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Several recently developed theories of broad-line NMR presume the knowledge of the first
several moments of the line shape. An exact expression for the sixth moment for the purely
dipolar-broadened case is presented here. The result indicates that the sixth moment con-
sists of one type of two-particle term, five types of three-particle terms, and nine types of
four-particle terms, one of which has avanishing coefficient. Most of the contribution comes

from the four-particle terms.

I. INTRODUCTION

Historically, the first serious attempt at mea-
suring resonance in bulk matter by looking for the
resonance of Li” in lithium fluoride and for the
proton resonance in potassium alum by using a
calorimetric method was made by Gorter.! The
first successful NMR absorption measurements
were made independently by two groups: Purcell,
Torrey, and Pound? and Bloch, Harrison, and
Packard.’ Since then, various broad-line-NMR
theories have been suggested by Bloembergen,*
Lowe and Norberg,® Lee, Tse, Goldburg, and
Lowe,® Evans and Powles,” Demco,® Gibbs,®
Fornes, Parker and Memory,!? Gravely and Mem-
ory,!! and Lado, Memory, and Parker.'?

The majority of recent developments in broad-
line-NMR line -shape theory can be classified into
three groups. (i) Since the original work of Lowe
and Norberg,® who proved that the free-induction
decay (FID) was the Fourier transform of the ab-
sorption curve, various methods of approximation
have been proposed to evaluate directly the time
autocorrelation function of the transverse mag-

" netization; among those are methods proposed by
Evans and Powles,” Lee, Tse, Goldburg, and
Lowe, 8 Demco, ® Gibbs,® and Fornes, Parker, and
Memory'%; (ii) expansion theorems have been
developed which are based on some parameters
related to the crystal structure and a knowledge
of the first few moments of the line shape, ex-
amples of which are the Gram-Charlier three-
moment expansion suggested by Gravely and
Memory, ™ and the generalized Neumann expan-
sion obtained by Parker“‘; (iii) various approx-
imate expressions have been proposed for the
autocorrelation function or the associated mem-
ory function based on the general mathematical
techniques employed in many-body problems or
nonequilibrium statistical mechanics, such as pre-
sented by Lado, Memory, and Parker.!?

A number of these approaches have in common
the fact that they presume the knowledge of at least

[

the first several of the line-shape moments, in

- terms of which the corresponding function of phys-

ical interest can be expressed approximately.
However, the calculation of these moments, based
on Van Vleck’s formula,* involves the evaluation
of the traces of the square of some complicated
quantum-mechanical operators, and there is no
general systematic pattern of evaluating the double
sums involved in different types of particle-inter-
action terms. These facts have made difficult the
calculation of moments other than the second and
fourth, which were given in Van Vleck’s original
paper.

As for the sixth moment, Glebashev'® obtained
an approximate estimation for the exchange-nar-
rowed case by considering only nearest-neighbor-
ing particles in the presence of a large static mag-
netic field and at high frequency. Also, Bersohn
and Das'® obtained some information about the
sixth moment for the case of purely dipolar broad-
ening, from a many-body-analysis approach. The
purpose of our paper is to report the exact ex-
pression of the sixth-order moment of the mag-
netic-resonance-absorption curve in crystals.

II. SIXTH MOMENT OF MAGNETIC-RESONANCE LINE
SHAPES

The normalized moment of a magnetic-reso-
nance-absorption curve may be defined by the rela-
tion

((AV)2">=I_: g =ve) v =ve)av , 2.1)

where g(v —v,) is the line-shape function with the
line centered at the frequency v,. The general ex-
pression for the (2z)th moment originally suggested
by Waller”;and proved by mathematical induction
is
(n)* Tr{fsc, [se- - - 3¢, 5] - - P}

Tr {s?%} ’

(2.2)

where jC is the Hamiltonian of the spin system of
physical interest, % is Planck’s constant, S, is the

W)=
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x component of the total spin operator of the sys-
tem, andthere are » 3C’s in the numerator. Since
we are using the departure of the mean-square
frequency from the square of the main line,
FuiH/1?, as a measure of the mean-square line
breadth of the main line, the subsidiary lines
whose frequencies are near 0, 2guzH/h, and

3gug H/h are not those of interest to us. Conse-
quently, terms in the complete Hamiltonian that
give contribution to the lines centering about 0,
2gugH/h, and 3gugzH/h will be discarded. This
omission is not to be regarded as merely a simpli-
fication. Retention of these terms, in fact, would
be completely erroneous in the computation of vari-
ous mean powers of the frequencies by the com-
mutator method. In the calculations of the second
and fourth moments presented in his original paper,
Van Vleck™ showed that the correct truncated
Hamiltonian of spin systems consisting of only one
type of magnetic active ingredient was given by

5¢=Hgpp 21 Syy+ 20 Ay, S+ 2 ByySpSun s
i &>§ B> 2.3)
where Hj is the constant magnetic field applied in
the z direction; pjp is the Bohr, or the nuclear,
magneton as the case may be; g is the correspond-
ing Landé factor;

-2 2 -3[3 2 1 = o
A=A+ cos®0,, - 3], A=Ay ;
J
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Bjp== 382'827’1-2 H cosz()]k -3, B;,= By ;

Ajk= - 2Z2Jn ;

J;, is the usual exchange integral; z is the number
of electrons not in complete shell in each atom;
6,, is the angle between the vector joining the jth
and kth particle relative to the z axis; S,=2,S,;;
and 7,, is the distance between the jth and the kth
particle. It must be pointed out that in the case of
NMR absorption, where the exchange effect is
negligible, the following relation holds:

