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The sixth moment of the magnetic-resonance line shape is presented as the sum of nine lat-
tice sums instead of ten as reported by Das and Bersohn. The sixth moment is evaluated for
simple-cubic, bcc, and fcc symmetry and the applied magnetic field along the [100], [110],and
[1ll] directions. The three-index lattice sums are evaluated two different ways: theusual way
by summing each index over a sphere of lattice points and secondly by rewriting the three-in-
dex sums as a combination of one- and two-index sums. The two-index sums were then eval-
uated by summing the second index over a sphere centered on the first index. Lattice sums
containing odd powers of B&& are not always much smaller than lattice sums containing only
even powers, as has been assumed in previous free-induction-decay O'ID) calculations. A mo-
ment analysis of the Lowe-Norberg and Evans-Powles FID expansions shows that they contain
relatively small parts of Me and the higher moments, so that they cannot be improved by the
addition of complete higher-moment terms.

I. INTRODUCTION

Even since Van Vleck showed how to calculate
the moments of the line shape, the moment con-
cept has been one of the more important concepts
of the line-shape problem in magnetic resonance. '
Moments of experimental curves are determined
and compared with theoretical values. Theoret-
ical expansions of the free-induction decay are
proposed using the known moments in the evalu-
ation of expansion parameters. The second and
fourth moments have been calculated for general
conditions, but the sixth moment has been calcu-
lated only for simple-cubic (sc) symmetry and the
applied magnetic field along the [100]direction. ~

Das and Bersohn have shown that the n+ 1 par-
ticle terms in the 2nth moment (Mz„} constitute
the major part of the moment so that one need
not calculate the entire moment to get a good ap-
proximation to its value, 3 So we present here a
calculation of the four-particle terms in M, for
the purpose of using it to improve the fit of theo-
retical expansions (in particular the Lowe-Nor-
berg expansion which contains complete Mz and
.M4 terms) to the experimental curves. 4' Also
Parker has given expansion theorems for the free-
induction decay (FID) which involve all the mo-
ments of the line shape, and the number of terms
which can be included depends on the number of
moments which are known.

In Sec. II, our method of obtaining the four-
particle part of Ms is presented. Our method is
explained rather thoroughly, since we obtain nine
lattice sums [Eq. (10)], whereas Das and Bersohn
say that there should be ten. In Sec. III, the four-
particle part of M6 and the nine lattice sums are
evaluated for sc, bcc, and fcc symmetry and
[1007, [110], and [111]directions for the applied
magnetic field. We do not a priori discard the

lattice sums containing odd powers of B,&, but do
evaluate them and show that they are not neces-
sarily much smaller than the even-power lattice
sums.

In Sec. IV, a moment analysis of the Lowe-
Norberg and Evans-Powles FID expansions is
given and a M6 correction term is applied. '

H. FOUR-PARTICLE PART OF N6

Since Das and Bersohn's four-particle part of
the sixth moment consists of ten lattice sums,
while ours consists of nine, it is appropriate to
show how our four-particle part was obtained.
We proceed as follows.

The sixth moment M6 of the magnetic-resonance
absorption relative to the Larmor frequency is

where H is the truncated part of the magnetic di-
pole-dipole Hamiltonian. That is,

where

8„=(3y'I'/2~'„)(I —3 cos'8„),

and all the symbols have their usual meanings.
Ms consists of four-, three-, and two-particle

terms with the four-particle part comprising the
major part and fortunately the easiest of the three
parts to calculate. The four-particle part of M6
(hereafter referred to as 4MB) was determined as
follows.

The commutator in M6 consists of four-particle,
three-particle, and two-particle terms. That is,

where C4, Cs, and Cz are the four-, three-, and
two-particle parts, respectively. For example,
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a typical term in C4 is

