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For isolated vortex lines in high-z, type-II suyerconductors, Abrikosov derived the expres-
sions B(0) =K (lnK+Cp) H 2 and H ~=&K (lnx+C&) HC2, but the numerical values he provided for
the constants Co and C& were previously found to violate an identity Ct -Co —$ =C„&0. The
constants are reevaluated, giving Co = —0.282, C& =0.497, C» =0.279. Furthermore, for super-
conductors containing a high concentration of magnetic impurities, it was previously shown
that the electric field generated at the center of an isolated vortex in flux-flow situations is
proportional to HC2 and the flux-flow velocity v. The proportionality constant Cz in the high-~
limit is numerically evaluated here to be 0. 951, which, together with the value for C», deter-
mines the flux-flow resistivity p~

——0.381p„(B)/H, t in the low-applied-field limit when vortices
are very far apart.

I. INTRODUCTION

In his famous paper on the magnetic properties
of type-Q superconductors, Abrikosov studied
isolated vortex lines in the high-x (the Ginzburg-
Landau-parameter) limit, and derived the expres-
sions

B(0)= x s(lnx+C, )H„,
Hct= 2 x (1nK+Ct)H, s (2)

In these equations B(0) is the local field at the
vortex center, H, z is the upper critical field for
transition from the mixed state to the normal
state, and H, &

is the lower critical field for initial
flux penetration. The numerical values provided
by Abrikosov for the two constants Co and C& are

Cg=+0. 08, Co= —0. 18 (3)

which have been widely quoted in books on the sub-
ject of superconductivity.

Recently, in studying dynamic structure of vor-
tices in superconductors for applied field H«H, z,
Hu and Thompsons derived an identity which in

the high-& limit reduced to the simple relation

C~ —Co-2 =C,

where

(5)C„=f" (df/dr) rdr& 0

is the constant which Gor'kov and Kopnin called
y. In Eq. (5), f=f(r) is the order parameter nor-
malized to unity far away from the vortex center
and r is the radial distance measured from the
center. Since Abrikosov's numbers in Eq. (3)
make the left-hand side of Eq. (4) negative in con-
tradiction to Eq. (5), one must conclude that at
least one of Abrikosov's numbers is seriously in
error.

One straightforward way to determine the con-
stants is to solve for B(0), H, t, and C„at finite
values of w and then to extrapolate the results to
the high-& limit. This task has been partially ac-
complished by Harden and Arp, since they have
calculated H, & up to x= 50. Equating their value
for (2x H, tjH, s) at x = 50 to (ln50+Ct) one finds
C, =0.486, but its accuracy cannot be confidently
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determined without another independent calcula-
tion. The first purpose of this paper is, therefore,
to devise some direct methods for calculating the
constants CQ, C, , and C„and to provide our new
values for these constants which do indeed satisfy
the identity Eq. (4). (The calculation will also
show that the value supplied by Gor'kov and Kop-
nin for C„ is wrong by about 18%%uo. )

On the other hand, in Ref. 3, Hu and Thompson
studied the flux-flow resistivity p& at applied field
H«H, 2 for superconductors containing a high con-
centration of magnetic impurities. They derived
the following general formula for p& .

f-Q f+f(1-f ) =0,.21 d d 2 =
p dp dp

(
—

d ((3Q)) =f'Q

~B(p) 1 d
b(p)=-

H
= —

d pQ,
c2

KH, ~ 1
~ci K

c2 ~0
(1 f') -pdp,

where p =r/& and the boundary conditions are

Q- —(~p) '+o &(0)P as P-o

(12)

(13)

(14)

py = v&B)/A (8)

j,=oevv f B (r)rdr+(ov/8ek )C„

+~[S(0)--,' vB(0)] (7)

[cf. Eqs. (23), (29) of Ref. 3], where e is the elec-
tronic charge, o = p„ is the normal-state conduc-
tivity, v is the flux-flow velocity, B(r) is the local
magnetic field at a distance r from the vortex cen-
ter, C„ is defined in Eq. (5), 0 is the dynamic
screening length for the electric field, o and h(0)
is the electric field at the vortex center. Equation
(7) written in this form is valid only to first order
in v, so B(r) may be regarded as the static value,
and $(0) needs to be calculated only to first order
in v. In Ref. 3, Eq. (27), it was shown that for K

f B (r)rdr = (4ev ) H, o

Thus, if one further defines

Cz ——(vH, o) [h (0) —
o vB(0)]