Aj=-3B;, . (2.4)
Also, he obtained,
[3@, Sx] =H0g“8i ? Sy! +iz>> Bjk(syjsxk +Sykszj) ’
[3%]
(2.5)

(av?)=n2N-1s(S+1)3 > B, (2.6)
R>j

where S is the spin quantum number of an individual
atom and N is the total number of atoms in the
crystal. Furthermore,

(3, [3, S,]]=H3g?u? ? S.s +§j ([ i%] +[#5])

+ 2 (GRI]+[RG]+[HR), (2.7)
I>RkR>]

where

[ k] = 2HogpnB1aSen* BjuSecsSan + Ay Bya(= S,y SeuSen + SyuSysSes = S2ySen + Sy S5) ’

(2.8)

[j%1] = 2B;,By; Saj ScaSer+ (- Bj1Ag + By Ay = By Ay + Byl Sy SenSn — SyiSerSyt) 5

with
App=Agss Bjr= By

(avty=n*N"t 2 [8B},B}; +2A},(By, - By F +24;,A4 (By; = B;)(By; = By) +2A,, Byu(Byy = By P [55(S +1))

J#r#1

+h* 2N Y {B), 3[S3(S+1P = 3S(S+1)] +2B, 4,3 [25%(S+1)2 — 1S (S+1)] + 1 B2, A%, [A52%(S+1)2 - 25(S +1)] .
R>F

We observe that by the way the (jzI)s are defined
there exists symmetry between j and I:

(4] = [1%]] . (2.10)
From (2.1) and (2.2), the sixth moment can be

written in the form

i B8 Tr [JC’ [JC, [ch Se ]] ]2

( 6) TrST (2. 11)

1

Z=[sc, 3¢, [3¢, S,]1]1

=i [jl+i 2 ((Rl+[RD +i 2 (R +[kY]+[4E]) +i ,Z j([jklm]+[klmj]+[lmjk]+[mjkl]),
3 kR>j I>kr>F m>1 >k>

2.9)

[
or the normalized sixth moment

2 2 2
(ar®y= () - 153—‘;[%“&@1»4)
4 44 6,678
_ usH 2\ _g ppH 2.12
15%3—1(AV N 'L—h—g"a. )

Following Van Vleck’s result of (2.7) and (2.8), we
carried one step further and obtained the follow-
ing expression:

(2.13)
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(K=

where cyclic permutation of indices is to be understood, with

(j1=H3& L3Sy ;

[s%]=

3H(a)gz“12?31k SyiSa+3Hogls szk Sfj SE+ 8Hog15A B (~S2s SyeS e + SxsSys Se = Sa?jsyk +Sy; SZ)
+ A2 B, (8,5 SenSenSen = SesSerSer Sor +SesSysSesSen+ SeSasSenSur +S2iSesSorSen = SasSyiSin +5,1SusS ot
= 838582, = 25,;8, 52, + 83,8,.) + (A% By + A1 B%) (= 8,585, 1Sen + 25, 5Sy5SenSer = S 255,852 + Sy 527 SanSen
= 535525S0n * 255, ScSen— S2SexSon + S5 S8Sen = 25%SkSen = SesSyrSan + Sy S 2+ AppB %S, S35, + BYS, S5, 5

[jk1]=Hogup[6B;2BuS:;SkSer +(=Bj1A;p+ ByAjp — By Ay + BjpAy) (35,SyxSar = 3 SyxSer— SosSsrSyr)]

(7 klm] =

= (8,5S:xSet Szt + 525 sSeaSyt ) [2A 1 Byy By + Ay (= By Agy + By Ajy = By Ay + BypAyr )] = (S,55,S,:S0

+ 8z 1SerSes S,7) [Aj, (- By Ajp+ ByAjyy — By Ay + BipAy )N+ (ijSkay, Set +5:5Sy iSerSer )[ZA”B”BM + (ZA” +B;;)

X(= By A+ By Ay, = By Ay + BipAy)] = S,iSueSeSyi[Ant Ars By + ApjAu By + (Ajp+By,) (- B Ay, + B; Ay,

= BjpAj+ ByyAz) + (A + By )= By Ay + B Ay — ByAy, + By Ayy)] = Su5SyuSerSar [AwrAs B+ ApjAu By

+ By AjeBjx + ByyAw By + 24, By By s + A= BpyAyy + BpAy; — BiyAyy + ByjA ) +2A4 By By + Ay (= ByA,,

+ByjAu = ByyAry + BuAr)] — (S SenSorSer + SesSyrSenSer) [A12 Bl + Ay Boy+ 2(A1A1, By + ApAy By

+ S, 1SexSenSyr (A1 By + Ay jA11Bip— Ay A By + Ay Byp) + 8,5SrSeSer (453 B3, +AuApByp—AnliBry

+A A Bra) + ,5S,1S5:8Su (AjpAu By — Aj1Ay By + Ay ApBrj = By Ay By + Bkaszzg) + S, SyrSenSer (A1 jAw B

=4, Ay By + A1 Ay; Byy = Byy Ay Byt BryAns Bug) + SesSenSenSr [Au By + AjpAyy By + Ay Ay By;

+(Aj5+ Byy)(= By Ay + By Ay, — ByyAy + BjpAy)]

+8);S:1SerSe [Aijlzk + Ay Ay By + ApAyBry + (Ay + By ) (= By Ay + By Ay — B Ay + BjpAy)]

+ 8, 1SewSyxSer [3Aw B By o+ ApjAu By + Ay A By + Ay (- By Ay + ByAjp = BjAy + BjpAy)]

