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Several recently developed theories of broad-line NMR presume the knowledge of the first
several moments of the line shape. An exact expression for the sixth moment for the purely
dipolar-broadened case is presented here. The result indicates that the sixth moment con-
sists of one type of two-particle term, five types of three-particle terms, and nine types of
four-particle terms, one of which has avanishingcoefficient. Most of the contribution comes
from the four-particle terms.

I. INTRODUCTION

Historically, the first serious attempt at mea-
suring resonance in bulk matter by looking for the
resonance of Li in lithium fluoride and for the
proton resonance in potassium alum by using a
calorimetric method was made by Gorter. ' The
first successful NMH absorption measurements
were made independently by two groups: Purcell,
Torrey, and Pound and Bloch, Harrison, and
Packard. 3 Since then, various broad-line-NMR
theories have been suggested by Bloembergen,
Lowe and Norberg, Lee, Tse, Goldburg, and
Lowe, Evans and Powles, Demco, Gibbs, e

Fornes, Parker and Memory, '0 Gravely and Mem-
ory, and Lado, Memory, and Parker. '~

The majority of recent developments in broad-
line-NMR line -shape theory can be classified into
three groups. (i) Since the original work of Lowe
and Norberg, who proved that the free-induction
decay (FID) was the Fourier transform of the ab-
sorption curve, various methods of approximation
have been proposed to evaluate directly the time
autocorrelation function of the transverse mag-
netization; among those are methods proposed by
Evans and Powles, Lee, Tse, Goldburg, and
Lowe, Demco, Gibbs, and Fornes, Parker, and
Memory'; (ii) expansion theorems have been
developed which are based on some parameters
related to the crystal structure and a knowledge
of the first few moments of the line shape, ex-
amples of which are the Gram-Charlier three-
moment expansion suggested by Gravely and
Memory, " and the generalized Neumann expan-
sion obtained by Parker'; (iii) various approx-
imate expressions have been proposed for the
autocorrelation function or the associated mem-
ory function based on the general mathematical
techniques employed in many-body problems or
nonequilibrium statistical mechanics, such as pre-
sented by Lado, Memory, and Parker. '

A number of these approaches have in common
the fact that they presume the knowledge of at least

the first several of the line-shape moments, in
terms of which the corresponding function of phys-
ical interest can be expressed approximately.
However, the calculation of these moments, based
on Van Vleck's formula, ' involves the evaluation
of the traces of the square of some complicated
quantum-mechanical operators, and there is no
general systematic pattern of evaluating the double
sums involved in different types of particle-inter-
action terms. These facts have made difficult the
calculation of moments other than the second and
fourth, which were given in Van Vleck's original
paper.

As for the sixth moment, Glebashev" obtained
an approximate estimation for the exchange-nar-
rowed case by considering only nearest-neighbor-
ing particles in the presence of a large static mag-
netic field and at high frequency. Also, Bersohn
and Das' obtained some information about the
sixth moment for the case of purely dipolar broad-
ening, from a many-body-analysis approach. The
purpose of our paper is to report the exact ex-
pression of the sixth-order moment of the mag-
netic-resonance-absorption curve in crystals.

II. SIXTH MOMENT OF MAGNETIC-RESONANCE LINE
SHAPES

The normalized moment of a magnetic-reso-
nance-absorption curve may be defined by the rela-
tion

&(av)'" ) = J g(v —vo) (v —vo)~ dv, (2. l)
where g(v —vo) is the line-shape function with the
line centered at the frequency vo. The general ex-
pression for the (2n)th moment originally suggested
by Wailer' and proved by mathematical induction
is

(ih)-~ Tr {[X,[SC . [X, s.J
.]'])

Tr (S'„f

(2. 2)
where $C is the Hamiltonian of the spin system of
physical interest, h, is Planck's constant, S„ is the
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x component of the total spin operator of the sys-
tem, andthere are n X's in the numerator. Since
we are using the departure of the mean-square
frequency from the square of the main line,
g V08 /h, as a measure of the mean-square line
breadth of the main line, the subsidiary lines
whose frequencies are near 0, 2gV0H/h, and

