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The theory of electron tunneling is extended to treat the generation and detection of an im-
balance @ between electronlike and holelike quasiparticle populations in superconductors. The
equilibration of injected high-energy quasiparticles owing to inelastic phonon processes is dis-
cussed, and it is shown that in tin, @ relaxes in 7o~ [A(0)/AT)](2x1071%) sec. It is also shown
that even a small (~1%) anisotropy of the gap can lead to significant @ relaxation by elastic
scattering processes. This discussion extends our previous brief interpretation of the pair-
quasiparticle potential difference measured by Clarke.

Clarke! has recently reported experimental ob-
servation of a potential difference V between pairs
and quasiparticles in a nonequilibrium region of
a superconductor, set up by the tunneling injection
of quasiparticles. The interpretation of his re-
sults involved concepts and processes which have
received little previous attention, apart from the
work of Phillips. 2 In particular, @, the differ-
ence in quasiparticle populations (per unit vol-
ume) of the electronlike and holelike branches of
the BCS spectrum, turns out to be the crucial
quantity. If the injection voltage is high, the in-
jected quasiparticles go predominantly into one
branch, and @~ (I/ef) 7, where I is the injection
current,  is the sample volume, and 74 is the
relaxation time for the imbalance. Apart from a
correction factor @*/@Q ~ 1, the imbalance sets
up a zero-voltage tunneling current proportional
to @. As shown by Tinkham and Clarke, ® the ob-
served potential difference is that required to
null this current, namely,

V=I1q /2¢22N(0)gys ,

where gyg is the normalized tunneling conductance
of the normal probe and N(0) is the usual density
of states for electrons of one spin. The purpose
of the present paper is to provide a more complete
discussion of these effects than was possible in
that brief report.

First, it is necessary to present the results of
conventional tunneling theory for the unconvention-
al case in which the quasiparticle populations are
not necessarily in thermal equilibrium, and also
distinguishing which branch of the quasiparticle
spectrum is involved, rather than simply com-
puting the total current. Second, we consider
the relaxation of high-energy injected quasipar-
ticles toward thermal equilibrium by the emission
of phonons. Finally, we consider the relaxation
of the population imbalance @ to determine 7.

K=

I. GENERALIZED TUNNELING RESULTS

In this section, we review the results of a
standard “Golden Rule” calculation of the tunneling
of electrons, with special attention to keeping the
holelike and electronlike branches of the quasi-
particle spectrum distinct. We take the usual?
tunneling Hamiltonian

H'= 2 (Typechce+ Thcley) , (1)
ka

where the index % refers to the superconductor in
question and g refers to the other metal, usually
taken to be in the normal state. In (1) we have
suppressed spin indices, because we assume no
spins flip in the tunneling process. The first
term describes a process which transfers an elec-
tron into the superconductor, whereas the second
refers to the reverse process. We then reexpress
(1) in terms of the quasiparticle operators ap-
propriate to the superconducting state, using re-
lations such as

t t
Cr=UrYer0+VrVpp1 - @)

Here u, and v, are the usual BCS® parameters,
taken real for simplicity, so that

ug () =vi (- €)=3(1+¢,/E,) , (3)
where E, = (A%2+€2)'/2, ¢, being the one-electron
energy relative to the chemical potential, and A
being the energy-gap parameter. Also we have

Yero =t Chr 05 S" o =S Vg
and

Yhey = Uy STC-;;: +0,Ch =S Ve (4)

as the modified Bogoliubov-Valatin® quasipar-

ticle operators introduced by Josephson’ and by
Bardeen.® In these expressions, S' adds a pair
to the condensate, while S removes one. Thus,
¥}ro definitely adds one electron, while ¥, defi-
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nitely removes one, as is suggested by the sub-
scripts e and %, for electron and hole. For the
purposes of the present paper, it is vital to note
that both types of operators exist for 2 both greater
than and less than k5, with a gradual changeover
in character near kr, where u2=v2=3. By con-
trast, when we refer to the electronlike and
holelike branches of the quasiparticle spectrum,
we refer to states with 2>k, or k£ <kp, respec-
tively, with a discontinuous distinction being
made. The physical motivation for making the
latter dichotomy is that, as we shall show in de-
tail, quasiparticles from one of these branches
have little probability of being scattered onto the
other (there is no probability in the normal state);
thus it is useful to treat them as distinct popula-
tions.

When (1) is rewritten in terms of the appropriate
quasiparticle operators, it becomes

H'= ? Ty (s Yaro + Vs Viwr) (g Yeq0*Vq 7’;«1)+ H. c.
¢ (5)

All the explicit terms transfer an electron into

the superconductor, while all terms in the

Hermitian-conjugate expression do the reverse.

