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A time-dependent Ginzburg-Landau theory is used to calculate the time-varying currents
and potentials in a one-dimensional superconductor undergoing quasicontinuous phase slip.
To account for the irreversible nature of this process, the concept of superconducting dissipa-
tion is introduced. This analysis is consistent with many observations on "weak links" and
provides an adequate model for at least their low-frequency behavior.

I. INTRODUCTION

Superconductivity is a thermodynamically stable
electronic state which comes about in some metals
via a particular electron-lattice interaction. In
this interaction some electron-lattice collisions
act to "pair" electrons with opposing momenta and
spin within a time scale of about 10 ' sec. These
pairs are sufficiently dense that they overlap and
thus create a macroscopic phase-coherent quantum
state. On a time scale long relative to the "pairing
time" the electrodynamics of superconductivity can
be determined from the parameters of this macro-
scopic quantum state. Supercurrents are deter-
mined by the gradient of the quantum phase of the
macrostate and any change of this current in time
is then guided by the change of phase with time,
that is to say, the Josephson frequency-voltage
relation.

This paper is concerned with describing the time
evolution of a one-dimensional superconductor on
a time scale slow with respect to the pairing time
so that we may look to the equilibrium state as a
starting point. However, we consider this state
as being in constant "acceleration. " Under this
condition there will be only a finite lifetime for a
particular superconducting state, since it will
eventually reach a velocity at which superconduc-
tivity is unstable relative to the normal state. We
restrict ourselves here to situations in which this
lifetime is also long relative to the pairing time.
Our approach is to apply a time-dependent Ginz-
burg-Landau equation to describe the evolution of
a one-dimensional superconductor in an electric
field E.

The general characteristics of the accelerating
superconducting state as described by this equation
are a "free-particle" acceleration at low velocity
(dj /dt= X ~E) until the current j reaches nearly the
critical velocity. As the critical velocity is ap-
proached, the amplitude of the superconducting state

begins to decrease and at the critical velocity the
amplitude becomes unstable. The superconducting
state then begins to decay toward zero on a time
scale comparable to the pairing time. However,
the mathematics based on the equilibrium state is
unable to describe what happens next after the de-
struction of superconductivity without some physi-
cal help.

In order to develop a quasicontinuous descrip-
tion, we invoke the concept of one-dimensional
phase slip' and hide the details of this process
behind the introduction of loss into superconducting
dynamics. By one-dimensional phase slip we mean
essentially the one-dimensional limit of Anderson's
vortex motion model. However, here the singu-
larity is assumed to be fixed in space and not to
propagate, although the amplitude may be time de-
pendent. We assume that the superconductor re-
mains in a phase-coherent state as long as the am-
plitude remains finite, and thus the current can
be calculated, for example, by a Ginzburg-Landau
theory. However, after the system has accelerated
to its critical velocity, it becomes unstable and the
amplitude decays to zero. The assumption of phase
slip is that the system subsequently recovers into
a phase-coherent state in which the relative phase
diff erence between any two points separated by the
slip region has changed by 2m. In order to establish
and maintain these specif ic boundary conditions on the
phase, we assume that our one-dimensional super-
conductor is a short section connecting two
"stronger" superconductors which always remain
strongly superconducting during the slip process.
How short this "weak" section must be to localize
the slip plane will be discussed later. Any volt-
age V will be measured between these strongly su-
perconducting regions. The new state which ap-
pears after the phase-slip transition then acceler-
ates to its critical velocity and decays to repeat
the process and produce a kind of quantum-mechan-
ical relaxation oscillation. In this discussion we
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presume that the phase slip heals quickly enough
that we may neglect the dynamics of the healing
process.

The result of this approach is a time-dependent
state of superconductivity at finite voltage in which
the supercurrent "oscillates" at the Josephson
frequency. However, to complete the description
the Josephson oscillation must be augmented by
dissipation. In a Josephson tunnel junction, where
the evolution of relative phase is a continuous pro-
cess, there is no intrinsic dissipation in the oscilla-
tion except for possible radiation effects. However,
in a one-dimensional phase-slip situation such as
we describe here, the amplitude of the macro-
quantum-state is periodically driven to zero in a
small region roughly one coherence length long.
And thus a small amount of condensation energy
is lost each cycle. As has been pointed out pre-
viously, the average lifetime for the periods of
acceleration in such a periodic process must be
7 0=8/2eV= yoV and the power lost by this periodic
dissipation is I,(t)yoTO, where I,(t) is the time-
average supercurrent. In this paper we calculate
some of the details of I,(t) based on the Ginzburg-
Landau theo ry.