+8:58:1SyeSu [3A;2B;aBar + AjpAri B+ Ay Ajp By + A (- By Ajp+ By Ay — By Ay + By )]

+8%::Sy1 [A ;A By — AuAji By + Ay Ay By — ByAp By + ByypAy By + Ay (= By Ay + By Ay, — By Ay + By )]

+8y;SenSer [ApAr1rBos = AjpAy;Byy + AuAry By = BpAy By + ByAp By + Ay (= ByAy, + By Ay, - By Aw + BjpAy )]

= 8,5 S 24551 (344 By Bjp + AjeAry B + Ay Auy By + (Agy + Ay )= BjpAju+ ByAgy ~ By Ay + BjrAy )]

= 83821 (84,4 Bju By + A A1 Bry + A Ay By + (A + Ay) (= Bjj Ay + ByAjy — BjAp + By )]

+82,5,48,1[3 By B3 +34,,B;, By — Ay B, +AuBi+ApAy By~ AyAy By + Ay Ay By

+(A;4+ Byp) (= By Ay + By Ay = BipAp+ BjpAy)] +S,,5,,52,[3B,,Ba; +3Ay By By, — A;BY +A,BY, +A;Ap By
= A;pA; By + Ay Ay By + Ay + By ) (= By Ay + By Ay — By Ay +BjkAkl )]s

Sy iSyrSer Sem [- 2A;;By,; B,,,+2A;,B;; B, — 2A, B,,;B;,

+2A,4 By Byy + (B + Ayp) (= BrypAy; + BpAy; = BiyAjp + B jA,,)

+(Bjm+Ajm) (= ByjAp + By jAy + ByyAy + By Ayy) + Ay (= By A,y +ByA gy — BuyAy +BoiAy)

+A;p(= BjpAsy + BymAjy = BipAyp + By Avy) = (A + Ay (= BuAyy + By Ay = By Arp + ByAy )

= (A + A1) (= Bpo Ay + BipApy = BupAyn+ BryA )1+ S,S:8Se1 Seml = 241 By By + 241, By By = 2A,,B,, By

+2A 5 By By + By + Ay) (= Bjy Ay + By Asp = By Ay + BjpAy) + (Bep + Apy) (= ByyAy + By Ay = ByyAy,

+ By Arj) + A= BunAy + BywAus = By mAim + BuyAym) + Ajy (= Buy A+ By A~ Bur A + BpAy)

= (Aym+ Ay )= BinAjp + BymAjp = BimApm + BjpAum) = (A + A )(= BjnAjy + ByuAyy = By Ay + By Ayl

+8;7Sc2Sx Sym[— 24, mBipBym + 2A; By By — 2A,, By By +2A,, By By

+(Bjy +Az)(= BynAw + BinAw = BuAym + BuArm) + (Bjy + A5 )(= BuyAps + BuAmy = BpyAy + BrpAyy)

+Apm(= By A+ ByAjp = By Ay + BipAy ) + Ay (= BjpAp + By Ay — By Ay + By Ayy)
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= (A1 + Ay ) (= BypAgy + BumAyy = BinApm + BjkAkm) = (Aem +Ap) (= BypAgy + BiyAjy = Biphyp+ ByAy,)

+ Swssz,,S‘m[ﬁijBjkBﬂ = A} By By + Ay By By — Ay Bpp By + Ay By By — A;; By By, +Ay; By By,

+(Byp + Ayn)(= BypAy; + BypAry = ByAg + BiyAge) + (Byy + Ayy) (= By + BjyApy = BugA gy + BryAyy)

+(Byy+A;) (= BpyApy + ByApy = By +ByAy) = Ay (= BupAy + BBy = By + By

= Apm(= BipA 1+ BupAim = BipAmp+ BrmAps) = Ajp(= By Ay + By A = By A + BypAu)]

+ S5, Sy1Syml= (Bye + Ajp) (= BuyAms + ByAms = BmAu + BusAu) = (B + As)(= By + By

= BiyAps + BipAmp) = (Bjy + Ay )= By + BimArs = BemArm + BurArm) + Agm(= BrpAy s+ B,kA‘”

= By + ByyAj) + Ay (= ByyA s + BipApy = BupApy+ ByAp) + Apy(= BuyAys + ByAgj = By Ay + BpyAy)]
With the aids of (i) the usual quantum-mechanical-operator commutation relations such as S,;S,, - S,,S, 4 ‘

=140,,S,;; (ii) simple trace equations such as TrS,,S,;=0 when j#I; (iii) from the manner the cyclic terms
are defined, relations such as

Tr([§] (%)) = Tr([§]1[5%]) = Tr ([ ] [j%1])= Tr([§] [jRIm])=0 ,
Tr([j2][jklm])=0, Tr([jel][jklm])=0, Tr([jklm][klmj])=0;

(iv) the cyclic property of the trace, (v) the commutativity of multiplication of scalar functions; and (vi)
flipping indices, we obtained, from (2.13),