If we now specialize to the case where the metal

q is normal, we have »,=0 and v,=1 for ¢ <gp,

and u,=1 and v,=0 for ¢ >gr, and (5) simplifies

to

+
H'= 25 [TuqltnVino +0x V1) Yhat
k,e<ep

%
+ T Ynat @n Yero+ v y};kl )]

+ X [qu (e Vzko +Vp Yart) Yea0
k,a>ep

x
+ Tox Yoao Un Yoro + 02 V)] - (6)

Note that all these operators are in the excitation
representation, so that both y!, and 7}, create
excitations with positive energy E, = (A%+€2)!/ 2,
which reduces to | €,| in the normal metal. The

TABLE I. Analysis of tunneling processes in ex-
citation representation.

Electrons Excitations

Term Probability added added E,
Viohat @1 =f)A =1 1 1 —E,+eV
YtVhat  vhfall =£) 1 -1 E,+eV
TRy it 4bfufe -1 -1 —Eq+eV
Vit Thet 031 —FD S, -1 1 E,+eV
YooY 81— fq 1 1 Ey—eV
Yt Yewo  Vhfefe 1 -1 —E,—eV
T Yoo Vo W17 -1 -1 Ep—eV
Vit Vo VR —=f)A =) -1 1 —E,—eV
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TABLE II. Simplified analysis of tunneling processes.

Electrons Excitations
Probability added added
uh(1=fo) fBr—eV) 1 1
Vafpll =FE,+eV)] 1 -1
W feoll —fEr—eV)] -1 -1
V(1 =f) fE,+eV) -1 1

eight distinct terms in (6) give rise to transitions
with relative probabilities as given in Table I,
This table also gives the changes in number of
electrons and of excitations in the superconductor,
and the constraint on E, imposed by the conserva-
tion of energy. Inspection of this table shows that
the eight cases can be reduced to four by con-
verting the description of the normal metal from
the excitation representation to the particle rep-
resentation., That is, the expressions for q >qr
can be applied also for g <gp, if they are ex-
pressed in terms of €,, rather than E,=1¢€,l.

This simply changes the sign of the energy for

g <qr, and thus also takes f(E,) into 1 —f(e,).
Using the conservation of energy to eliminate €,,
we then can reduce the possibilities to those listed
in Table II. In writing this, we have assumed
that the normal metal can be characterized by a
Fermi distribution, so that the occupation num-
bers are known functions of energy. This assump-
tion has, however, not been made for the super-
conductor, a distinction made formally by retain-
ing the notation f,, referring to the actual occupa-
tion number, even if it is a nonequilibrium distri-
bution.

Generalized Results for Tunnel Current

We now use the results of Table II to write down
several useful results. For simplicity, we assign
a common value | 712 to all relevant | T}, 2, Then,
using the Golden Rule formula and cancelling terms
which subtract electrons against those that add,
the net electric current into the superconductor
is given by

1= 2 | 728,00, (0
X Eh N (ENuil £ (B, -eV) =1, ]
+0f[fu ~f(Ep + eV} dE, . (7)
In this,
RN GroahTT - T ECA

is the usual normalized BCS density of states.
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A factor of 2 has been included in (7) for the

two spin orientations. The sum is over the two
branches k>kpand k<kp. Using the symmetry
relation (3) between #2 and v 2., the contributions
of the two branches in (7) can be combined to give

_ 4me

=%

| | 2N,(0) N,(0)

X‘ {(fuc =Fs) + 9L (B)
A

X[ f(E —eV)-FfE+eV)]}aE, (9)
where we have used the fact that

Mf> ‘U§>= ‘uf<"”£< = l_;:l_ =gt () -
If f, is a function only of energy, as it is in
thermal equilibrium, then f,(=f;s (since both re-
fer to states of the same E,), and the usual® ex-
pression for the normal-superconductor (NS)
tunneling current is obtained:

I- %mj SUE) | f(E V) -fE +eV)]dE
A (10)
where

47e?
Gyn = 7

| T|2N,(0) N (0)

is the tunnel conductance of the junction if both
metals are in the normal state. If eV <RT, we
may expand the Fermi functions about V=0 and
obtain

I=Gxx Vj 291 () %ZldEschv. (11)

a

On the other hand, at T=0, (10) reduces to
I=(Gyy /e)[(eV)? - a2]/2, (12)

In the novel situation in which there is an im-
balance in population between the holelike and
electronlike branches, so that f,(#f,, there is an
additional term in the current. This may be
isolated by considering the short-circuited case
in which V=0, so that the usual part of the cur-
rent (10) vanishes. Then (9) becomes

I(V =0)=(Gxn/e) f: (fuc =fr>)dE

= = Gyy @/2N,(0)e , (13)
where
@*=2N,0) [ (fi» ~fr) dE. (14)

This quantity @* differs from the quasiparticle
population imbalance in unit volume

Q=2N,(0) f: R (E)( fo> =frd) dE (15)

only by a factor of Iu,‘:‘ —vfl = E)l'l(Ek), which re-
flects the fact that occupation of quasiparticle

states near kp shifts the expectation value of the
charge by less than a full unit. The zero-voltage
current (13) is characteristic of the nonequilib-
rium situation. If it is nulled out by applying a
small voltage V (<ET), it is clear from the above
that

V==I(V=0)/Gys = @*/2N,(0) egns , (16)

where gyg =Gys /Gy is the normalized tunneling
conductance of the junction. This potential V is
what was observed by Clarke!® in his null mea-
surement.