This approach also leads naturally to a time-
dependent two-fluid model of superconductivity if
we assume that at finite voltage the total dissipa-
tion can be described as the sum of the two sepa-
rate processes, one arising out of the superconduct-
ing state and one from the "normal" state. The
superconducting loss from phase slip is I,po per
cycle and thus, under conditions of a quasicontinu-
ous phase slip, dissipates power asI, V. We assume
the normal dissipation to be V/R, where R is the
normal resistance of the weak section. And there
may be conditions under which the superconducting
dissipation exceeds that of the normal process.
Thus the total power dissipated by a weak super-
conductor above its critical current, in terms of
voltage and total current lr, is IrV= V /R+I, V and

Ir = V/R+ T, . Under this assumption, a weak super
conductor, when fed current I~ in excess of its
critical current, carries a time-average super-
current I, =Ir —V/R. It should also be noted that
this excess current (or time-average supercurrent)
would be expected to exist at all voltages since it
reflects a "superconducting dissipation. " And this
excess current will not tend to vanish at high volt-
ages, as is the case for a Josephson junction shorted
by an external resistor.

This additional superconducting dissipation also
means that a weak superconductor dissipates mo~e
power at a given voltage than if it were in the nor-
mal state. This shows up in the expression for
total current lr V/R+T, , where at ——a given voltage
more current flows than in the normal state leading
to a higher dissipation (VIr). Contrariwise, at a

given current the dissipation is less for a weak
superconductor than in the normal state. Since
V=R(Ir-I, ) the potential required to drive the cur-
rent I~ is lower than in the normal state.

We also note that in this model we can expect a
time-dependent voltage to accompany the oscillation
if the weak superconductor is driven from a cur-
rent source. From the above, V= R(Ir I,), —and

we anticipate that V(t) = RI —RI,(t) In. other words,
the energy loss per electron (or chemical poten-
tial difference) which is Rlr= V„ in the normal
state is lower for the weak superconductor carrying
the same total current I&. The relative potential
across the weak superconductor, V= V„—v, (t),
then varies in time as v, = RI,(t), reflecting the
periodic destruction of superconductivity in the
weak region. This potential v, has been observed'
and experimentally fitted to a functional form v,
= &RI, [1+cos(2e/8') f Vdt]. This result is very
nearly what is predicted here, lending additional
support to this application of Ginzburg-Landau
theory.

II. TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS

In the superconducting state the complex order
parameter 4 represents an additional thermodynam-
ic variable. According to the Ginzburg-Landau
theory, the free energy near T, and the super-
current density can be expressed in terms of 4',

its gradient, and the vector potential A:

F= dx a)4(x)~ +
2 ~+(x)~

+
~

V — ~- X(x) +(x)
2ie

2m & hc

4*(x) V — X(x) 4 (x) —c. c. .

(2)
Phenomenologically the parameters a and b are
determined by the critical field II,(T) and the pene-
tration depth &(T). The equilibrium properties of
a superconductor can be obtained by functionally
averaging over all order-parameter conf igurations
weighted by the Boltzmann factor with energy given
by (1). Outside the immediate vicinity of T, , the
most probable configuration dominates, so that
the order parameter is determined by

which leads to the well-known Ginzburg-Landau
equation for 4:

(4)
Gor'kov'6 derived the Ginzburg-Landau equa-
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where n is the electronic density, X is the Gor'kov
impurity function, and f(x) is the Riemann P func-
tion, so that g(3) —= l. 202; and in addition his analy-
sis related the parameters a and b to the electronic
properties of the material. Normalizing 4 so that

I
'k I'= 2ny (1 —T/T, ),

k T, —T
2m( (0) T,

h
=

m('(0)nx .