Bo Baia~aI«Iy. Ia.fi'
«egeV1

Terms in C3 are of the types

Q B&ga&aI«I&„I),Iag
«s /fan

2 2~ &«g&gII«xI)yIas ~

«AgCk

A typical term in C2 is

Q B)sI»I&Im.
j8h

Substituting Eq. (3) into (1) yields M, as the sum
of six traces, that is,

M~= —5 6[ g TrC~~+ Q Tr(C, C&)]/Tr(I~). (4)
«=2

Only two of the six traces in Eq. (4) contribute to
M6, namely, Tr(C43) and Tr(C~S). This occurs as

follows: Since the operators in C4 are of the type
I«„I~„I„gI,„, that is four traceless operators, C,
contributes only to 4M6 and not to the three- and
two-particle parts of Me. Furthermore, the two
cross terms in E|l. (4) involving C4 are zerobecause
at least one of the traceless single-particle oper-
ators in C4 remains unmatched, when C4 is «m-
bined with the three-particle operators of C3 or the

two-particle operators of C2.
The three-particle term C,

- consists of two types
of terms. The first type such as I«„I&„I&,I~ has
three traceless single-particle operators. The
second type such as I2„I„I„hastwo traceless
single-particle operators and a third single-par-
ticle operator (I,„)2 which is not traceless. Only
the latter type of term in C, contributes to 'M„
and this contribution comes from the Tr(CI) term
in Eg. (4). This occurs as follows: The second
type of term in C3 contributes to M6 a trace of the
form

Tr(I «I»II„Q I,,I„,I„,).
1AmlfV

A four-particle term is obtained if n =j, nz= 4, and

i and 1 remain unmatched. The necessity of having
a nonzero trace for one of the single-particle oper-
ators in Cs is seen from this example.

Tr(CsCz) in Eq. (4) is obviously zero because at
least one of the traceless single-particle operators
in C3 is unmatched by the two single-particle oper-
ators in Cm. Likewise, Tr(Cz), while not zero,
cannot contribute to M~, because at least one of
the two single-particle operators in C'z is traceless
and does have to be matched. Therefore, Tr(C~~)
can at most contribute to the three-particle and
two-particle terms of Me.

C4 and the part of C3 which contributes to Me
are

C, = — g I«I,„I„I,„[a„a~a„+a„(a„a„+a„a„)+2a„a„(a„-4a„)-3a„a,„(a„-2a„)]

Z
+

9 ~ I«I» Ayfly laka Bn (BQ Bga)+ 2an Bat (Bgi Bga)]+ + I«iygfaeIlg[a&lani (ada+ 2agl)
«P jP&1 «4gWk41

+ 2B~Pn(apt + 2a~g)] i
4

Cs = — + I &.I»Is, la'~g(age+ 4an)+ B ~a(age- 2a~g)+ aiba(papal+ 9 Z I ',„I,„I„[2B'„a„+B'„(3a,„-a„)]
9 «~pa «tgA

+ 9 ~ I «.ig. II.[2B'v (a~a+ aalu)+ 2B~Pga (B~g+ B~g)1 ~ (6)

Therefore, 4MS becomes

'M, = —8-~ (Tr(C,) + [Tr(C,')~g]/Tr(I„), (V) P = I'(I+ 1)'(2I+-1)"/(81)'.

where [Tr]4 means the four-particle terms in the
enclosed trace. Each of the two traces in Eq. (V)

involves nine lattice sums, which are designated
81 82 $9 and which are listed in the Appendix.

Tr(C4) = P[123sg+ 123S2+ Vas~+ 2VS4 —60sg+ 15S6

+ 243SV —6SS —24SQ], (8)

[Tr(CS) ]4= P[261sg+ 180S2+ 2VOsg+45S4 —36S~

—18S +QS +18S ], (9)

Inserting Egs. (8) and (9) into (V) and using TrI3
,'NI(I+ 1)(2I+ 1) —yj,elds

'M, = - [I(I+1)/9a']'X" [128S,+101S,+116S,+ 24S,

—32S5 —1SS+84$7+ 4SS —8S9 ] . (10)

IH. 4%6 FOR CUBIC SYMMETRY

Using Eg, (10), 4MB was evaluated for spins ar-
ranged in sc, bcc, and fcc lattices for the three
directions of the applied magnetic field [100], [110],



W. F. %UBZBACH AND S. GADE

and [111]. The lattice sums in 'M~ were evaluated
assuming identical spins and using 80, 168, and 2QO

nearest neighbors for sc, bcc, and fcc, respective-
ly. The values of the lattice sums which were
used are listed in Table I in units of x 6, where
x=2d'/3y @[I(I+I)]'~ and d is the nearest-neigh-
bor distance for the sc lattice, 2/v 3 times the
nearest-neighbor distance for the bcc lattice, and
v 2 times the nearest-neighbor distance for the
fcc lattice. The values of 4M, are also listed in
Tabl, e I in units of x-'.