—TrZ2=R+S+T+U+V+W, (2.14)
where
R= Tr{‘j& [P +2,§, ({51 [5%] + (%] [%]) +2§J [k +[j*] [RID} 5 (2.15)
S= Trt Ek ([R] [32] + [Ri) (3] + [ i%] (4] +[Ri1 [52D) , (2.16)
T=Tr 2 ; >§>, ([jRl] [22] + [jr1] [ 1] + [ j%1] (k] + R3] [R1] + [R5] [52] + (23] [ %] + [2ik] (k0] + [2iE] [ 1] + [3k] [ jF]
+[jrt] [1k] + [ jR1] (1] + [ R1) (k] + (k1] (1] + [RE] (1] + (k1] 7] + [Zik] (1] + (4R ] (4] + [LiR] [R5]) ,  (2.17)
U=Tr 2o ([jRIP +2[jrl] (k1] + (RGP +2[ k] [lik]+ LR + 2(kY] [Lik]) , (2.18)
ILO>rR>]F

v=2Tr 2 ([jkl] [klm] +[ktm] [ jim] + [ k1) [jlm] + [ jkm] [ jtm] + [klm] [jkm] + [ jim] [ 1] + [ j&1) [1mk]

m>l >kr>§
+[klm][Imj) + [ k1] [kmf] + [ jem] [lmj] + [klm] [kemj] + [ilm] [R1j] + [jR1] [mEl] +[Rlm] [mjl] +[ jkI] [mjk]
+[ jem] [mjl] + [klm] [mjk] + [ jlm] [Lik] + [R1] [RIm] + [tmE] [ jIm] + [Rl] [ jem] + [kmi] [ jlm] + [ImE] [ ikm]
+[1mg] [R1)+[R1j] [imPE]+ [1mP] [1mj] + [k ] [km] + [emj] [Imj] +[1mE][kmj] + [imj] [RG] + [RY] [mkl]
[imk] [mil] +[%1j] [mik] + [kmj] [mjl] + [tmk] [mik] + [1m3] [1k] +[1jk] [Rlm] + [mEI] [ jim] + (1] [ jkm]
+[mjk] [ jlm] +[mkI] [ jem] +[mjl] [ jR1] + [Lik] [ImE] + [mEL ] [Imj] +[1ik] [kmi] + [mjk] [Imj] +[mEI] [kmj]
+[mj1] [R1j] + [Tjk] [mEl] + [mEl] [mjl] + [Lik ] [mik] + [mik] [mjl] + [mkl] [mjk] + [mjl] [tik]) , (2.19)

+

w=Tr 2 ([jkmP +[klmi % + [Imjk]? + [mjrl]?) . (2.20),
m>U>k>§
|
III. EVALUATION OF THE SIXTH MOMENT I. Some of their derivations will be given in the
Appendix. Since there are only two indices in-
A. Evaluation of the Two-Particle Interaction Terms volved, the calculation is straightforward but ex-
tremely cumbersome. Therefore, we omit the
To compute the two-particle interaction terms, tedious details, but just present our results. With
we have to evaluate (2.15). The trace equations the help of Table I and the familiar commutation

to be used in the calculation are listed in Table relations of the spin operators, we finally obtain,
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(K=

by collecting all the nonvanishing product terms 2TrY, (%] ] +[ 7] [i%]) = g_ HE g‘ P8 iS3(S +1)2
as given in (2. 15), B>5

T[] = NHE Pudis(s+1)(25+1)" | 3.1) x (25 +1)" Ej B, (3.2)

J

TrE [j% ] +[ k] [%1]
=Hig*ub(2s+1)¥s z(5+1)ZZ) B2, +HEg®pg(2S+1)V S3(s+1)? [2s(S+1)—%]E A%,B%,
+H2g? 1% (25 +1)Y SE(S+1P [4S(S+1) - 1]2 Ay B3, +Heg?15(25+1)Y S3(S+1) [s(su)-ﬂg}j B,
+(2S+1Y SHS+124 [S(S+1F -S(S+1) %]Z) B, +(2S+1)V S23(S+1P 4 [ S%(S+1 - ¥ s(5+1) + ]
x;L:,jA,,,Bfk+(2S+1)”Sz(s+1)2§f[2§7gq SES+1 -4 5(s+1)+§83] Z} AZB, +(2S+1)V S3(S+1P A[ RS (S+1)
—2‘%&8(8+1)+7-',&5i],§/jA3,,B§,+(2S+1)st(s+1)2511‘[zs SE(S+1F ~ R S(S+1) + 1 ]EAH:BH:' 3.3)

and

(2.15)=(3.1) +(3.2) +2(3.3) . (3.4)
After dividing (3.4) by the equation

KB TrS2=4NS(S+1)(2S+1)¥4® 3.5)

the two-particle interaction terms for the second and fourth moment in (2.12) will be cancelled out. If we
let G denote the two-particle interaction terms of the sixth moment, then

G= 2N-1h-°Z‘ B A[S%(S+1P =S2(S+1P +35(S+1)] + B, A, b [3 S3(S+1)° - UL S2(S+1)2 +445(S+1)]
+BHALL[Z0 53(S+1) ~ 4 S%(S+1P + 83 S(S+1)]+BSAL [ B 53(5+1)° - 20 52(S+1 7 + 18 S(5+1)]

+B2 AL [ S3(S+1P - S%(S+1P+ 3 s5(S+1)] . (3.6)

As pointed out by Van Vleck,' a necessary criteri- G, = N1 58 zhse (7174623 - 507922 + 1224)«)2 BY,,
on to check the correctness of the algebra is that

when S=3 and the B’s are assumed to be equal to 3.7
a constant, independent of their subscripts, all the where x=S5(S+1) and G, denotes the two-particle
terms involving the A’s will vanish and should not interaction terms of the sixth moment for the pure-
appear in the moment of any order. To check the ly dipolar case.

correctness of our algebra for the two-particle
terms of the sixth moment, we find, indeed, all the

B. Evaluation of the Three-Particle Interaction Terms

terms involving the A’s will vanish when S=4%, The three-particle interaction terms come from
satisfying the necessary criterion suggested by (2.16)—(2.18). Since (2.16) has already been in
Van Vleck. For the case of purely dipolar broad- the form 3, ,, ;, notation, the calculation is
.ening, we set A=—-3B, and (3. 6) reduces to straightforward. We obtain.
|
(2.16)= 20 [Hig®pid (25+1)"N*B2, B}, +(2S+1)"\*% (31 - 1) (364%,B,,4% B,, +18A%,B,,A,, B2,
1#j#k
+18A%,B;;A;, B2, - 9A,,B5,A,,B3)] . (3.8)
r

Equation (2. 17) can be evaluated in two ways: (ii) by actually picking out the nonvanishing terms

(i) either by making use of the symmetric property and redefining terms, then finally flipping indices.
between j and [ in [j%7], and flipping indices, or Both approaches lead to the same following result:
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@.17)=2 27 Tr[jki] [jk] +[je] [k1] + [jR1] (4] .