Here g(T) is the Ginzburg-Landau temperature-
dependent coherence length

$(T)= &(o) (1 —T/T. ) '",
with

((0)= o &4 ~x (0

(8)

$0 is the BCS coherence length which is equal to
0. 18'~/kT, . Gor'kov's impurity function X de-
pends upon the ratio of the electronic mean free
path I to the BCS coherence length. Its limiting
values for clean and dirty materials are

x=- &,

=- l. 33l/$„$, » l . (10)

In an attempt to extend Gor'kov's treatment to
time-dependent problems, Abrahams and Tsuneto'
derived a relaxation equation for the order param-
eter in which the time rate of change of 4 is pro-
portional to the deviation of 4 from its equilibrium
value:

Sy +

tions from the microscopic BCS theory by expand-
ing the superconducting Green's-function equations
in powers of the energy gap and its spatial deriva-
tives. The convergence of this procedure depends
upon the size of b/kT, and the ratio of the quasi-
particle correlation range to the field penetration
depth. In addition, the possibility of a local rep-
resentation depends upon the exponential decay of
spatial quasiparticle correlation. Gor'kov' s analy-
sis showed that the order parameter was propor-
tional to the energy gap:

1/2
(5)

the supercurrent and the following expression for
the charge density:

3 1' g ~ 2zjLl,
+ + —c. c.

()p
V ~ j+ —=0.

at (14)

The equation for the net charge density 5p is one
of the central problems in time-dependent Ginzburg-
Landau theory. It appears that the violation of
charge conservation arises from the nonlocality
of the basic theory for a superconductor with a
finite gap. In addition, difficulties arise from the
nonequilibrium aspect of the time-dependent prob-
lem.

As recently emphasized by Gor'kov and Eliash-
berg, ' a derivation of a local time-dependent
Ginzburg-Landau theory is thwarted by the long-
time oscillations of the quasiparticle correlations.
To avoid this difficulty, they considered the case
of a paramagnetic alloy in the gapless regime.
Then using Green's-function techniques they de-
rived a local charge-conserving time-dependent
theory. In their analysis a new function U was in-
troduced which played a central role in calculating
the charge density and current:

2rnv~U= V+ 2 6p
3re (15)

This implies that e U is the electronic electro-
chemical potential p, since p, o, the zero-field
equilibrium value of JLt, , was chosen to be zero in

their work. With the identification of eU as the
electrochemical potential, the char ge-conserving
time-dependent Ginzburg- Landau equations of
Gor' kov and Eliashberg are identical to the equa-
tions which will be solved here.

In order to fully understand them, it seemed
physically more transparent to derive these equa-
tions phenomenologically as follows: A simple
relaxation equation for 4', similar in structure to
Eq. (11), is introduced to describe the dynamics
of the order parameter:

3 2

+ a-V . (13)
SSVy

Unfortunately, Eqs. (2) and (13) do not satisfy the
continuity equation

Here p, is the electronic electrochemical potential
and y is a parameter characterizing the relaxation
rate:

2 ZOLL

q ~e~') ~' V — "A

8kT, 2m) (0)
(12)

In addition to obtaining Eq. (11), Abrahams and
Tsuneto obtained the standard expression (2) for

(18)
Here v and $ are the temperature-dependent relax-
ation time and correlation length, respectively, and

g arises from the 5 l4 I term in the original Ginz-
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burg-Landau form of the free energy. In the mi-
croscopic theory, the ratio $ /7. is proportional to
the electron diffusion constant. In this work we
will treat these parameters phenomenologically.
In general, they can depend upon position such as
in the case of a boundary between normal and

superconducting metals. The form of the super-
current given in E(I. (2) is kept, but in addition a
normal current is also allowed to flow so that the
total current density is given by

j tot
MS g ~ 2M
m

V (v) V- ~)V(v) v v.Sc

—(o/e) v p, (17)

Rp g g sv 2 Bf av)+ 7 2 +
K sx f sx sx

and the current (1'7) is

(19)

jtot
2eS 9+ g 9p

9x e 9x (20)

The electrochemical potential in the presence of
a net charge density 5p and a potential V is

p = p, o+ e V+ (me~/3en) 6p . (21)

The charge density is found from the continuity

where 0 is the electrical conductivity. The charge
density is then found from the continuity equation
(14), thus ensuring charge conservation. This set
of equations combined with Maxwell's equations
form the electrodynamics which will be used to dis-
cuss superconducting weak links. This scheme
provides a simple charge-conserving description
and, as mentioned above, is equivalent to the
equations derived by Gor'kov and Eliashberg for a
gapless superconductor.