Lsttlcc SUaAs

It should be noted that care must be taken in
evaluating the four-index lattice sums of 4~6.
It is by no means obvious that if each index runs
over the lattice points in a finite sphere a good
approximation to the true value of the sum miH

result. Therefore, S~ and S3 were evaluated bvo
different ways for the sc [100] ease. First, 8,
and Sz were computer calculated by summing the
indices over a sphere of 81 lattice points or spins.
Secondly, S, and S& were calculated by simplifying
the sums by reducing the number of indices to one,
if possible. This was completely possible with

S, and almost so with Sz as shown in the following
equations:

where N is the total number of spine.
The values obtained for S& and Sa by the two dif-

ferent methods are shown in Table II and they
agree within a fem percent.

The other seven lattice sums of 4MB (S~, S4, . . . ,
S9) contain odd powers of 8 In prev. ious line-
shape calculations for cubic symmetry, these lat-
tice sums were neglected because they were
thought to be small relative to lattice sums such
as S, and Sa which contain only even pomers of B.
This was checked by evaluating Ss, $4, . .. , S, and,
as may be seen from their values listed in Table
I, all of them are not small relative to S, and S~.
That i.s, the double B sums S3, S4, Ss, and 86, in
general, are an order of magnitude larger than
the single 2P sums 87, 88, and 89 and are less than
an order of magnitude smaller than S, and S~. So
that in evaluating 4M6 from Eq. (10), all lattice
sums were used although neglecting S7, Ss, and S9
would introduce an error only on the order of 1%.

Since the terms in the sums containing odd
powers of B alternate in sign, it was thought that
the way in which the range of the summati. on in-
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TABLE II. Values of the lattice sums for the sc I100]
case in units of g . The values in the first row were ob-
tained by summing over a sphere of 80 nearest neighbors.
The values in the second row were obtained by using Eqs.
(11)—(13) and summing the second index over a sphere
centered on first index.

S1

1128
1132

1415
1461

S3

147.1
148.1

S4

—104.1
—122.5

85

220. 3
220. 1

Se

123.7
132.2

dices is chosen can significantly affect the values
of the sums. Therefore, the sums Ss, 84, S„and
S, were computer calculated two different wa,ys
for the sc lattice and [100]. That is, each sum
was computer calculated by summing the three in-
dices over a sphere containing 81 lattice points
(Row 1 in Table II). Secondly, each three-index
sum was also evaluated by reducing it to a com-
bination of one-index and two-index sums. as seen
in E«I. (13). The one-index sums

So =Nf(QB ««)(Q B «oB««Bo, ) —Q B qoB««Bo«
gA

-~ B«oB «oB««]

&4=+Z (ZB'„B«,)'- (ZB',,)(Z B',«)+Z Bo«],

(13)

So = AX(+B «o B««)(Z B«,«B«,o)
—(Z Bo«)'+ + Bo«]

So=&[(~Bo»(~ ««B«oB«o) -2~B«oBo«B««]

were then evaluated the usual way by summing
over a sphere of 80 nearest neighbors. The two-
index sums like

~ B «gB &Bag
/8k

were evaluated by summing one index over a sphere
of 80 nearest neighbors and then summing the sec-
ond index over a sphere of 80 nea, rest neighbors
centered on the first index. So for the sum

~ B'««B«) B)«
jAk

j was summed over a sphere of nearest neighbors
centered at i and k was summed over a sphere
centered on j. The results are listed in row 2 in
Table II, and it can be seen that S4 and 86 are
significantly different but that S» S2, S3, and S~
differ by 3/o or less. This result, however, does
depend on the number of nearest neighbors summed
over, so that in the limit of an infinite crystal the
two ways of evaluating the sums become identical,
but for small numbers of nearest neighbors they do
differ significantly.