Creation of Branch Imbalance by Tunnel Injection

Since we have seen that the branch imbalance
determines the observed potential, we now turn
our attention to computing how this imbalance is
created by the tunneling injection of quasipar-
ticles. Referring to Table II, we see that pro-
cesses proportional to vZ enter with opposite
sign in changing the number of excitations com-
pared to their effect in transferring electrons.
This is so because these terms deal with the v},
operators, where adding an excitation removes
an electron. Accordingly, in the expression for
@ which corresponds to the expression (7) for the
current, vZ is replaced by its negative. Also, ‘
since @ represents the difference between the two
branch populations, the summation over the two
branches in (7) is replaced by a difference. When
these changes are followed through, (9) is re-
placed by

Q= %‘%5 {[FE -eViny) ~fB +eViy)]
A

+ I (E) fre —fk>)}dE . (17

The second term vanishes in equilibrium, and the
departures from equilibrium are always very
small compared to the first term, since the injec-
tion voltage V,,; is typically millivolts, while the
nonequilibrium voltage V is typically nanovolts.
Thus, we may safely drop the second term in

(17). Then, simple analytic results can be ob-
tained in a number of limiting cases:

,
Q= FL 21NV, (Vi< £T) (182)
A GNN

Q= ;’2‘5 (thﬂ _A) (T:O) ’ (18b)

Q= ;%N—S—{evm -4 [1 -2f <§7e1{9‘&>]}

x(A<kT). (18c)
It is also useful to note that the ratio QeQ/I,
characterizing the degree of imbalance of the in-
jection, is given by



1750 M. TINKHAM 6

QeQ IS AE-eVyy) ~fE+eVi)ldE _ _
I XRE)SE -eVyny) ~f(E +eVy,)]dE (19‘ )
a

For small injection voltages, this ratio reduces to
QeQ/I=2(8)/gns (Vyn; <kT) . (19b)

Since both numerator and denominator approach
unity at 7, so does the ratio. A more appropriate
limit is that in which the injection voltage is large.
An exact result is available at T=0, where

A —-A 1/2
“fQ =<§K“’+A ) (T=0). (19¢)
inj

This goes to zero if eV,;~ 4, because in that case
the injection goes equally into states just above
and below 2. However, for higher injection vol-
tages, the ratio approaches the limit 1 - (A/eV ;)
~ 1., Thus, for the high injection voltages used

by Clarke, ! it is quite a good approximation to
take @ =I/e$ under all circumstances.

II. COOLING OF INJECTED QUASIPARTICLES

The injected quasiparticles will be distributed
initially rather uniformly in energy from A to
eV, which is typically much greater than &T.
The injected population will cool by phonon-emis-
sion processes, approaching a distribution char-
acterized by the sample temperature 7. Charge
neutrality is maintained by drawing from the
background equilibrium population a current of
electrons equal to the injected current. In the
superconducting state, these will be condensed
pairs at u,; in the normal state, they will be
from an energy range of order 27 about u. Since
the details of this nonequilibrium process are
complex, it is useful to make even a rough esti-
mate of the speed of the process.

To do this, we first restrict attention to the
normal state. This will be an excellent approx-
imation near T,, where A- 0, and it should be
qualitatively useful at low temperatures as well.
Our second major simplification is to take the
temperature of the lattice and the background
electrons to be T7=0. This will be a good approx-
imation for the initial cooling, but of course will
overestimate the cooling rate as equilibrium is
approached. In this approximation, only spon-
taneous emission processes can occur. The
probability per unit time of an energy loss between
€ and € +d¢€ for an electron in a state of energy
E (relative to ) can be written

[1-F(E -¢€)] acqe . ~ (20)

The quadratic dependence on € arises from the
square of the electron-phonon matrix element and
the appropriate density of final states, both pro-
portional to € for € much less than the maximum
energy loss k®, while the constant a absorbs the

absolute normalization factors. The factor [1
~f(E —€)] takes account of the available density of
empty final states. In the present approximation,
this factor is 1 for € <E and O for €>E, since all
states below p are filled. Denoting the nonequi-
librium population by g(E), we then have for 0< E
<kO®

dg(E) _
dt

¢

© E
aelg(E +€)de -I aelg(E)de
0 0

= ag(E)[s‘on € (%;Tﬂ d€—§E3] . (21)

Since g(E) starts as a rather square distribu-
tion from E =0 to eVy,;, but relaxes toward a
Fermi distribution for T~ 0, it is clear that g(E)
will have no simple exact form. In the absence of
numerical integrations of (21) for various initial
distributions, we seek a convenient and reasonable
analytic approximation. Inspection of (21) shows
that near the top of the energy distribution, where
downward transitions dominate,

d
df = -30B%g
so that
3
g=g0eF 3, E>0 (22)

where go(E) would be roughly constant out to some
maximum value Eg~eVy,,. Since the high-energy
part of g(E) dominates the relaxation processes
(because of the higher transition rates ~ E?), this
form of cutoff, appropriate at high energies, will
give more accurate results under extreme non-
equilibrium conditions than, for example, a Boltz-
mann exponential factor, which would be appro-
priate in equilibrium. In its simple form, this
distribution does not conserve particles, since it
ignores the positive dg/df term at low energies
given by the first term of (21). A simple remedy
is to take g, to be a time-dependent normalization
constant

go= a3/ [ o= (ot STH) ,  (222)

where I'($)=0.893. This prescription washes out
the finite slope of g(E) at E =0, but our results
are quite insensitive to the behavior of g(E) at
low energy.