Eqs. (6) and (7) may be combined into (using
2eH, o= $o)

to
-1

3 + 2 Cr+Cz pn 8 Hc2

(8)

(io)

To calculate the constants Cp Cg and Cy we
may start with the equations

For L $«& th-e first term is negligible. The con-
stants C, and C~ were evaluated in Ref. 3 only by
an approximation method, which amounts to re-
placing the exact f(r) by the simple function r/(r
+ $ )'~ . (See note added in proof. ) Thus, the sec-
ond purpose of this paper is to combine our more
precise value of C, with a more accurate calcula-
tion of C&, in order to improve quantitatively the
previous prediction of p& in the low-field limit.

In the following, we report the details of these
calculations in two sections: Calculations of the
constants CQ, C, , and C, are presented in Sec. II,
while calculations of C~ and p& are in Sec. III.

II. CALCULATION OF CONSTANTS
CQ C f p AND]C

and

f-1, Q-0 as p-~ (ie)

For K» 1, we expect from Abrikosov's work that

b(0) = ~ '(In~+Co),

h„- (2K)-'(Intr+ C,)

We shall first calculate C, . Defining

2Kkcg 8g + $ 2

where

e -=f K [(p +v )' ]p(fp

= lnK —0. 3841 as K»1

(17)

(18)

(19)

(E„being the modified Bessel functions of imaginary
argument which vanish exponentially at infinite
argument), so that

& -=f,"(~'(I f')-&', [(-p'+~ ')"'])pdp (»)
we expect &2 to become a finite constant in the
limit K-~, and

C, = lim &2 —0. 3841

=- lim (24)

where errors in each step have been estimated to
be of order K ~. We further change our variable
from p to x= Kp. Equation (23) then becomes

The first term is evaluated as follows. First we
define fo(p) to satisfy the equation

21 d d 1
fo ~opo fo+fo fo=0

with the same boundary conditions as for f(p).
Then using the equations it is not difficult to verify
that

K-1/ 2
»m &o=»m f (&o(1-f') —K', [(p'+)(: ')"'])pdp
K~~ K» oo

0

K-1/ 2
=lim f,

"
(~o(1-foo) —(p'+~ ') ')pdp

K ~co

=lim f, {&(i-f,) —( po~+') ')pdp
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1 d d fo- „-fo+fo f-o= o (25)
C„. This is easily done using our solution for f8
since the integral in Eq. (5) is rapidly convergent.
The result is

and & z takes the new form

&8= f [(I -f22) —(x2+1) ']xdx

(27)

The result is &&=0. 8809, which gives

C~= 0.4968 (28)

To calculate Co, first we write

~:b(0)=- f, ~(dbldp)dp .
For p» ~ '/, we expect b(p):—~ 'K8(p), ~db(p)/dp
:-&,(p). So, we define

(29)

vb(0) = &8 + 24 (30)

= f "
[x'/(1+ x') -f',(x)]xdx, (26

showing that N~ does not really depend on ~.
Equation (25) may now be solved numerically to

find the function fo(x). ~ Since Eq. (26) is a very
slowly convergent integral, we performed the iri-
tegral numerically only up to a cutoff point x, ,
beyond which we used the asymptotical solution
fo1' fo

f 9 -4 i8i -6
.o 1 g x 8 x gg x + ~ ~ e ~

C,= 0. 2791

(38)

(39)

III. CALCULATION OF CONSTANT C@ AND FLUX-
FLOV( RESISTIVITY Py

which should be compared with the value 0. 247
provided by Gor'kov and Kopnin.

