6 TIME-DEPENDENT SUPERCONDUCTIVITY AND. ..

in order to leave the link in a state with a small
net phase difference so that the order parameter
can have a chance to regrow. A multiple phase
slip at a given spot is still highly improbable,
however, since Fy, is much larger than F,,. In-
stead, the phase slips by 27 across some small
region, and the order parameter in the immediate
vicinity of the phase slip begins to grow. If the
27 phase slip were not enough, the phase slips
again by 27 at some other spot. The order param-
eter in the region of the first phase slip begins to
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grow, so if another 27 phase slip is needed, it
cannot happen at the first place since locally the
order parameter has grown out of the region in
which the thermal fluctuations dominate the be-
havior. In a long link there can be a fairly large
region in which the order parameter is very small.
The exact position of the phase slip is determined
by the detailed nature of the fluctuations and in this
large depressed region is more or less random.
All this implies that phase slip is a noisy process
in a long weak link.
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Modes of vibration of an electron gas in a uniform background of positive charge contain-
ing a fixed point charge are investigated. A hydrodynamic model is used in which the elec-
trons are treated as a Fermi fluid. It is found that a localized excitation of electron gas
may exist near a positive impurity. Such a local excitation can be detected in characteristic

energy losses of fast electrons.

INTRODUCTION

Excitations of a homogeneous electron gas em-
bedded in a uniform background of positive charge
have been studied extensively.! The excitations of
a nonhomogeneous system are not so well under-
stood. We consider the collective oscillations of
an electron gas in the presence of a fixed point
impurity. Layzer? has shown that in the vicinity
of a positive impurity localized single-particle ex-

citations may exist. Sziklas® and Sham* have

found that a plasmon-type excitation with fre-
quency ~wy,/V2 exists in the vicinity of a negative
impurity under appropriate conditions. Here wy is
the plasma frequency of the homogeneous medium.,
The previous authors have used a quantum approach
to the problem. However, in using a quantum ap-
proach one does not have a physical picture of the
processes involved, as one has in the hydrodynamic
approach. Hence Sziklas® and Sham* have also-
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used crude hydrodynamic models to provide a
qualitative check on the results of their micro-
scopic theories. Because of the simplicity and the
ease of interpretation of a hydrodynamic model we
feel it worthwhile to present a more systematic
derivation of the equation for the modes of vibra-
tion of an electron gas based on a hydrodynamic
model.

We investigate the modes of vibration of small
density fluctuations of the nonhomogeneous elec-
tron system. We regard the electron system as a
charged Fermi fluid, and determine the motion of
the fluctuations due to electric and pressure forces
through Euler’s equation and the equation of con-
tinuity. Both the pressure and electrostatic forces
are related to the density through Poisson’s equa-
tion and the equation of state for a Fermi fluid.

By assuming a simple periodic time dependence
for the density fluctuations and substituting for the
forces in terms of the density in the hydrodynamic
equations, we are led to an eigenvalue equation for
the frequencies of vibration of the electron gas.
This equation contains extra terms that do not ap-
pear in similar equations obtained by other au-
thors. %* We find that in the presence of a positive
impurity, localized modes of excitation of the elec-
tron gas exist and that they have frequencies higher
than the frequencies of oscillation of the uniform
electron gas. The existence of these modes has
not been established before.

" CALCULATIONS

We present a hydrodynamic treatment of an elec-
tron gas interacting with an impurity of charge
Ze imbedded in a uniform background of positive
charge of density ep,. The equilibrium electron
number density may be expanded as a Fourier
series in a box of volume @ with periodic boundary
conditions as follows:

p(;)=po+z> p;e’i';. (1)
k#0
Associated with the equilibrium charge density is

an electric field E= - V&, where & is given by
Poisson’s equation:

V2¢—+41re(_2p~e‘i;— Z_‘ ei;';> . (2)
k#0 Q2 k#0
Expanding the potential as

d= %} ¢;2ik‘r s (3)

we obtain from (2)
¢;=ne/k? (2/9 -p;) . 4)