Although temperature has no well-defined
meaning for a nonequilibrium distribution such
as (22), for qualitative purposes it is useful to
define an effective temperature 7* such that the
mean energy of particles is 7*, the same as if
g~e®/T*, (We shift here to units in which ks =1,
so that T has the dimension of energy.) Then,
we have

_ 3 1/3 © i w©
T*sE:(—) s xe "sdx/j e dx
af 0 0
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Of course by carrying the integrations to © and
assuming (22) holds for all energies, we have
specialized to times long enough that 7* has
fallen by at least a factor of 2 since injection.
Since we are interested in T*(¢)~ T,, while
T*(0) is typically 107, this condition is satisfied
in all cases of interest here. The physical rea-
son for the unusual cooling law (23) is that pho-
non emission rapidly becomes less likely as the
available energy is reduced. Thus, the cooling
is very rapid at first, but gets slower and slower
as the electrons cool off.

To obtain numerical results from (23), we
must evaluate the parameter «. It is convenient
to do this in terms of the measured high-tempera-
ture limit of the electrical or thermal conduc-
tivity. In the presence of thermal phonons, the
spontaneous emission rate for downward transi-
tions given by (20) is enhanced by a factor of
1-e*/ T)", while upward stimulated transitions
from E to (E+ €) occur with a factor [1 —=f(E + €)]
X (/T =1)!. At T=0, the phonon factors reduce
to one and zero, as they should. For T >®, both
of these factors reduce to 7/¢, and the total
scattering rate for an electron of energy E ~ 0 by
phonons is

L aL ez(§>{[1 —f(E+ )]+ [1-7(E - )]} de

T

~aT02%[1-7(E)|~3aT®2. (24)
It is convenient to rewrite this as

a=2/70°, (25)

where 7,=1o/vr(~10* sec) is the scattering time

extrapolated back to ® from the high-temperature
limit, in which the resistance is proportional to
T.

It is appropriate to emphasize at this point the
crude nature of this entire treatment. By ne-
glecting umklapp processes, we undoubtedly over-
estimate the strength of the ordinary phonon
scattering processes. The hope is that this er-
ror is largely cancelled if umklapp processes are
consistently excluded. This was shown to be true
within a factor of about 3 in the case of recombi-
nationtreated by Rothwarf and Cohen.® Accord-
ingly, we can expect only a similar order-of-
magnitude numerical reliability for the estimates
in this paper.

When (25) is inserted into (23), we find

T*~@ (37, /168)'/3 . (26)

It is also useful to invert this relation and note
that the time required for the injected particles
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to cool down to T, (if the sample temperature is
much less than T,) is

HT)~ (FTo)(©@/T,)° . (27

As a numerical example, in the case of tin
(76=2%10" sec,® = 200°K, and T,= 3.8 °K) this
characteristic cooling time is estimated to be
5.5x 1071 sec. Since this estimate takes the sam-
ple temperature to be zero and neglects any
trapping of the emitted phonons or reexcitation of
the electrons by these phonons, it provides a
lower limit to the actual cooling time. Note further
that this time rapidly increases if cooling to lower
temperatures is considered. For example, it
would take eight times as long to cool to 37,
even if the sample temperature were still much
lower than that.

For the following discussion, it is also useful
to note that the scattering time analogous to (24)
for an electron at the Fermi surface, but com-
puted using the proper phonon factors assuming
thermal equilibrium at 7, <®, is

7(T,) = (15/8.4)(®/T,)3 . (28)

Note that this scattering time is very similar in
magnitude to the cooling time (27), and with our
numerical estimates for tin, it is 3.5%107° sec.
Thus, the time scale set by (27) or (28) will be
characteristic of phonon processes near T,, no
matter how high the electron injection energy is.

III. RELAXATION OF BRANCH IMBALANCE Q

Having developed some understanding of how the
injected quasiparticles cool down toward the sam-
ple temperature, let us now consider the relaxa-
tion of the imbalance between the populations of
the electronlike and holelike branches of the quasi-
particle spectrum in a superconductor. For this
purpose it is necessary to work in the excitation
representation, as we did in Sec. I, since only in
this representation is there a simple symmetry be-
tween the two branches.