A superconducting weak link is essentially a one-
dimensional object; all of the features of interest
occur as a function of position along the length of
the link. So to describe the behavior of a weak
link, a one-dimensional model is appropriate. In

addition, restricting the analysis to one spatial
dimension implies that the vector potential may
be ignored. An applied magnetic field depresses
the magnitude of the order parameter, ' but plays
no essential role in determining the dynamics of
the system, so setting 1=0 is acceptable as long
as it is kept in mind that the equilibrium ratio of
the order parameter in the strongly superconduct-
ing region to that in the weak link reflects the ef-
fect of an applied magnetic field, if any.

If 4' is written in terms of a magnitude and a
phase 4'=fe'', the time-dependent Ginzburg-Lan-
dau e(luation (16) becomes

((-vf')+ (' — )f,sf 1
9t 9x 9x

equation

9 9 .
~P 9x j t t (22)

Using Eqs. (20), (21), and one of Maxwell's e(lua-
tions, V V= —4m5p, the continuity equation becomes
a differential equation for 5p:

1
4' 9x

(24)

Integrating Eq. (24) twice and applying the bound-

ary condition of zero electric field away from the
weak-link region, V can be written for aweak link
with unit cross section as

V(„),
" d, A.~(&')-i.(&')

~0
0' (25)

Since 5p varies on a scale of coherence lengths
spatially, so does V:

V-$ 6p (26)

This implies that the third term in E(I. (21) can be
ignored with respect to the second term since
X2/f2 «1. Choosing the zero of energy such that

(u0 = 0, it follows from (21) that

p. =eV (27)

III METHODS OF SOLUTION

Because of the nonlinearity of the Ginzburg-
Landau equations and the consequent difficulty in

finding solutions of them analytically, the equations
were solved numerically using a PDP 15 computer.
The weak link was divided up into a 20-point spa-
tial grid, with the distance between grid points
adjustable so that links of different lengths could
be studied. The spatial parts of the differential
equations of interest were then transformed into
difference equations on the 20 discrete points. The
order parameter, electric fields, current, and

other parameters of interest were allowed to vary
in space and time on this grid. Outside of the grid,
the magnitude of the order parameter was main-
tained constant and kept strongly superconducting
with respect to the weak region. The boundary
conditions were such that away from the weak-link

9 9 9
6p+ 4' 6p —4' Xa, 5p= — j, . (23)9x 9x

X, is the Fermi- Thomas screening length. Super-
current j, varies in space on a scale of coherence
lengths so (s /Sx ) 5p- (1/$ ) 5p, and since X, /f
«1, the third term on the left-hand side of (23)
can be ignored. Similarly, j, varies in time on a
scale of K&j'8k(T, —T)» 4vo, so the first term on
the left-hand side of (23) can also be ignored.
Therefore, to good approximation the charge den-
sity becomes
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region the electric field went to zero. The bound-
ary conditions imposed on the order parameter be-
tween the strongly superconducting region and the
weak region were continuity of the order parameter
and continuity of its first spatial derivative.

The resulting differential-difference equations
are all first order in time, so that numerical solu-
tion with respect to the time variable was relatively
simple. Starting from some initial time to, at
which the values of various physical quantities
were specified, the first time derivatives of these
quantities were calculated from the differential
equations. Then at to+ At the quantities of interest,
f for example, could be written

(28)

where n refers to a given spatial point. This pro-
cess was then iterated to build up the various
quantities as a function of time. The time interval
b, t was kept variable, and its size was adjusted de-
pending on how rapidly the functions of interest
were changing in time.

There were essentially two different natural time
scales in the problem. One of these was the
Josephson period v 0, which was set by the voltage
To= 2n'(2e V/h) ', and the other is the response time
of the superconductor set by T. Here v is the ef-
fective relaxation time characterizing the weak-
link section of the superconductor. The existence
of these different time scales and the basic non-
linear nature of the equations made it important
to be able to adjust the time interval so that the
dynamics could be followed as closely as desired.