1#5#k (3.9)
The difficulty of evaluating (2. 18) lies in the cal-
culation of the cross-product terms. Though we
still have symmetry between j and [ in [jkI] from
the way we construct the [ jk], ours would some-
what be different from Van Vleck’s. In our use,
symmetry comes from a pair of successive terms
inside [ jkI], rather than just from a single term.
This means

Tr[jkl] (k1] # Tr[lkj] [kY] .
)

D=N"'n*® 2. {B4yB%L(*-

1#j#k

- A;B;B5 B0 - 53) - A,,B},B;, By & (18x° -2%)] +[A%,B

+AZ,B% B% &5 (212 - 93?) - A%, B%,B,,B,, %

1719
Whereas in Van Vleck’s case, he had
Tr[jkl] [%Y] = Tr[ikj] (k4] -

Therefore, we have to pick out the actual nonvan-
ishing terms and then redefine them. Again, the
process is cumbersome, and we just present the
result. Combining (3.8), (3.9), and (2.18) together
and subtracting the three-particle terms of the
fourth moment in (2.12), the three-particle inter-
action terms of the sixth moment are denoted by D,
where after dividing out by TrS2 with x=S8(S+1),

$2%) +[A4,,B,,B5 1 (\® =322 - A;,B;,B;; By £ (° - 3% +4,,B3,B% & (96)° - 4T»%)

By #5(592° - 28)%) — A%,B,, BY, (8623 — 37)2)

& (7833 - 21»%) + A2, B2, B%, & (168)° - 3¢ »2)]

+[A1BiyA B3, 35 (118X% = 6132) = Ay By By BYy 45 (100° - 3%) - = AyBy; A B, 15 (462° - 1%)

+A;B%A, B2, & (383 - 63%) - A,,B,,A,,B,, B2, & (902° - 45)%) - A, B;,A,, BS, A (28)% - 16)%)

+AuA;BY (1833 = 322)] + [4%,B,,A,, BE, (15003 —902%) - A%, B;, A, B2, £ (172)% - 48,2)

+A%,B%,A, B, & (18833 —121)%) - A%,B,,B;,A,,B,, 1
& (802 —40x?) + A%, B, Ay BL, &
83x%)] +

- A5B%Au By &
+A kAlekl 15 (114)2

x[+A%,B;,A;, (B, — By, )35 (882° —462%) +A3,A,, B% & (6023 - 15)%) -
(13023 - 852%) -

+AjkAJlle 5 (200* - 522 )] [+A?kBjkA By 15

5(2262° -
(762° - %) - 42,4, B}, £ (24X° - £22)
[ - AjxB A BuAsi By 35
+A; AuAj B} d5 (300° - 2532)] + A3, B, By, (B;, — By )d (88X° - 36)%) +A},B,,(B,, - By,) &5

4852)+ A% A, By BZ, £(84)° - 4252)

& @ -% %) - A,,B;, A, A, BE & (32)% - 24)%)
(402% - 102?)
A%A;, By By #5 (80X° — 203%)
AZ,B,, AL B, & (244)% - 148)?)

+A3 B3 A% &5 (560° - %)+ A3, B2, A% & (1723° - 1242%)] [+ A;,A,,A2, B2, & (44° - 3822)

- A; B3 ALAL & (4403 - 2303) + A, B, A B Al B (403 +20%) - A A, B AL B, 5 (162° - 22)0%)] .

(3.10)

To check the correctness of the algebra in (3.10), we find when S=3 and the B’s are assumed a constant
value, independent of the subscript, all the terms involving the A’s will vanish. For the purely dipolar

case, by setting A=-%B, (3.10) reduces to

_ar-17-8_1
D,=N"h""7s
1#j#k

- (6002® - 3602%)B3,BY,

C. Evaluation of the Four-Particle Terms

The contribution of the four-particle terms to
the sixth moment comes from (2.19) and (2. 20).
The calculations are actually less formidable than
they may seem. In evaluating (2.19), we observe
the following properties: (i) only the last six
terms in the three-indices cyclic terms, in the
order of their appearance in the cyclic-permutation
bracket terms as defined in (2.13), 18 to 23, will
give nonvanishing contributions. (ii) as 18 and 19,
20 and 21, 22 and 23 are of the same scalar function

27 [(36602° - 1035X%)B},B%, +(696)° - 27)%)B},B;; B, + (2016)° - 657X%) B3, B,, BZ,

- (522)° - 459»%) B3, B3 B4 ] . (3.11)

forms, there would be, basically, six types of
scalar functions; (iii) each term like Tr[jkI][klm]
would give rise to two nonvanishing products;
(iv) all the trace values are equal in magnitude,
namely +ga*(2S+1), where A=S(S+1); (v) sym-
metries between the first and third indices inside
the three-indices cyclic term, e.g., [j&I]=[I%}].
Then, by picking out all the nonvanishing prod-
ucts, factorizing out the common trace value, re-
arranging terms, and then flipping indices, we ob-
tained the following result:
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4
(2.19)=2(2S+1)
81 1#j¢m#k

+(23 of [kIm])(18 of [jkI]) - (18 of [jkI]) (21 of [ Imk]) - (22 of [ jkl]) (20 of [Imk])} .