If now the electron density is displaced slightly
frog equilibrium, a small fluctuating density
8p(r, t) is induced in the medium. We assume a
simple periodic time dependence for 5p(r, t), i. e.,
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5p(T, t)=[‘2 o; (w)e‘i';]e“"t . (5)
k#0

Because of the presence of the impurity, each
Fourier component o;(w) will not oscillate inde-
pendently as in the case of a homogeneous medium.
In the present case for each frequency w a set of
o;(w) wi_l’l contribute to the fluctuating charge den-
sity 6p(r, ¢). The time-dependent fluctuation pro-
duces a potential

YT, )= (D g et ot (®)
k#0

where from Poisson’s equation
- 2y
;= - (4me/k )o; .

® and ¥ together determine the electric field in the
material.

In equilibrium the electric force on a local ele-
ment of charge density is balanced by a force pro-
duced through a pressure gradient. Under non-
equilibrium conditions the resultant of these two
forces produces local accelerations of the fluid.

At high frequencies characteristic of plasma oscil-
lations the expression for pressure as a function of
density should be modified from that at equilibrium
(see Sham* and Jackson®). For a noninteracting
Fermi gas (assuming an instantaneous local Fermi
level) the pressure is

Py=2Fp*/ (equilibrium) ,

(7
P(t)= 3 Fn®® (high frequency),

where

F=(#?%2m)31%%°,
. . . (8)
n(r, £)=p(r)+8p(r, t) .

Useé of the high-frequency expression for the pres-
sure leads to a dispersion relation for the plasma
oscillations of a uniform system that agrees with
the one obtained by a micorscopic treatment.
Euler’s equation for the electron fluid is

-

mn Z—;’— = — gradP(f) + engrad(® + V) , 9)
yhere v is the mean velocity of the fluid at a point
r and {. We also have the equation of continuity

divav+7=0. (10)
Combining Egs. (9) and (10) and keeping terms
linear in v and #, we obtain

m 'g;g_=div{[gradP(t) —engrad(®+¥)]}. (11)

Substituting for P and % in Eq. (11) from ('Q.and
(8) and keeping terms linear in &p(r, t) and ¥(r, ?),
we have
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573 18 (1 +§ 5p(x, )

2
m -a%g— 5p(r, )= divgrad I:F[p(;)] 25 o) ):’ —ediv] p(r) grad(® + ¥) + 6p(r, ¢) gradd | . (12)

The time-independent part of Eq. (12) is not to be considered as the condition for equilibrium in view of the

meaning given to P(¢).

The equation for the density distribution of the electron gas in equilibrium is

0=—-gradP,+epgrad® . (13)

Equation (13) is the gradient of the Thomas-Fermi condition for equilibrium:

Fp*l® —e¢ = FpyP® . (14)
The time-dependent part of Eq. (12) gives
2 2 a-Kk q-K
w 9 ¢ a-k Py (—k>(pa.-x' Z)
-= — -+ O+ O=¢+ e = -_— Oz
—;5-0“ 5 7%—0“ % i R Po ®#3 q-k'I* Po pof/ k
) 2
+(=)(z) X2 ~a=kn) g, 15)
<5 3) i v Po)" (
|
where ~ Z/Q (16)
we=4mpy e%/m PiT 15 /ks)
and Substituting for pgj from (16) we have
2_ 2/2 2/3 2
kg=4mpy e®/3Fpy " . <%z‘-1—§‘%z>05=—§‘ 1
In obtaining Eq. (15) we have substituted for 0 0 Po
p(r), &(r), dp(r, t), and ¥(r, #) in (12) from Egs. QK [(R/EY)+1]+L ¢
0 54 "
(1), (3), (5), and (6), and used Egs. (4) and (7) to x Z;; ( Ri+lq-K [ )ok’ : amn
eliminate ¢; and ¥;.
We note that pz(g #0) is zero in the absence of an Expanding o; in spherical harmonics, we get
impurity. Hence for a uniform medium the last
three terms in Eq. (15) vanish, giving us a disper- 03=22=04(Im) Y 7(0 0,) (18)
Im

sion relation w?=wi[1+2 (¢%/k))].