3gp0H/h are not those of interest to us. Conse-
quently, terms in the complete Hamiltonian that
give contribution to the lines centering about 0,
2g p0H/h, and 3gVsH/h will be discarded. This
omission is not to be regarded as merely a simpli-
fication. Retention of these terms, in fact, would
be completely erroneous in the computation of vari-
ous mean powers of the frequencies by the com-
mutator method. In the calculations of the second
and fourth moments presented in his original payer,
Van Vleck' showed that the correct truncated
Hamiltonian of spin systems consisting of only one
type of magnetic active ingredient was given by

x=Hgv, Z 8„+Z A,s s, +Z B,„s,„s„,
where H~ is the constant magnetic field applied in
the z direction; p.~ is the Bohr, or the nuclear,
magneton as the case may be; g is the correspond-
ing Landd factor;

A»=AJk+g p yak[ —,cos 8» —k], A»=A», ',-9 3 2

Byk ——3g p yak [0 cos 8~k ——,) Bja = Baj

j.
Aja= —3B (2.4)

Also, he obtained,

[X,S„]=H0gV, i Z 8„&+iZ Bz (8„&8, +8„,8»),
(2. 8)

(hv )=h N S(S+1)—', Z 2P)k,
a&j

(2. 8)

where 8 is the spin quantum number of an individual
atom and N is the total number of atoms in the
crystal. Furthermore,

[x, [x,s.]]=H'og'&' ~ S. +~ ([ik]+[hi])
j a&j

+ + ([jki]+[he]+[leak]), (2. 7)
t&a&j

where

Aja= —2z Jja,.

J» is the usual exchange integral; z is the number
of electrons not in complete shell in each atom;
9» is the angle between the vector joining the jth
and kth particle relative to the z axis; 8„=$~S„~;
and y» is the distance between the jth and the 4th
particle. It must be pointed out that in the case of
NMR absorption, where the exchange effect is
negligible, the following relation holds:

with

[J ] — 0gP0 + jk gk( 8»skks k+-Syksyds„i —Syfs„k+Szjtkk)
2

[jkl] = 28~k Bkg Sky 8„ksk(+ (- B~(Ayk + Bk)A~k —BJ(Ak( + B~kAk( )(8»S,ksgq
—8» S„ks„g),

(2.8)

Aj.a=Aaj, Bj~=Baj,

(hv ) = h N Z [3B~kEP)( +2A~k(B~g - Bkg) +2A)kAkq(B(( —B~k)(B)g —Bk))+2A)k B~k(B(g —Bk() ] [ks(8+1)]
j AaA l

+h 42N ~ Q JB~k —,'[S (S+1) ——,'S(S+1)] +2BqkA;kr'[ ', S (S+1) ——,'S—(S+1)J+-,'BqkA~k[ ', S (S+1) ———,'S(S+1)]].
(2.8)

We observe that by the way the (jkl)'s are defined
there exists symmetry between j and E:

(2. 10)

From (2. 1) and (2. 2), the sixth moment can be
written in the form

I

or the normalized sixth moment

2 2 B2
(nv )= (v )-15 " -'-(av )

h

4 4 4 6 6~6
15g LBHO(n 0) g I B 0 (2. 12)

—h-'Tr [X, [X, [X, S, ]]]'
TrS„

(2. 11)
Following Van Vleck's result of (2. l) and (2. 8), we
carried one step further and obtained the follow-
ing expression:

z= [x, [x, [x, s„)]]

=i Z [j]+i 2 ([jk]+ [kj])+i Z ([jkl]+ [klj]+ [ljk]) +i 2 ([j»m]+ [klmj]+ [1mjk]+ [mjkl]),
A&f $ &a&j m&l &a& j

(2. 13)
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where cyclic permutation of indices is to be understood, with

[jl= &'og'~'S. t

[j&]=3&og»Bt» yt S.a'3&og» Bg «Sy'g S»a+3&oZPBAg»BJ»( S-.g Sy«S.»+S;S,t S.a S-.';S,a+S,t S,'k)

2 3 2
+Ay«Bt«(SygS„»S»«Sya —Sy&S»»S»» S„a+S„gSygS„yS,«+S„gS»yS„«Sya+S»gS„tSy«S„« —S»gSygS„«+SygS»gS»k

ytS g yk 2 yt »t a+ ygS «)+( t»Bra+Ay»Bra) ( S gSygS yS k+2S tSytS «S a S,tSy»S k+SytS„tS,»S„«

—S„;S,gSy«+S„gSyqS„«S,« S-„;S,„S,„+S„,S,«S,„—2S„gSy«S,«
—S»,Sy«S,«+SygS, «)+At«8, .«SygS, «+Bq«S .S k;