Consider first the inelastic scattering processes
in the normal state, which we treated in Sec. II
in the particle representation. In the excitation
representation, these are described as scattering
processes, if the final state is on the same branch
as the initial state, but are described as annihila-
tion or creation processes if the final state is on
the opposite branch. For example, an electron
scattered from k >k ; to k <kp annihilates a hole-
like excitation at £ <kp, as well as an electronlike
excitation at # >kz. On the other hand, the re-
verse process creates both a holelike and an
electronlike excitation. Evidently, all such pro-
cesses, allowed in the normal state, conserve
@, the difference in the numbers of excitations
in the two branches. One might then wonder why
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the injected @ given by (19) does not just build up
without a limit. This does not occur because ex-
cess charge builds up only until it sets up the tiny
potential gradient necessary to carry away the in-
jected current as a normal current. The situa-
tion is drastically modified in the superconductor,
because the pairs carry away the injected current
without requiring any potential gradient. In ad-
dition, over a region of uniform injection, the
quasiparticle populations are uniform in space.

In the superconducting state, @ can relax by
scattering of an excitation from one branch to the
other or by annihilation or creation of a pair of
excitations on the same branch, all processes
which are forbidden in the normal state. The
usual probabilities of these processes are re-
duced by the coherence factors (uu’ -vv’)? and
(vu’ +uv')?, for scattering and annihilation, re-
spectively. It is easy to verify that the sum of
these two expressions is one. For example, in
an isotropic superconductor, the coherence fac-
tor for elastic scattering between branches is
zero, while that for annihilation between branches
of two quasiparticles of the same energy is unity,
both exactly as in the normal metal. On the
other hand, in the superconductor both probabili-
ties are finite for inelastic processes; if the
superconductor has an anisotropic gap, both are
finite even for elastic processes. We first con-
sider the inelastic processes, since these are al-
ways present. The elastic processes based on
gap anisotropy are treated later.

Q Relaxation by Inelastic Phonon Processes

We initially confine our analysis to the case
very near T,, where it turns out that 74, the re-
laxation time for the imbalance €, is large com-
pared with both #(7,), the time [estimated in
(27)] for the injected quasiparticles to cool down
to T,, and 7(T,), the time [estimated in (28)] for
inelastic scattering to maintain internal equilib-
rium on the separate branches. (At lower tem-
peratures, @ and T* relax at similar rates, and
the two relaxation processes must be treated si-
multaneously.) Near 7,, A< T. Since the co-
herence factors for @ relaxation differ signif-
icantly from zero only when one of the two states
involved has an energy between A and ~ 24, and
since only a fraction ~A/T << 1 of the occupied
states are in this range, it is permissible to re-
strict attention to pairs of states one of which has
an energy E’ near A and the other of which has
an energy E that is much higher. For definite -
ness, we take the high-energy state to be on the
electronlike branch, where we can take it to have
u=1 and v =0, then the coherence factors are u’?
for scattering processes and v’ for annihilation
processes. Noting that @ is reduced by 2 by

each scattering process from k >k to 2 <kp, and
by each annihilation of two quasiparticles for
k>kp, we can write the contribution of these pro-
cesses to the rate of change of @ as follows:

2

—2aj j AENL -8 e
L

‘f<(E')[1 f>(E)] _11(1%"'7ET)T'1—>

x 2N (0) (E)N(E')dE dE'

"201)' 5 (f>(E)f>(E') —'(’E_‘@’wiz'ﬂ

n2
S P | RAT=D) B LSy

X 2N(0)9UE)IUE')dEJE’ . (29)

In writing this, we have included the enhancement
factors due to thermal phonons, and also sub-
tracted the reverse processes, namely, upward
scattering and pair creation. It is readily ver-
ified that the net rate for each process is zero if
f¢ and f, are given by the Fermi function; this is
required in equilibrium by detailed balance. To
find dQ/dtf, we must subtract from (29) the simi-
lar expression with the branch indices reversed.

These expressions may be simplified by noting
that

u=vi¥=3[1-(e’'|[EN]=3[1 -t HEN]. (30)

This is a highly peaked function such that ;2% (E")
can be well approximated by 3A6(E’ — A), If this
is inserted in (29) and the integration over E’ per-
formed, a common factor of 3A appears, and E’
is replaced everywhere by A, Since we are treat-
ing A as very small, we may set it to zero inside
the integral, retaining only the explicit linear de-
pendence mentioned above. [For consistency, we
should also take the lower limit of integration to
be zero and drop the factor 3 (E), but we continue
to carry the exact forms since they cause no dif-
ficulty at this point. ]

With these simplifications, (29) reduces to

“ [ H(E)[1-5f(a
_ZN(O)aAj (il)-—Lé?/J;(_)]-

A

_-p@)Ih - 5I(A)]>
T -1

E:SU(E)dE , (31)

where we have introduced the notation
6f(E)=1,(E) —fdE) , (32)

which is not zero if @+ 0. Subtracting the term
with branch indices reversed, and taking 7 (E)
=3[ A (B) +f(E)]=f(E) = (% /T +1)™! since the ab-
solute departures from the equilibrium Fermi
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function are small for small injection currents,
we find after rearranging terms

w0 - o) ey
ar =W aa L Gf(E’(“ Gf(E)f'(O))