If we just neglect the last two terms on the
right-hand side of Eq. (15) we obtain an equation
which would be identical with the equations obtained
by Sziklas® and Sham,* if the term ¢ (¢%/%%) o3 was
replaced by £ (wi/w?) (¢%/k8) 03. The third term in
Eq. (15) arises through the Coulomb interaction
of the nonuniform (equilibrium) electron charge
density with the potential produced by the fluctua-
tions. The origin of the two extra terms is as
follows: The first of these arises through the
Coulomb interaction of the fluctuation with the po-
tential produced by the nonuniform (equilibrium)
electron charge density and by the fixed impurity.
The second of these comes from the change in
pressure due to fluctuations superimposed on the
nonuniform charge density. It will be seen later
that these last two terms are comparable with the
third term in certain cases.

Equation (15) cannot be solved without the knowl-
edge of pg. In the linearized Thomas-Fermi ap-
proximation,

where 6 , and ¢, are the polar angles of the vector
<-:1. with respect to some arbitrary axis.

Let u=K-q/kq and  be the azimuthal angle in
the plane perpendicular to a Then following the
usual rules,

T~ 1@/ [ k¥ dk (sing,) do, do,
=3 @/ [kPdkdp dw .
Making use of the relation
2r
Jo YT (60 $) dw=27Y3(w) Y T(00:,) »
we have
2 3 1
w 9 .2 1 _ ky Z ’ ’
<‘;§‘ -1-3 x) 0wy~ ,0047?'2-1; dx B'(x,x )fo') ,

19
where (19)

x':q/k()v xl:kl/ko )

and
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FIG. 1. Plot of w®/wi—1 vs , for Z =+1 and 1=0;
+1 obtained numerically from Eq. (19). Here 7 is
defined by p0=-'é-i1r(rs ay)®, where a, is the Bohr radius.

+1

(A+x"2)uP () +3 xx'P(u)
1+ 44 = 2xx

BY(x, x') = xx'j du

-1

=(1+x'%Q (—-———/———l+xz+xla)+ 2 Q (——‘-r-—1+x2+xla
1 2xx 5 0 2xx

(1=0)

2, 12 ’ 2, 12

_ ronf x°+x°+1 xx lyx®+x
- [(1+x )< 2xx" )+ 5 } Q‘( 2xx” )’

(1#0) . (20)

Integral equation (19) can be solved numerically
and a frequency spectrum obtained. The range of
integration in (19) requires some comment. In the
hydrodynamic model the integration should be over
values of £ from 0 to . However, the collective
description of an electron system breaks down for
large values of 2. We choose a cutoff at 2=k,.

|

DISCUSSION

The classical model used in the present paper
is not intended to give better results than those
obtained from a microscopic model. However,
the microscopic models developed so far do not
have all the terms that appear in (15). These
extra terms make a significant contribution in the
eigenvalue equation for the /=0 mode. Their con-
tribution to the I=1 mode is comparatively small
and therefore the /=1 equation is essentially the
same as that of Sham* or Sziklas.?

We have found from Eq. (19) that localized
modes of frequency ~V3 w, exist in the presence
of a positive impurity. Figure 1 displays the fre-
quencies of these modes for /=0, /=1, as a func-
tion of 7 where v, is the interparticle spacing
measured in units of the Bohr radius. It should
be pointed out that the existence of a localized
mode in the presence of a positive impurity is not
restricted to the hydrodynamic model. The mi-
croscopic models mentioned previously will pro-
duce such a mode if a cutoff is used in the eigen-
value equation for the mode. Sham* has used a
cutoff but did not consider the case of a positive

impurity. The conclusion by Sziklas® that a local-
ized mode does not exist in the presence of a posi-
tive impurity is based on the assumption that there
is no cutoff in the frequency spectrum.
Characteristic energy losses of fast electrons
scattered from thin films have been attributed to
plasma excitations. Comparison of results of ex-
periments performed with pure materials and the
same materials containing positive impurities
should reveal the local frequencies predicted here.
Even though the local frequencies may lie close
to the continuum they can be detected because
they will absorb energy more readily since the
impurity can take up momentum.
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