IV. N6 IN THEORETICAL EXPANSIONS OF FREE-
INDUCTION DECAY

One of our purposes in calcul. ating M6 was to use
it to improve the fit of existing theoretical expan-
sions to the experimental free-induction decays
(FID). Our rationale was that since some of the
existing expansions contain complete second- and

fourth-moment terms, the addition of a nearly
complete sixth moment would improve the fit for
intermediate values of t. Das and Bersohn have
argued that 'M, comprises the major part of M6
and for the one case where a theoretical M, is
known, namely, Glebashev's for sc and [100], our

Mo is 94% of Mo. 'o So our procedure was to ex-
tract from the FID expansions the t part and to
add in —Mot /(6!). This was done for the Lowe-
Norberg (LN) and Evans-Powles (EP) expansions
and the t' parts were evaluated for sc symmetry
and [100].'7 These expansions surprisingly con-
tain a relatively small part of Mo ranging from 52%%uo

for LN to only 4'%%uo for EP. Therefore, the corre-
ction terms range from aboutone-half of [- Moto/
(6!)] for LN to essentially all of it for EP and are
significant well before the first node in the FID is
reached, increasing rapidly thereafter to values
larger than one. For example, the correction
term has the value of —0. 15 for the I N expansion
at the first node (t = 0. 95x) and the value —0. 5 at
t =1.1x. The correction for the EP expansion at
the same values of t are approximately —0.3 and
—1.0 (0.07 and —0.33 if M4 as well as Mo is com-
pleted). Therefore, the fit of these expansions
to the experimental fits cannot be improved by the
addition of the complete sixth moment and a few
higher moments. This anal. ysis shows that these
FID expansions are not close to being moment ex-
pansions in that they contain relatively smal. l parts
of the moments beyond M, .

During this analysis the sum of the first four
terms in the moment expansion (1 —Moto/2! +M4t«/
4!—4Moto/6!) was evaluated and found to give a
very close fit to the experimental FID out to the
first node.

APPENDIX: NINE LATTICE SUMS

S, = Q B'„B'„B'«))
$8gfke1

Sq= g B&aB»B,&

kAgP&2

S3 ~ @gk+$k+$1 +k1
2 2

3 Agfk82

S4 — ~ +pa +]k+y1 +l»2 2

it)Ck01

S5= ~ &gk&~1&~k&g1
2 2

.$PjtkC1
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Ss= g B&,B&,BtsBe,2 2

f 8$CA41
Se = ~ Bga B&yBg& B&aB&»

2

i4$8001

Sv = Q B~~B)~BsB,qB~t,
fegaaei

B~I B~t Bst BuB~I,Bu
jsjt&1
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The effect of the anharmonic interaction on the spin-lattice relaxation rates has been studied
theoretically for Cr ' and Ni ' ions in a MgO crystal. The modification of the relaxation rates
due to the anharmonic interaction has been calculated using the Debye model of phonons and an
effective-point-charge model for the ligands. The enhancement of the relaxation rate is shown
to depend on the paramagnetic ion under consideration. 1/T, is enhanced by an order of mag-
nitude for the case of Cr+ ion, whereas there is hardly any change for Ni-' ion. This is
principally due to the fact that the ratio of spin-phonon-coupling parameters for the direct
process to those for the Raman process is smaller in the case of MgO: ¹i2' than in the case of
MgO Cr

I. INTRODUCTION

The relaxation rates of paramagnetic ions in
crystals have so far been calculated on the assump-
tion that the la.ttice motions are harmonic. The
dependence of the relaxation rates on temperature,
calculated on the basis of a harmonic lattice and
Debye model of phonons, agrees fairly well with
that obtained experimentally for a number of para-
magnetic ions in crystals. 1 But there are some
cases where the strength of the spin-phonon cou-
pling is weak and the relaxation rates are conse-
quently measurable uy to high temperatures. ' In
these cases the relaxation rates were found to de-
viate considerably from those predicted by the
Debye model of phonons. Recently the Baman re-
laxation rates for ¹i' and Cr~' ions in MgO have
been calculated theoretically4 taking into account
the experimental dispersion relations for the pho-

nons in MgO, ' but assuming the lattice motions to
be harmonic and unmodified due to the substitution
of the paramagnetic ions. The agreement between
these theoretically calculated values of 1/T, and
those obtained experimentally is good for the Ni '
ion, but for MgG: Cr' the theoretical results are
smaller than the experimental ones by a factor of
5 even at low temperatures. The object of the pres-
ent work is to show that the discrepancies between
the theoretical and experimental results for
MgO: Cr ' can be accounted for to a fairly good ex-
tent by taking the effect of the anharmonic interac-
tion into account.

Van Kranendonk and WaPr. er have recently pointed
out the importance of the anharmonic interaction on
the nuclear-quadrupole relaxation rates for alkali
halide crystals. The anharmonic interaction in
conjunction with the direct process of relaxation
causes the relaxation rates to depend on tempera-