To evaluate (2.20), we notice the following
properties.

(a) There are only five terms in each of the four
four-index permutation brackets. All thetraces of
the cross product of terms in each of the permuta-
tion brackets vanish. If we label the terms in
[jkIm] by names of ¢1, 61, y1, al, and 81, re-
spectively, in the successive order they appear in
the bracket, use the numeral 2 to denote terms
from [klmj], 3 from [lmjk], and 4 from [mjkl]. We
observe that all the trace values of these terms
areequalto g2 *(2S+1)¥. After bringing out all
the trace values, we have again to deal with scalar
functions. Without further confusion, we call
these functions according to the previous notations.

(b) The functions ¢1, 61, and y1 are symmetric
with respect to the indices j and ; functions a1l
and Bl are symmetric among indices %, I, and m.
Consequently, the squares of the functions have
the same kinds of the symmetries as the functions
]

Sp=N-"n®4x® 2
m#l#FR#]
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2> {%(20 of[jIm]) (20 of[ jem]) + 3(23 of[ jkm]) (23 of [ jk1])+ 3(19 of[ jem]) (19 of [j kI]) -

(3.12)

[

themselves.

(c) Furthermore, if we interchange j and %, ¢1
and 91 will interchange; if we have j—1, 2—m,
I-%, m~j, then ¢1~9y1. This means ¢12, 912
and 1% will have the same functional form; where-
as a1? and 1% will have different functional forms.

Then by flipping indices bringing out the common
trace value, we obtained

(2.20)=(25+1)" &\ 2
1#j#kR#¥m

(o1 +3al?+4p12)

(3.13)
Therefore, the total number of all the four-particle
interaction terms of the sixth moment is given by
Xr, where

Xr=(3.12)+(3.13) . (3.14)
After carrying out the multiplication and regroup-
ing terms, and dividing out by A% (25+1), the

contribution of the above equation (3. 14) to the
sixth moment is seen to be S, where

(15B2,B% B%, — 6A,,B,, BBy By B~ 6A,,B,, B2, B% +48A,,B,, B, B2,

2
- 36AkajkBmBimBil - A?kazBim + 30A3kB§mB?m + 24‘4?1@3 imBkl - 26Ajsz§mBﬂBkz +3Aj2kleBijlekm

- 30A%,B%, By, B; + 204, B, A, By By Byp — 50A;B;4A; By By By +6A,, By Ay By BE, +11A,,B, A, B, B

+16A,,B;,A;; Ay By By — 6A;,B54Aj 1 By BymBry — 184, B, A, B,,B,am - 6A”B,zlAj,,Bj,¢Bfm

- 10AjkBlkAjl BkmBijkt - SAJkAlelmBijil +49AjkBjkAleth?m - 26AjkB)zlAlejt B?m-“- 18AjkAﬂB§lB?m

+2A,,A;, B2, B2 +124,,A,, A, B, B2, ~ 44, A1 nA;1 By BY, —4A,,A,, Ay, By B2, — 124, A, Ay By B2,

+ 18AjkAlelmBlmB:m +124;,A1,A7 BunBu Bjm = 6413 B1mAimAn B +445A1 A mBimBl - 104,41 Ay By Bim

+64;,A;,A, By B 2t ZGAJkAleImBlmBiI ~44A,,A;,A1B1nBymBu + 164, BenAsy By Asn By

+26A,,B41 A1 BinAimBim +18A;,B3A s BrwAjy Bym — 4413 A1 mA By Bjm By — 184, B, Ay Bum Ay By

+6Ajt leAjkBlmAijkl - 14AlelejkBlmAkl Bjm + laAlkBkmAjl leAl'thm - 26AjIleAlthmA]kBkt

+16A;, BynA 1 BipAim Bim — 344, By Ay B pAjmBim +16A;, Bj1 A1y BrwAge By — 3245, By Ay BimAj By
+14A,,B;,A;; Bjy A Bjm+36A%, B4 A1, By — 36A2%, B, BupAy By +36A2%, B, By Ay By — 36A%,B,, B, Ay By

2
—46A;,A;; Bj; Bjm By + 18A?kBlm BumAjy By + ZGAjzkAnBthijkt +2A§kBlmBk1 Ay By +8AjakAleijlekm

—6A%,B2,A,, By —14A%, B2 A, B,, - 36A%,B,, B, A;; B;+38A%,B2, A, B, +10A%,B%, A, B, ~ 16A%,B%, A, B,

+ 16Ajsz ?mAjt By + 8AjzkA,§z B?m + ZOAszjzk im = 40A12kAjzt B; B+ 12A12kAf1 By Brm + 24A3kAme/mBkl + 24A§kA?mB§I

~48A%A7, By By + 8A5n At Apy Bl — 845mA 1 BrnAyy By + 8245,4,4A;1 By By +40A%, A A By

- 40A2,A;,B;,A; By — 4842, A, B, A; By +28A% A, B A B, — 24A%, Ay By A By, — 24A%, A By AL By

+ 24A§mAjl B AjBim + 16A§mAfl BymA;eBjr — 4A? »B fmAﬂAlan - 4A12 AemBemAst Bur ~ 4A§kAk mBimAj1 B
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- 442 Ay B Ay B+ 4A% Ay Bum Ay By + 12 A3y Ay By Ay By + 16 A2 A By, Ay By ~8 A2 Ay By Ay By