[j&~]=Bog»[68gk kr»t ya t +( BgrAta+BarAga BgtA»t+ Bq «Aag) ( 3S gSy«S»t —3SgSy«Sg SygS-y«Syr)]

—(Sw'S kS
g S»g + S»t S„gSya Sy t ) [2A, t BgaBat + Ag r (- Bgg A~«+ Bkt A g«

—Bt gA«g + Bg«A«r )] —(Syg S„gS„«S»t

+S»&Sy«Syt S,t) [Agr(- BtgAq«+ BkgA, „—Bgt A„, + 8;„A„,)]+ (S„qS„«SytS,g +S,tSygS„«S„t )[2AtgBg«B»t + (2Aqt +Bqt)(-, «+BatAt» —8 gA«g +8«A»t)] —Sy, Sy«S»«Syg[A«tA«, 8«g+A«gA«t Bag +(Ag«pBt«) (- Bt«Ar, +Br«At

gk jk tg tk kt at ag ag + tq at ktAgg +BagAg;)] —S»,Sy«S «S g [AktA»Q, .

+8«re«Bg«+BkgA«t Bat +2Ag«Bq»Bgg+Atk( Bg«A-gg +B~Q,~
—Bt«At«+BggA „)+2A„,B,B, yA„, (- 8 A,

tt kg kg tg + Bat Art)1 ( S»t S«Sy«S r + SygSy«S «S g ) [At«Br« +Ag«8 „+2(Ag«Ag«Bt«+Ag«At«8~«)]

+ SygSy«S»«Sy r(Ar»Bta +At gAt »Bt k At gAg»Br» +At «Ag«Bt«) + Sy g Sy«S»«Syt (At «Br« +A t At«B~«AygAr «Bgk

g r ra +
yg ya xa yg ( pa~at ag AttA«r 8»t + AtgA»gB«y —BggAt«Bt«+ By«At«Btk)+S„y Sy«S„«S»r(ArgA«t 8«g

2
Ag gA«t B«J +At«A«g Bay Bgg Akg 8«g+ Br«A«g 8«)) + Sky S»«Sy«Syr [A«t Bg«+Ay«A«r Bag +A«t A«g B«~

&&gA~»+BarAg«BggA»g+Bt«A«t)]
2+ »»« .k «t [»»+ kt »8«g+A»At«Bra+(Aat+Bat)(-8»Aga+BatA;«-BttAra+BgA«t)1

Pxk yk xt [ kg kt g k kt kt lir»t gk gk+ ar ( gg Ark + BktA&k BgtA»g + 8&«A«r )]

+S„gSy»Sy«S»r [3Ag»B, «8«g+A„«Ar«Bt«+AarA, «Bq«+A-, a(- Bgt A,«+8«tAg« .—BqgA«g +8~«A«g)]
2
yg sk yt [ 9»Atg 8» AktAygByt +AkgAt«Btk BkgAtg Btt + Br«Art Byr +Ag«(- B&rA&«+ B«gA&«B&t Akg y g&Q«r )]

+S»S, S,«. [At&«Ag«Btk —Az«ArgB»+AkgAg&Bg& —8»A&tB» B„,A»8»+Ak, (- 8&tA&k+BkgA&a —BsgA»r+Bt«A»g)1

—S gSx»Syt [ Akg kg jk+AglA« ra + kl kiB»g + ( gk +Akt )(- BygAtk+ BatAgk —Bt tA«g + Bg» kr)]

S fS «S f[3 »8 «8»g+A «AgkBtk+Aag l Bkf+(Afa+Aat) ( 8 lA! +BkrA k 8 tAlr+8 «A«t)]

+ S»;Sy«S»g[38»g 8;k+3A, «Bg«8«r —Akg Bg;+Akt Btk+At«AggBgg -AkgAg;Brg +AkgA«;Bag
2 2 2 2

(Ark Bgk) ( BggAtk+ BktAtk Bgk kr Bt«A«g)1 S»tSy«Sgg[38t«Bat +2A«t Bar Btk At«Bgt +At«Bga+Ag«A«g Bag

—At«A;gBgt +AktAg Bqg+(A», +8 g) (- Bq AJ«+BatAg« —BqgA»g+Bq«A«t)];

[j)rbgt] = S„gSy«S„gS»~[ 2A~»B«r-Bg~+2Aq«BqgBg~ —2A«tB~gBg«

+ Akt BmgBt'g + (rBm +tm) ( Bf«Agi+ Bt»Atg Br«Ark+ Br gAga)