There were a number of physical parameters
that described the weak link. Many of these could
be changed from one computer run to the next so
that their effect on the properties of the supercon-
ducting weak link could be examined. For example,
computer runs were made with various values of
the total current, the ratio of transition tempera-
tures in the weak and strong regions, the total
length of the weak region, and the electrical resis-
tivity.

In a weak link if the total current exceeds the
critical current, the dynamics of the system can
be explained in terms of a quantum phase slip. As
discussed in the Introduction, this phase slip occurs
at spme point as the magnitude of the order param-
eter is driven very small because of a large applied
current, so locally the superconductor enters a re-
gion in which the thermodynamic fluctuations be-
come very important. This phase slippage was
grafted onto the numerical analysis of the time-
dependent Ginzburg-Landau equations in the follow-
ing manner. The free energy Fo of a small region
in the center of the weak link was calculated as a
function of time. In addition, the minimum free

energy E~, this region would have if the phase were
reduced by 2m across it was also calculated. When

E2, became less than Eo, the phase was slipped by
2w by reducing the phase of the order parameter
by 2m to the right (by convention this was the direc-
tion in which the scalar potential increased) of the
center region. The length of the small center re-
gion was chosen to be one coherence length, which
is roughly the length one would expect a typical
thermal fluctuation to have. A more complete analy-
sis of the nature of the phase-slip process would
include the effect of all possible fluctuations
weighted by the appropriate Boltzmann factor. The
dynamics of the weak link near the time of phase
slip proceed very rapidly compared to the Joseph-
son period, so that the details of the phase-slip
process are relatively unimportant in determining
the behavior of the weak link as long as v. o» v. In
this region, alternative specifications of phase slip
lead to virtually the same results. '

Once the phase slip has occurred, the time evo-
lution of the weak link was again governed by the
time-dependent Ginzburg-Landau equations as
written down in Sec. II. The evolution of the sys-
tem continued until E2, became less than Eo, and
the phase slipped again. This sequence of events
is shown in Fig. 1. In all of the diagrams in Fig.
1 the order parameter is plotted in cylindrical co-
ordinates: lf I is the radius, y is the phase angle,
and the spatial coordinate x of the weak link is
plotted along the length of the cylinder. In addition,
the phase as a function of position is plotted sepa-
rately for each figure. In Fig. 1(a) the phase dif-
ference across the link is still small, and hence
the supercurrent is small while the magnitude of
the order parameter f is close to its equilibrium
value. Figure 1(b) shows the link at a somewhat
later time. The voltage developed resistively by
the large current through the link has driven the
phase gradient large in the weak section and con-
sequently f has become very small in the center
piece of the weak link. This is just the situation
in which the phase slip can occur. Figure 1(c) is
a blown-up picture of the center sectionof Fig. 1(b),
while Fig. 1(d) is a blow-up of the center section
just after the phase slip. Note that everything in
the link is unchanged except that in this center sec-
tion the phase bends back upon itself so as to reduce
the total phase across the link by 2m. After the
phase slip the dynamics proceed smoothly, and f
begins to regrow and y begins to smooth out. Fig-
ure 1(e) shows the link sometime after the phase
slip as this reknitting is happening. The weak
link eventually reaches the configuration in which
it started, and this succession of events then con-
tinually repeats itself. Thus, Fig. 1 is a sort of
movie of how the dynamics of this weak supercon-
ductor proceed.
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FIG. 6. Current vs time-aver-
aged voltage for a superconducting
weak link showing the excess super-
current of @ .
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wp = 2v(2e ( V)/5) ' .

As the total current was increased, the shape
of the v, (t) curve became more and more of a per-
fect sinusoid, which can be seen in Fig. 4. At
lower currents the shape is considerably less
sinusoidal, as can be seen in Fig. 3. Also shown
in Figs. 3 and 4 are the times at which phase slip
occurred; each arrow indicates a quantum phase
slip of 2m. Figure 5 shows the Fourier decompo-
sitions of v„ i. e. , v, vs w is plotted. Note that
at currents near j, the fundamental harmonic (N
= 1) is dominant, but a few of the higher harmonics
(N= 2, 3, or so) are present to an extent. For j„,
» j„on the other hand, really only the fundamen-
tal harmonic is present to any degree, which in-
dicates that v, (t) is very sinusoidal for large cur-
rents. This means that if the frequency spectrum
of the voltage across a weak link is examined for
total currents less than about 3j, or so, it should
be possible to see a peak not only at the Josephson
frequency but also at twice and perhaps three times
the Josephson frequency.