-84 B, ApAy+4A%, BA A Ay +22A% Ay By Ap By +12 4%, Ay By Ay By +6 A%, Ay By Ay By

- 24’4717:’4.112 BJkA.H Blm - 20A?mA!l BJlAjh Bkl - SAIkAlmA“Akl B?m"’ 4Alm BlmAhl BijJIAJk

+8A By Ay By A A — 124 By Ay A Ag 1 Bum + 8 Ay By A p A1 Ary Bym+ 4 A gy BumAgn Aim Art Bym

—8A.¢k BjkAlmBlmA]lAkl +4AlmBlmAkl BMA.H - 52Ajk B!mAkmAlmAJ! Bll+ ZZAhmAlmAll BJlAlh th

+18A4,, A1 Ay A Bl +8ApA 1 AuArn BypBy+4 Ay BpA iy BinAj Agm) -

(3. 15)

To check the correctness of the algebra, all terms involving the A’s will vanish when the B’s are assumed
a constant value independent of the subscripts. For the purely dipolar case, Eq. (3.15) is reduced to S,

‘where

XS
Sp=N1h® == 2
’ 2187 jymegsen

- 96B%, B, B, By +12B%, B3, By By + 174B% B, By, By By — 24 By, By, By By By Byy) -

(46283, B%, B2, + 303B%, B?, B%, + 360 B2, BE, B,,, By~ 3682, B2, B,y By

(3. 16)

At last, the sixth moment as given by (2. 12) is finally reduced to

(av®)=(3.6)+(3.10)+(3.15) .

(3.17)

The normalized sixth moment for the purely dipolar case is then given by

1#§#k

(AV®Y= (3.7) + (3. 11) + (3. 16) = N ™ ™® pzhes (7746)° — 507922+ 12242 hZ))! B+ Nty 2i [(3660X°

- 1035)%) BY, BZ, + (696)° - 27)%) B!, B, By, + (2016)° - 657)%) Bj, Bf; By, — (6002° — 3602%) B}, B},

a8 A
- (522)° - 459\%) B3, B%, B, ]+ N~ h™® 2

2187 1#¢m#j#kr

(462B%, B2, B%,+ 303B%, B, B, + 360B%, B, B,, B,

- 36 B%, B%,, By, By, — 96B%, B, By, By, + 12B%, B3, By, Byy + 174B%, By By By Buy — 24Byy By By By By, Byy)

IV. CONCLUSION

It is found that in the case when exchange interac-
tion is present the sixth moment consists of five
types of two-particle terms, 47 of three-particle
terms, and 115 four-particle terms. Two types
of four-particle terms, Ay, By; By, Byn Ay Ay and
AZ, Bf,,,A,,, A;,, do not appear in the final result,
as they happen to have zero coefficient. As the
trace value of the four-particle terms is much
greater than the two- and three-particle terms, it
is only natural that most of the contribution to the
sixth moment should come irom the four-particle
terms. By looking at the sixth moment for the
purely dipolar case, we observe that there are one
two-particle term, five three-particle terms, and
nine four-particle terms, even though the type of
term B, By, B,,, B,,, B, has zero coefficient in the
final result.

APPENDIX: EVALUATION OF SOME TRACES
A. Trace Value of Odd-Power Spin Operators Product

We first want to evaluate Tr S, S,,S,,. We define
the ladder operators S,, and S,_ where

(3.18)
[
Sya=Spx+15y (A1)
;=S4 =Sy . (A2)
From (Al) and (A2), we have _
Syx= 'z.lf(sp“‘sj-) s (A3)

Sy9= (S, = S;.)/2i . (a4)

It is well known from elementary algebra'®~® that

i mt=% (25+1)[S%(S+1)% - 1s(5+1)], (A5)
-S
S
2im"=0;
-S
‘and
im%%s(su)(zsu), (A8)
-S

where m is either an integer or half an intger, and
n stands for an odd integer. Then from elementary
quantum mechanics, 2 we have '

Tr28%,5,= 55 {[S(S+1) ~m(m+1)]
ma=S
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x[S(S+1) =(m+1)(m+2)]m}. (A7)
By means of (A5) and (A6), (A7) is reduced to
TrS2.8%.5,=-5(S+1)(2S+1)[£ S(S+1) -2].

(A8)
we have

In the same fashion,
TrS3,8%.S,,=-TrS;.5%.S,,
=(@S+1)S(S+1)[£S(S+1)-2]. (A9)

Also, by the same reasoning, we have,

TrS,,S;.8%= Z)[S(S+1) m(m -1)]m

3 S, —
Trsijsy,s,ﬁ'rr(Si*; s,_) < 40 =Sy s”——— Tr (S

2i 164

where properties of the ladder operators in taking

the trace value such as Tr S*_=0 have been utilized.

Then by (A9) and (All), we obtain

TrS3; Sy, Sy = [s (S+1)-3](2s+1) . (A14)
Following similar procedure, we have
TrS%,S,;S,;=TrS,;S5;S,;=TrS,;S,; S5,
=Sl ss+1-H@s+D . (A15)
1

Alternatively, we can get (A15) from (A14) by re-
calling that the trace value is invariant under
orthogonal transformation, in our case, rotation of
‘axes. ' "
: j

TrSt, S2,=5 Tr(- 4sis§_—125,+s,_ s —125,,5;.5,,+168,,S,. 8% +657.55,5,,) .

