this integral
is difficult to do. However, if we assume particle-
hole symmetry exists, it is found that ), does not
depend on s. It then has the same constant value
as for the normal system. In this case, we have
calculated the specific heat numerically from the
partition function [Eq. (4.9)], similar to the pre-
vious numerical calculations. It is found that the
principal added effect arises from 1/£6 appearing
in ¢"'(¥,). The terms in brackets are not impor-
tant, since the value of x;, is always large com-
pared to $6s, at least over those values of s for
which the integrand gives the largest contribution
to the integral. The bracketed terms can then just
be set equal to unity. The 1/856 dependence in
¢"' () leads to the specific heat being lowered by
—4kp. If the normalization of the specific heat is
to Cy(T,) as before, then the change is

(4.11)

—kp/2Cy(RT /5) . 4.12)
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This simple correction to the specific heat may be
the most important result of the canonical projec-
tion, at least as long as 6/kT =5/t remains small.
Similar to the case of normal metals, however,
when the ratio §/¢ is greater than unity, more
dramatic results probably depend on a better ap-
proximation to the canonical projection.

Note added in proof. After this work was carried
out, we learned gradually that this approach has
a venerable history. At LT-X, V. V. Shmidt gave
a paper” in which he treated this problem and eval-
uated (|¥1?) and the magnetization. In 1969, in
unpublished lectures at Orsay, R. Ferrell® dis-
cussed zero-dimensional systems from this point
of view. More recently, we have learned from the
Abstract of the First European Conference on the
Physics of Condensed Matter, Florence (1971)
that J. B. Parkinson® has also treated this prob-
lem. We have included our treatment, Sec. II of
this paper, because it provides a useful introduc-
tion and a basis for comparison of the more com-
plete theory of Sec. III, which includes quasi-
particles.
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