+(8,„+A,. )(- B„.A.„+B„A~+8„.A„+B„A„)+A„,(- B,A, +B„A,—B,A„+B,A„)
+Ark(- Bt~Apt + Bt„Agg —By„Ag~ + BgrAg„) —(At» +Ay„) (- 8«~A«t + Bt ~A«g —Ba ~ Ag„+ Bt gAt ~)

(Akg +At~) ( 8~«Ayt + Bt»A~t 8~«At«+ B~gAgk)]+ SyyS»«Syt S»~[ 2Atg BJ«B«m +2At«8«t Bt 2Ay«Bgt Bg

+2AqtB~«B»t+(Br~+At„) (- 8 re«+BktAq« —BqrA«t+Bq«A«r)+(8k~+A«~) (- BkgA»t+BgqA«g —B«yAtq

+B„A„.)+A,,(-B,„A„+B,.A„ —B,„A,„+B„A,.)+A, ,(-B„,A.„+B„,A„,-B.,A„+B„,A„, )

(At +A t)( 8 A k+8~A k 8 Ak +8 «A« ) (Ak +.At«)( Bt~Agt+Bg A~g 8 At +8 gAt )].
+SygS.»S.gSy [-2Ag BgaBa +2Ar Bt»8»r —2Aa 8»Br +2Aa BarBrg

+ (Bt„+At«) (- 8«„A„,+ 8 ~A»t —B«~At ~ + 8«A, „)+ (Bqt +Art )(- B„,A„„+Bk A~» —B~rAkg +B„„A»,)

+A,„(-B,,A,.„+B„A,.„-B,,A„+B,.„A„)+A„.(- B,,A„+B,,A„B„,A„.+ B„A„—)
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-(A, Arr)(-Br„Ara+B«„Ara-B&„A«„+Bc«A«) (Aa +A»)( Bg Ayr+Br Arr —By Ar +BqrAr )1

+ S&S««S«r S«„(6B„rBJ«Byr—Ay~Br„B~«+A&„Br)Bra —Ag«B~«B«r +Ar«B~yBrr —A)r Bar B,„+A)rB~Bqa

+(Br~+Ad~)(- Br«A„+B»Ar) —Br«A~«+Br, Ara)+(B~r +AJ, ) (- B ~„+BA B A +B A )

(BJ«+Ara)( B rA g+BfrA J B rAJr+BmfArr) Arr( Ba Aar +Br Aar Ba Ar +BarAr

-Ar (-Bra" r +B «"r —Br& «+Br A «)-A»(-B rA a+BarA.a-B rA«r+B. A«r)7

+S,rS «S,re [ (B»+Ar«)( B rA a+BarA a B rAar+B «ar) (Bg +Ay )( Br«Ar +B aAr

Br«Am«+ Br~Am«) (Byr +Arr)( B«mA«r + BrmA«r B«~Ar~+ BarArm) +Ar ( r«Ary+ r«A

—Br«A» + B»A») +A&r (- B «A„& + B»A„r —B„«A» + B„rAga) + Ay«(- B~rA~r + B&rA„, —B„rA sr + B rAyr )7

»([jj[jk])=Tr([jl [jkj)=Tr([jl [jkz])=Tr([jJ [jkz mj)=0 ~

Tr([jk] [jklm]) =O, Tr([jkl] [jklm]) =O, Tr([jklm] [klmj]) =O;

(iv) the cyclic property of the trace, (v) the commutativity of multiplication of scalar functions; and (vi)
flipping indices, we obtained, from (2. 13),

(2. 14)

where

B=T.&& [jj'+» (I jj ljkl+l»1(k]).» (I jkj +I jkj(kj])j
k&f

S= T Z ([jk] [jZ]+[»][Ej]+[»](Ej]+[kj][jZ]),

T = Tr 2 2 ([jkl] [kl]+ [jkl] [jll+[jkl] [jkl+ [klj] [kl]+ [klj] [jl]+[kljl [jkl+ [ljk] [kl]+[ljk] [jl]+(ljk] [jk]
l &k&g

+ [jkll [Ek]+ [jkE][lj]+[jkll [kj]+[kV] [Ek]+[kljl [V]+[kljl [kjl+ [Ejk] (Ekl+ [Ejk][Ejl+ [Ejkl [kjl) (2 1'E)