Then from the definition of the ladder operation,

E. T. CHENG AND J. D. MEMORY 6
=(2S+1)SS+ 1) [&s(S+)+F]. (Al0)
Likewise, we have,
TrS,.S,;.8%="TrS,,S,.52
=(25+1)S(S+1)[£ S(S+1)+&] . (All)

Making use of the cyclic property of a trace and the
following commutation relation we find

[Ssj9sj+}:sj4~,

[S‘j ’ Sj-]= - Sj- ’ (A12)
[S,.,S;.]=25,, .
We have, from (Al) and (A2)
_8%,8,; -8%,8%.8,,~25,,S5,.8% - 25,.5,,8%,;) , (A13)

r

B. Trace Value of Even-Power Spin Operators Product

The derivation of Tr SJ; is straightforward from
the fact that

S

_ZS) mb=3S(S+1)(2S+1)[SHS+1)2=S(S+1)+ %] .

(A16)
Next we want to evaluate TrSj;S%,. We first
notice that
s
TrS;,S;.8,=21 [(S+1)S —=mim = 1)]m
-S
=3S(S+1)(25+1) . (A17)

Then by definition of the ladder operators and all
previous properties, after some tedious calcula-
tion, we obtain.

(A18)

we have.

TrS3,S5.= 'S {[s(s+1) =m(m = 1)] [S(S+1) = (m = 1) (m = 2)] [S(S+ 1) = (m - 2) (m - 3)]}

m==S

= (25+1)S(S+1)[S2(S+1)2 8-S+ DE+ ],

where (A5), (A6), and (A16) have been used in the

simplification. Then by (A9), (A10), (A17), and

(A19), (A18) can be simplified to
TrSi,S2,=4(25+1)S(S+1)

|

Tr S}, %= Tr 8}, 85,=Tr 8}, 55,=Tr 5,5,

(A19)

r
X[LS¥S+1)2+4S(S+1)=%].  (A20)
Either following the same procedure or by the in-

variance of the trace value under rotation of axes,
we have

=TrS4,5%=Trs% 5% =+(25+1)S(S+ 1) [t S*(S+1)%+& S(S+1) -] .

(A21)

C. Trace Value of Homogeneous Product of Spin Operators

Finally, we want to derive Trs2,5% 52,

We first notice that

Trs2.s2 .52 =Es_7 {[S(S+1) = mlm +1)] [S(S+1) = (m +1)(m +2)]m?}

—(:zs+1)s(s+1)[sa(s+1)z 5 +S(S+1) 5 - &1 .

(A22)
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TABLE I. Trace values of the one-particle spin

operators.

Tr Sgy=TrS4=TrS,=0;
Tr 8%,=Trs%S,, =Trs%S,,=0;
Tr S;5%=0, j=k (etc.);
Tr Sy 8,52 =TrS3,8,;=TrS5,,5%,=0 (etc.).
Tr 8%, =TrS,=TrS%,=35(5+1) @S +1);
TY 5.45,4Sey =11 +1) @S+ 1)V,
TrSi=Trs=Trsl =5 [S(5+1) - 3IS(s+1) 25 +1)¥,
Tr 82,82, = Tr $%,82,=Tr §%,S,

= 113S(S+1) +41S(S+1)(25+ 1)V,

2 g2 o2
Tr §2,82,5%; = Tr 83,5%,52,
=4ASHs+1) - §S(S+1) +3] S +1) 25+ 1)V,

(This is derived directly, not by the cyclic-permutation
property of the trace.)

Tr S%,S%; = Tr S45% = Tr 84,52, = Tr 84,5, =Tr 3,54,
=TrS4Sh, =4[ SHS+1) 2+ 4 5(S+1) — $]S(S+1)(2S+ 1)V,
TrS§;=Trs,=Trs%=1[s%(5+1)2-8(5+1) +1]15(5 +1)(25 +1)
Tr S34SysSes =TT SsS34Ses = TS S5

== (1/104) [S(S+1) - 31S(S +1) @S+ )",

Similarly, it is found that
Trs2 5%, 82, =Trs?, 52 5% (A23)

Then expressed in terms of ladder operators, we
have
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Trs? 52,82, =~& Tr(12s%, - 52,52 5%,
- 52 52,52 -85,,5,.8%). (A24)
From (A11), (A23), and (A22), (A24)is found to be
TrS2,52,8% =1 (25+1)S(S+1) [ S3(S+1)

-5 S(s+1)+3] . (A25)

Likewise, we have

TrS2,82,5%, =Trs2, ,=4(25+1)8(S+1)

X[ sa(s+1)z-1%s(3+1)+%] .

It is interesting to notice that in (A26) the permu-
tation is not cyclic and yet both trace values are
equal. To check the correctness of our algebra,
we observe that when S=%, (A16), (A21), and
(A26) are all reduced to the same value, because
in this special case, we have TrS% =TrS% =Trs2
=1; a unique value. In all our previous deriva-
tion, we assume that our quantum system consists
of a single particle which can have (25 +1) quantum
numbers. Physically, this means we have a den-
sity matrix of (25S+1)x(2S+1) elements. In a sys-
tem containing N particles, we must use a statisti~
cal ensemble described by a (25+1)"x (25 +1)" den-
sity matrix, For a system of N identical particles,
the quantum wave function is a direct product con-
taining N eigenstates each. This means that in-
stead of (25+1) eigenvalues for a single particle at
a time, we can have (25+1)" by evaluating our
eigenvalues of N particles simultaneously for a di-
rect product. This implies we must replace
(25+1) by (25+1)" in all our previously derived
equations. Hence all the trace equations listed in
Table I.

(A26)
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