"7 41

X ;E'Tr':'iEz N (E)dE . (33)
So long as A/T is small, this result should be
generally valid for any 8f(E). But if 74 is long
compared to 7(7,), as it is for A sufficiently
small, we may assume that both branch popula-
tions can be described by Fermi functions with
slightly different effective chemical potentials.
In that case,

o(E)= L (s =1 . (34)

An exception to (34) must be made for §f(4), be-
cause it refers to the states just above the gap
edge for which the coherence factors are essen-
tially equal for processes involving both branches.
Thus, after a time of order 7(7,), 6f(4) will have
relaxed to zero, and the expression in square
brackets in (33) will drop from two to one. In the
limit as A/T~ 0, 7(T,) is negligible compared to
Tq, and we can simply set 6f(A) =0 throughout.
Thus, if we define a distribution function

q(E)=2N(0)N (E) 3f(E) ,

such that @ = [¢(E)dE, we can write (33) in the
form

249 (T e @
el oz L @)
where
1 e €741
;;-(E)- =a ( < T) . (36)

This defines a @-relaxation rate for quasipar-
ticles of energy E. Averaging over the distribu-
tion (34), and noting that as A- 0, % (E)~1, we
find the limiting value

1/7q=2c ATzf‘ (e* —e™) ™ x%dx
0
=4.20AT?=8.44T%/7,0° (37)

after using (25). Noting that A(0)=1.76T,, and
that (37) is only valid near T,, where A is small,
it can be rewritten

@fﬂg
T,/ a(1) *

7o =0.0687, ( (38)
With the numerical values for tin used above, the
coefficient of A(0)/A(T) in this expression is
2x107° gec, compared with the experimentally
estimated! value of 4x107!° sec. Considering the
crudeness of the model, this order-of-magnitude
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agreement is quite satisfactory. Moreover, the
experimental data appear to follow the predicted
temperature dependence quite closely.

In view of the fact that our derivation was made
under the restriction that 7 was very near T,, so
that we could assume internal equilibrium of the
two branches, it is somewhat surprising that our
result appears to account for the temperature de-
pendence of the data (i.e., T, constant below
~0.87T,) all the way down to the lowest tempera-
ture (~0.47T,) at which data were taken. Let us
see whether our theory can account for this.

As an extreme test, we consider the limiting
case in which the sample temperature T < T,.
The calculation of 74 is then simplified. Noting
that E= A>T, in (29) we may drop all terms in
e BIT compared to unity. We again approximate
the coherence factor by a § function, although the
justification is now less complete, and obtain

aQ _ (__y® o7 (4)
W——ZN(O)&AsA<———(ET7T1_e =) +e—(m——_) _1>

x (E-A)2N(E)IE . (39)

If T is taken to be strictly zero, there are no
stimulated -phonon processes, and the quantity in
the large parenthesis in (39) reduces simply to
of(E). Apart from the replacement of EZ by

(E - A)2, (39) then agrees exactly with the low
temperature limit of (33). We can again write
this in terms of 7¢(E) as in (35), but now

Une(E)|  =aalE-2). (40)

No large error should result, if the weighting
function 6f(E) M (E) is taken to be that of the non-
equilibrium distribution (22) used in Sec. II to
treat the cooling of the quasiparticles in the nor-
mal state. Since the gap A provides a minimum
energy, E — A is equivalent to E in (22). Carrying
out the average, we find

1 413 *z_<g>”3 A .y
To -—SFZ(%—)-OIAT =\3 'ﬁ%-jt . (41)

Since 7q is a function of T*, which in turn is a
function of time as a given group of injected quasi-
particles cools down, integration of d@/dt=-@Q/7q
no longer leads to simple exponential relaxation.
Rather, we have

Q_(Q __Jd g (L e
“‘(Q(O))‘ ), e tl) ’ 42)

where t,=T°%(4)/9aA®. The effective relaxation
time is then

® 1 0.475
To,euzj (g%y) dt=6¢;= “aat
0
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0.155 ® )3
= EA_TE— =0. 0441'@( T, . (43)

With our numerical values for tin, this is 1.3
%1071 sec. Comparing with (38), we see that this
value for T'=0 is about Z as large as would be ob-
tained by applying the high-temperature expres-
sion all the way down to 7'=0.

Considering the rough approximations we have
made, this degree of consistency is entirely satis-
factory. Some feeling for the sensitivity of this
value to the form of the nonequilibrium population
can be obtained by noting that (43) is increased by
a factor of about 2 if the population g(E) is as-
sumed to be proportional to (1 -E/E,,,), and by a
factor of about 20 if a Boltzmann exponential form
is assumed. This comparison illustrates the vital
importance of recognizing the rather sharp cut-
off of the nonequilibrium g(E). Numerical es-
timates of the error incurred by omitting the den-
sity of states factor 9 (E) in obtaining (41) suggest
that correcting this factor alone would increase
Tq,ett Y a factor of about 1.7, which would bring
Tq,etr t0 a value about 10% above the extrapolation
of the high-temperature form. In the absence of
consistent detailed numerical calculations of all
related corrections, we do not feel justified in
making this single correction, but it suggests that
there is no reason to think that the present model
is incapable of quantitatively explaining the ob-
served temperature dependence of 7q. The over-
all numerical discrepancy of about a factor of 2
in absolute value with the experimental determina-
tion is certainly insignificant in view of the pos-
sible errors in the simple method used to evaluate
the parameter ‘r@®3, and in the various steps
separating the experimentally measured voltage V
from the inferred 74.