U= Tr Q ([jkE] +2[jkE] [klj]+[klj]'+2[jkl] [ljk]+[ljkl'+2[klj] [ljk]), (2. 18)
l &k&g

P'= 2Tr 2 ([jkl] [klm] + [klm] [jim] + [jkll [jkm 1 + [jkm] [jim] + [klm] [jkm] + [jim] [jkl] + [jkl] [Emk]
m&l &k& j

+ [klm] [bnj]+ [jkl] [kmj] + [jkm] [lmjl+ [klml [kmj] + (jim] [klj]+ [jkl] [mkl]+ [klm] [mjl]+ [jkl] [mjk]

+ [jkm7 [mjl]+ [klml (rnj kl + (jlm7 (Ejk7+ (klj ] (klml + [lmk] [jim]+ [klj] [j km]+ [kmj] ( jim] + [lmkl (jkm]

+ [lmj] [jkl]+ [klj] [Emk]+ [Emk] [Emj] + [kjl] [kmj] + [kmjl [Emj] +(Zmkj [kmj] + [Emjl lkljl+ Ikljl (mkE]

+ [lmk] [mjl] + [k lj] [mj k] + [kmj] [mjl] + [Emk] [mjk] + [lmj] [lj kl + [ljk] [klm] + [mk l] [jim] + [ljk] [jkm]

+ [mjk] [jim]+ [mkl] [jkm]+[mjl] [jkl]+ [Ejk] [Emk]+ [mkZ] [lmj]+[Ejkl [kmj]+ [mjk] [Emj]+ [mkl] [kmj]

+ [mjl] [klj]+ [ljk] [mkl]+[mkll [mjl]+ [ljk][mjk]+[mjk] (mj El+ [mkl] [mjk]+[mjl] [Ejk]), (2. 19)

(2. 15)

With the aids of (i) the usual quantum-mechanical-operator commutation relations such as S„rS»- S„«S„&
= i&»S+, (ii) simgle trace equations such as TrS, r S„=0 when j Wl; (iii) from the manner the cyclic terms
are defined, relations such as

W=Tr Z ([jklm] +[klmjj +[Emjk] +[mjkl]') .
m&l'&k &f

(2. 2o),

III. EVALUATION OF THE SIXTH MOMENT

A. Evaluation of the Two-Particle Interaction Terms

To compute the two-particle interaction terms,
we have to evaluate (2. 15). The trace equations
to be used in the calculation are listed in Table

I. Some of their derivations will be given in the
Appendix. Since there are only two indices in-
volved, the calculation is straightforward but ex-
tremely cumbersome. Therefore, we omit the
tedious details, but just present our results. VA'th

the help of Table I and the familiar commutation
relations of the spin operators, we finally obtain,
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by collecting all the nonvanishing product terms
as given in (2. 15),

2Tr Z ([uj] [e]+[jj [juj) =~sH', g'qs -,'8'(S+ 1)'

Tr[jp =NHog ps ,'S(8-+ 1)(28+ 1)" (3.1) x(28+1)" Z' B,', , (3 2)

Tr Z [jIj'+ [jI ] (a~]
A&f

=Hog P~(28+1)"8 (8+1) 5 Bq»+Hog ps(28+1) 8 (S+1) [28(8+1)—2] 2 Aq~»B)~»
A&g

+Hong p~s(28+1)" S (8+1) [g+8(8+1)—1]Z Ag»Bq~»+Hog Pg(28+1)"8 (8+1) [8(S+1)——,'jZ B4
k&f k&g

+(2S+1p S (S+1) g~g [8 (8+1p —S(8+1)+3]Z B~~ +(2S+1)"S (8+1) a~g [psS (S+1) —~pg 8(8+1)+Qj
k&j

x 2 A~»B~»+(28+1)"8 (8+1) g~g[Pg S (S+1) —
)Pp 8(8+1)+Pgg] 2 Aq»B~»+(28+1)" 8 (S+1P q~g[Pq82(8+1P

k&j 0 &j

-',",'8(8+1)+~»] Z A,',B,'„+(28+1)"8'(8+1p 2~ [~8'(8+1)'-""8(8+1)+"~
] Z A', B', ,

A&f

After dividing (3.4) by the equation

(2. 15)= (3.1)+ (3. 2) + 2(3.3 ) .