These analytic results are consistent with ex-
perimental observations' on weakly superconducting
structures. In that case it was found that the func-
tion

v, = & RI, [1+cos(2e/5) fVdt],

where V= RI -v„accurately described both the
time-averaged and the time-dependent voltages
developed across a weak superconductor carrying
a total current I. This approximation also pre-

diets the harmonic generation described above and
seems to be a generally useful analytic form with
which to describe weakly supereonducting links of
this type.

Another interesting property of weak-link super-
conductors is their j-vs- V curve. The time-
averaged voltage ( V) vs j„,is shown in Fig. 6.
For j„&&j, there is an excess supercurrent and
a nonzero time-averaged voltage. Asymptotically
for j„&»j„ this excess supercurrent was always
found to be &j, for a wide variety of physical prop-
erties of the weak link, e. g. , electrical conduc-
tivity, total length, ratio of transition temperatures
in the weak and strong regions. There was a
spread of about 10/p in the values of the excess
supercurrent around 2j, . We believe this spread
is again due to numerical errors rather than a
physical effect. As was pointed out in the Introduc-
tion, this excess current reflects dissipation
attendant to phase slip and comes out of this appli-
cation of Ginzburg- Landau theory because of the
insertion of this requirement. It does not reflect
a dissipation intrinsic to the Ginzburg-Landau
model.

For a weak link shorter than approximately five
coherence lengths the phase slip always occurs in
the center of the link, and the phase slips by 2m

rather than a multiple of 2m. A multiple phase slip
is in principle possible, but for a shortweaklink
they do not occur, since I 4, , the free energy for the
4m phase-slip state, is much larger than I"~, . A
multiple phase slip in a short weak link is highly
improbable.

A long weak link, e. g. , 10 or more coherence
lengths, can have a large phase difference across
it. A phase slip of more than 2m may be necessary
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in order to leave the link in a state with a small
net phase difference so that the order parameter
can have a chance to regrow. A multiple phase
slip at a given spot is still highly improbable,
however, since F4, is much larger than F2, . In-
stead, the phase slips by 2m across some small
region, and the order parameter in the immediate
vicinity of the phase slip begins to grow. If the
2m phase slip were not enough, the phase slips
again by 2w at some other spot. The order param-
eter in the region of the first phase slip begins to

grow, so if another 2m phase slip is needed, it
cannot happen at the first place since locally the
order parameter has grown out of the region in
which the thermal fluctuations dominate the be-
havior. In a long link there can be a fairly large
region in which the order parameter is very small.
The exact position of the phase slip is determined
by the detailed nature of the fluctuations and in this
large depressed region is more or less random.
All this implies that phase slip is a noisy process
in a long weak link.
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Localized Modes of Excitation of an Electron Gas in the Vicinity
of an Impurity in Metals
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Modes of vibration of an electron gas in a uniform background of positive charge contain-
ing a fixed point charge are investigated. A hydrodynamic model is used in which the elec-
trons are treated as a Fermi fluid. It is found that a localized excitation of electron gas
may exist near a positive impurity. Such a local excitation can be detected in characteristic
energy losses of fast electrons.

INTRODUCTION

Excitations of a homogeneous electron gas em-
bedded in a uniform background of positive charge
have been studied extensively. The excitations of
a nonhomogeneous system are not so well under-
stood. We consider the collective oscillations of
an electron gas in the presence of a fixed point
impurity. Layzer has shown that in the vicinity
of a positive impurity localized single-particle ex-

citations may exist. Sziklas and Sham have
found that a plasmon-type excitation with fre-
quency - &0/v 2 exists in the vicinity of a negative
impurity under appropriate conditions. Here &0 is
the plasma frequency of the homogeneous medium.
The previous authors have used a quantum approach
to the problem. However, in using a quantum ap-
proach one does not have a physical picture of the
processes involved, as one has in the hydrodynamic
approach. Hence Sziklas and Sham have also