Q Relaxation by Gap Anisotropy

Although elastic scattering processes are much
more frequent than inelastic ones at low tem-
peratures, they have been ignored in the above
discussion because the coherence factor (uu’
-vv')?is zero for % and %’ on different branches
if E=E’ and A=A’, But real superconductors are
anisotropic, so that in general A differs from 4’.
Thus elastic scattering processes may contribute
significantly to 1/7q, particularly at the lower
temperatures. We now estimate this contribution.

By inserting the appropriate values for # and v,
the coherence factor for elastic scattering can
be put into the form

(un’ —vv’)?

Al () (-]
(44)

(K=

where the minus sign refers to branch-mixing
transitions. If the gap anisotropy is small, this
may be expanded in powers of A= 3(A’ - A), with
the result

54)2 oA
(uu’ _le)zm E—g—:—)—Z—ES —5- <1 , (45)

where A=3(A’+4), and E> A+6A, Since (45)
gives the probability of branch crossing in each
inelastic scattering of a particle of energy E, and
since each such event changes @ by two units, it
follows that

1 2 (682
To(E) T, E*~&% °’ (46)

T —

-

where 7;=1; /vy is the scattering time for elastic
processes as inferred from the residual resistance
of the sample at low temperature. Because for
purely elastic processes, Of(E) for each energy
must relax independently, the observed @ will be
proportional to (7g), not to (1/79)™, as is the
case if rapid inelastic scattering processes are
maintaining internal equilibrium. The exact
average of (E%— 2% will depend on the form of
Of(E), but a reasonable estimate is 7*(A + T*),
where T* characterizes the energy distribution
of the nonequilibrium population &f. Thus, we
estimate

(o) =31 T* (B+T*)/(54)% . (47)

To use this formula, we must have an estimate
of (64)% This can be expressed in terms of
(@%), a normalized mean square anisotropy intro-
duced by Markowitz and Kadanoff.!® For a rec-
tangular distribution of gap values,

((68)%) =32%a?) = 3 (Apax = Apia)? - (48)

Presumably these relations are a reasonable ap-
proximation for other distributions. Rewriting
(47) in terms of (a2), we have

To= <—;~1;— -Tzi [1 +(TT*)] ) (49)

For pure tin, ' (a%),~ 0.02, but this value is re-
duced by the Anderson'! averaging effect in dirty
samples such as the films in which Clarke’s ex-
periments were carried out. The extent of this
reduction is not entirely clear, but from the work
of Markowitz and Kadanoff on the behavior of A
near T, it seems reasonable to reduce the value
(a®, for the pure metal by a factor of [1

+ (/271 A)%)%, which at low temperatures is equiv-
alent to [1+(r£o/21)%]% With this assumption
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e L1 (am) T ()]

(50)
Then 74 has a minimum value

V3 T ( T*)
TQ,min_ 2 (a2>0A2 1+ A ’ (51)

when 7, A/fi=3V3. In films, 7, A/7 is typically
smaller than that, and 75 approaches a dirty limit
given by

mtT* 'T*)
TQ= W(1+_A_— . (52)

For the typical case of a tin film with 7= 1000 A,
T:~1.3x10% sec. Taking T*=T, and A= A(0)
=1,76T,, we find using (50) that 7o~ 1.5%x10®
sec, an order of magnitude longer than for the
phonon process under the same conditions.
Considering all the uncertainties, it is not clear
how realistic this numerical comparison is. More
reliable is the qualitative aspect of the tempera-
ture dependence. This elastic process is negli-
gible when the sample is near T, and A is there-
fore small. Thus, the inelastic phonon result
(38) should be correct near T,, where its tem-
perature dependence and order of magnitude have
been confirmed experimentally. On the other
hand, when the sample temperature is low and A
is large, the elastic relaxation process may be of
significant size, and more importantly, it be-
comes faster as T* decreases, whereas the pho-
non process becomes slower. Thus, - if our es-
timates are of the right order of magnitude, the
elastic process would eventually dominate, if
T* should fall much below T, before @ had re-
laxed by phonon processes. It is also possible that
spatial inhomogeneity of the gap due to the surfaces
causes significant branch mixing.!? Further work
might resolve whether these elastic relaxation
processes play a significant role under actual ex-
perimental conditions.