Equations (28), (36), and (37) constitute the main
results of this section. The identity Eq. (4) is
seen satisfied to all four significant digits. For
the rest of this section, we wish to present a di-
rect proof of Eq. (4) by using the expressions we
derived for the constants. First we integrate Eq.
(5) by parts and use Eq. (24) to write

C„=f,
"

l.f82-x-2f2-f,']xdx .
Combining this with Eqs. (22), (24), (26), (33) (35),
and realizing the exact relation (- 0. 3841)
—(0. 1159)= & 1

—~
2

= ——,', we find that proving Eq.
(4) is equivalent to proving the simpler identity

f, (1-f ', )' xdx= 1

which can be easily derived by multiplying both
sides of Eq. (25) by 2x df, /dx and then integra-
ting from zero to infinity. Our numerical calcu-
lation satisfied Eq. (39) to within 10 2

e f (p2+ ~ 8) 1/2II [(p2~ ~ 2)1/2]pdp

= in&+0. 1159 (31)
To calculate the constant Ce defined by Eq. (8),

we start with the equations derived previously:
&,-=—f,

"
I„x(db/d p) + p( p'+ ~ ') '/'

~It. [(p2+ ~-2)1/2]]dp

$8V2P=f8P (valid to first order in v),
P =p(r) sine (41)

Co=lim 5 4+ 0. 1159

Vfe may then verify as before that

lim g4 = &4,
K ~&

(34)

'=f, [f.'()- '/(I ')] 'd (35)

Equation (35) is a rapidly convergent integral
and may be evaluated by direct numerical integra-
tion using the f„{x)found in this work. The result
is 84= —0. 3982, giving

Co ———0. 2823

To check our numerical results with the iden-
tity Eq. (4), we need an independent evaluation of

f ~(&f2@ p(p2 &-2)-1/2

x IC [(p2+ v 2)'/8]]dp (32)

where Eqs. (12) and (13) have been used. We
again expect 0 4 to approach a constant as K- ~
and

p(r)-v/2er [S(0)——,'v-B(0)]r as r-0, (42)

where I' is the scalar potential in the gauge in
which the order parameter is real. (r, 8) is a
cylindrical coordinate system with its origin al-
ways located at the center of the moving vortex
under consideration. The flux-Qow velocity v is
pointing in the 8 = 0 direction, and the transport
current j, is in the 8= —,'m direction.

Substituting Eq. (41) into (40) and introducing
x= r/(, the following equation for p results:

dp idp 3
dx dx

8+x —-x P= — foP,
while the boundary condition becomes (using
2eFI,2= $ 2)

(43)

P(x) - (h vFI„)(x ' —Ce x) as x-0 (44)

In Eq. (43) we have replaced the exact f(x) by
f8(x) of Eq. (25), since we shall consider only the
limit tc -~, when the difference between f8 and f
is nowhere important in solving Eq. (43). Since
f8(x) no longer depends on K, one finds f/g the
only parameter in Eq. (43). The constant Ce is,
therefore, only a function of l/$, and stays finite
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1.Q and therefore

(H, s/p„)(dp~/d(B))&s & &&

0—-. 3808 (48)

0.8

0.4

0.2

FIG. 1. Rising curves are plots of the order-
parameter function f(x) at f(: »1, normalized to 1 at in-
finite argument, where ~=x$ is the radial distance from
the center of an isolated vortex. The falling curves are
plots of the function ($ vH&) xp(x), where p(r/f) sine is
the scalar potential generated around an isolated vortex
of flux-flow velocity v in the & =0 direction, in a gauge
in which the order parameter is real. Solid lines, pre-
sent numerical calculation. Dotted lines, analytic approxi-
mations obtained in Ref. 3 following an original idea of
Schmid. Dashed line, asymptotic expression for f(x)
fcf. Eq. (27) J, which is indistinguishable from the numer-
ical result off(x) in this plot for x ~3.

which should replace the approximate estimate
0. 33 found in Ref. 3.

In Fig. 1, we have plotted the present numerical
result for the function (guH, s) i'(x) at L = (/v'12,
its analytic approximation found in Ref. 3, '

(x'+1)"'K [2+(x'+ I)"']/K (2~3

as well as our numerical result for the function
f&&(x), the Schmid's approximate form x/(1+x )t s,
and the asymptotic expression Eq. (27). In Fig.
2, the function Cs(f/$), its analytic approximation
($/2f)K&&($/g)/K, ((/0), the normalized initial slope
of flux-flow resistivity (H, s/p„)(dp~/d(B))&» o, and
its analytic approximation' [($'/8t') + ($/25)K&&

(t'/t)/Kt($/g)] ', are plotted versus f/$ in a semi-
logarithmic scale. The normalized initial slope
of the flux-flow resistivity is seen to reach 1 for
a 5' slightly above s $, at which point the normal-
ized slope near H, ~ is equal to 1.72) 1.~ Ap-
parently for a narrow range of t'/$ ratios near —,

'
the flux-flow resistivity-versus-(8) curves will ex-
hibit a shallow S shape, but these cases are not
observable in practice, since these g/$ values do

I I I I I I I I I I

10

in the limit &&-~, as long as l «t.-)&Putting
this information and Eq. (1) into Eq. (()), we find
that in the limit K'» 1

S(0)=C,uH„»uB(0), (48)

Cg= 0. 9513

pz = 0. 3808 p„(B)/H, s

(46)

(47)

as long as k'- $, as has been deduced through an
approximate analysis in Ref. 3.

By studying the combination (g uH, s) ~xp for
normalization and to avoid the singularity at origin,
Eqs. (43) and (44) are easily solved numerically to
give the t;/$ dependence of Cs. Equation (9) is
then used to determine the flux-flow resistivity in
the low-applied-field limit. So far, we have
treated the dynamic screening length f as an in-
dependent length. It has been pointed out in Ref.
3 that as far as we presently know, the only
physical value of f is $/&12, corresponding to
superconductors containing a high concentration
of magnetic impurities. For this physical case,
we find

)0

A a

)p~ I I I I

1/J&a 1/la

I I I 4 I I

q/E

FIG. 2. f/$ dependence of the constant C&, de-
fined through Eq. (9) (the monotonically decreasing
curves), and of the normalized initial slope of the flux-:
flow resistivity with respect to average magnetic field

Ã,2/p„)(dp&/d(0))&s& 0 (the monotonically increasing
curves). Solid lines, present numerical calculation.
Dashed lines, analytic approximation obtained in Ref. 3
following an original idea of Schmid.
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not correspond to physical systems, at least not
according to our present knowledge.

Finally, in Ref. 3, Sec. IV, the current at the
center of a moving vortex, j(0), has been studied
in the limit &» 1 and compared with the average
transport current j, which causes the flux flow.
The main results of that section are Eqs. (37) and

(38) of that work and the value of P at which j(0)
=j,. These results must also be slightly modified
due to the present more precise values of the
constants. Omitting the details, we report the
corrected relations:

j(0) =(I+6C,/Cs) 'j~

=0. 362j, when t'= $/412,

j(0) = [B(0)/H„jj, =2j, when K=X

(49)

(60)

and j(0) =j, when

f =C„&/(Inv+Co ——,')
= 0. 528 X/(Int& —0.V82) (61)

All qualitative conclusions made in Ref. 3,
Sec. IV, are obviously still valid after these mod-
ifications, while Eq. (49) is slightly more con-
sistent with the extrapolation from the high-field

results" than the corresponding relation in Ref.
3, Eq. (37).

&Vote added in proof. More generally, one may
use r/(r +5) )'~ . In our previous paper (Ref. 3),
we used the expression 4e)~X H„= Jo"(I f-o)xdr
to evaluate C&, which requires the choice 5 = 1 to
ensure the correct coefficient in front of the lng

term. Schmid has pointed out to us that if one
calculates H, & via the original Ginzburg-I. andau
free-energy function, then a variational principle
exists and it can be shown that 5 = 2 is the best
choice. Since the choice 5= 2 better approximates
the behavior of f(~) near the origin, it actually
gives more accurate estimates to the constants
discussed in this paper than if 6 = 1 is used. How-
ever, since the asymptotic behavior of f(r) for
large x is not correctly described by any choice
other than 5 = 1, care must be exercised to avoid
using the 5 = 2 approximation to evaluate any quan-
tity which depends emphatically on the large-~ be-
havior of f(r).
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