IV. CONCLUDING SUMMARY AND DISCUSSION

Under many circumstances [see Eq. (19)] quasi-
particles created in a superconductor by tunnel in-
jection of electrons are primarily on either the
electronlike (% > %) or the holelike (¢ <%k ) branch
of the spectrum. In that case, @, the population
imbalance between the two branches, tends to in-
crease at a rate I/eQ, where I is the injection
current and € is the volume of the sample [suf-
ficiently small compared to the appropriate dif-
fusion length®® A= (lqv 7o)'/ 2 that populations are
spatially uniform]. This increase in @ is resisted
by relaxation processes, characterized by a time
7q. It is shown [see Eq. (38)] that inelastic scat-
tering and annihilation or creation processes in-
volving phonons lead to

7 0:0770 (/T A0)

Q~ A(T) ’
for tin, the coefficient is estimated to be 2x10
sec. Given gap anisotropy, elastic scattering can
also relax @, but since little anisotropy is ex-
pected in dirty film samples, this process is ex-
pected to be slower than the phonon one, except
possibly at low temperatures [see Eq. (50)].

The steady-state value of @~ ITq /eQ gives rise
to a potential difference between quasiparticles
and pairs which may be observed as a zero-cur-
rent voltage V [see Eq. (16)] between a normal
tunneling probe and a superconducting contact,
as in the experiment of Clarke.? Strictly speak-
ing, V is proportional not to @, but to @*< @,
where in computing @* [see Eq. (14)], excitations
near ky are given reduced weight, reflecting less
than unit shift in the expectation value of the elec-
tron number. Since @* - @ when A< T* (an ef-
fective temperature of the imbalance population),
@*/@ ~ 1 near T,, and it is not much less at low
temperatures in Clarke’s experiment, since @
relaxes while T* > T,. Thus we have made no
correction for @*/Q in our results. As indicated
in the detailed discussion in the body of the pa-
per, if the quasiparticle injection were made at
voltages just above the gap and at low tempera-
tures, the simple results summarized here would
be extensively modified. In particular, @ would
be created at a rate less than I/ef, @* would be
significantly less than @, and 7, due to inelastic-
phonon processes would be much longer than (43),
since T* could be as low as the sample tempera-
ture T T,.

A brief account?® of this theory has been pub-
lished previously. Although our results super-
ficially resemble those of Rieger et al.,* the
characteristic relaxation time in their theory is
the Ginzburg-Landau 7., typically an order of
magnitude shorter than 74 and having a different
temperature dependence. Also, the nature of the
imbalance referred to in that theory is quasipar-
ticles versus pairs, while in our theory it is the
hole-electron branch imbalance in the quasipar-
ticle populations.
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For isolated vortex lines in high-«, type-II superconductors, Abrikosov derived the expres-
sions B(0) =x2(lnk +Cy) H,y and H,;=%x2{Ink +C,) H,, but the numerical values he provided for
the constants C and Cy were previously found to violate an identity C;—C,~%=C, >0, The
constants are reevaluated, giving Cy=-0.282, C;=0.497, C,=0.279, Furthermore, for super-
conductors containing a high concentration of magnetic impurities, it was previously shown
that the electric field generated at the center of an isolated vortex in flux-flow situations is

proportional to Hy and the flux-flow velocity v.

The proportionality constant Cg in the high-x

limit is numerically evaluated here to be 0. 951, which, together with the value for C,, deter-
mines the flux-flow resistivity p;=0.381p, (B)/H,, in the low-applied-field limit when vortices

are very far apart.

I. INTRODUCTION

In his famous paper on the magnetic properties
of type-II superconductors, Abrikosov! studied
isolated vortex lines in the high-« (the Ginzburg-
Landau-parameter) limit, and derived the expres-
sions

B(0)= k%(Ink +Co)H,, , (1)

H, =5 «¥1Ink +C)H,, . (2)

In these equations B(0) is the local field at the
vortex center, H,, is the upper critical field for
transition from the mixed state to the normal
state, and H,, is the lower critical field for initial
flux penetration. The numerical values provided
by Abrikosov for the two constants Cy and C; are

C,;=+0.08, C,=-0.18 , (3)

which have been widely quoted in books on the sub-
ject of superconductivity. 2

Recently, in studying dynamic structure of vor-
tices in superconductors for applied field H << H,,
Hu and Thompson® derived an identity which in

the high-« limit reduced to the simple relation

Cy-Cy-3=C, , (4)
where
¢, = [ @r/ar)Prar>0 (5)

is the constant which Gor’kov and Kopnin? called
Y. InEq. (5), f=f(7) is the order parameter nor-
malized to unity far away from the vortex center
and 7 is the radial distance measured from the
center. Since Abrikosov’s numbers in Eq. (3)
make the left-hand side of Eq. (4) negative in con-
tradiction to Eq. (5), one must conclude that at
least one of Abrikosov’s numbers is seriously in
error.

One straightforward way to determine the con-
stants is to solve for B(0), H,.y, and C, at finite
values of k and then to extrapolate the results to
the high-« limit. This task has been partially ac-
complished by Harden and Arp, ® since they have
calculated H,; up to k=50. Equating their value
for (2«®H,,/H,,) at k=50 to (In50 +C,) one finds
C,=0.486, but its accuracy cannot be confidently