h TrS„=—,'NS(8+1) (28+1)"pp (3.5)

the two-particle interaction terms for the second and fourth moment in (2. 12) will be cancelled out. lf we
let 6 denote the two-particle interaction terms of the sixth moment, then

G=2N h Z~ B~»~p [S (8+1) -8 (S+1) +sS(8+1)] +B~»AJ» f [psS (8+1) —~75 8 (8+1)3+$8(8+1)]

+8~+~»~p [Ps S (8+1) — 8 (8+1) +~g60 8(8+1)]+B»A —[~S (8+1) — 8 (8+1P+~p5 S(S+1)]

+Bg»Ag»7 [~ay 8 (8+1) —
gag 8 (8+1) + gga 8(8+1)] . (3.6)

As pointed out by Van Vleck, ' a necessary criteri-
on to check the correctness of the algebra is that
when S= —,

' and the B's are assumed to be equal to
a constant, independent of their subscripts, all the
terms involving the A's will vanish and should not
appear in the moment of any order. To check the
correctness of our algebra for the two-particle
terms of the sixth moment, we find, indeed, all the
terms involving the A's will vanish when S= &,

satisfying the necessary criterion suggested by
Van Vleck. For the case of purely dipolar broad-

.ening, we set A = ——,'B, and (3. 6) reduces to

G» = N A 4gg25 (7746K —5079K + 1224K)Z B&&»
k' &J

(3.7)
where X=-8(8+1) and G» denotes the two-particle
interaction terms of the sixth moment for the pure-
ly dipolar case.

B. Evaluation of the Three-Particle Interaction Terms

The three-particle interaction terms come from
(2. 16)-(2.16). Since (2. 16) has already been in
the form g, ~~» notation, the calculation is
straightforward. Ne obtain.

(2. 16)= Z [Hog pa~aq ( 281+)"A B~»Bq, + (28+1)"X 4~5 (—,
'

X ——,') (36A)»B~»AII, B), +16A~»Bq+q, BI2,
l PjPk

+18A&i Byi A~»By» —9A&»By»Agi B~s)j ~ (3.6)

Equation (2. 1V) can be evaluated in two ways:
(i) either by making use of the symmetric property
between j and l in [jkf], and flipping indices, or

I

(ii) by actually picking out the nonvanishing terms
and redefining terms then finally flipping indices.
Both approaches lead to the same following result:
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(2. 17)=2 Z»[j kE] [jk]+ [jkl] [kl]+ [jkl ] [lj] ~

l Ajlk (3.9)
The difficulty of evaluating (2. 18) lies in the cal-
culation of the cross-product terms. Though we
still have symmetry between j and l in [jkf] from
the way we construct the [jkl], ours would some-
what be different from Van Vleck's. In our use,
symmetry comes from a pair of successive terms
inside [jkl], rather than just from a single term.
This means

Tr[jkl] [klj] c Tr[lkj] [klj] .

Whereas in Van Vleck's case, he had

Tr[jkll [klj] = Tr[lkj] [klj] ~

Therefore, we have to pick out the actual nonvan-
ishing terms and then redefine them. Again, the
process is cumbersome, and we just present the
result. Combining (3.8), (3.9), and (2. 18) together
and subtracting the three-particle terms of the
fourth moment in (2. 12), the three-particle inter-
action terms of the sixth moment are denoted by D,
where after dividing out by TrSs with X =—S(S+1),

D=N k Z fB„,B)»(X —
» X )+[A»B»B„(Ps (X —

» X ) -Ay»B»B~gB„, Ps (X —sX )+A)»B~»B», gs (96K -47K )

—Ay»Bg»B g, B,» gg (X —s X ) —A~»B q»B), B»~ fg (18K —X )] + [Ag»B»( 4s (59K —28% ) -Aq»B), B,» 4~s (86K - 37ys)

+A~»B), B», 4s (27& —9h ) —Aq»B)»B)gB», Ps (78K —21& ) +A)»B~»B, » 4q (168K —
q X )]

+[Ay»Bg»AJ»Bq» ss (118& —61& ) A»iB»i+i»Ay»Bg» 4s (10~ &" ) At»BsgAg»By» 4s (4@'-»')
+A~»B)»A»(B(~ ~ss (38K —GX ) —A)»B)»A(»B)»B(q 4~s (90K —45& ) —A)»B~»A»(Bu 4~s(28& —16K )

+A»gA)»B), 4~s(18Xs —QXs)]+ [A)»B)»A»gB», 4~s(1501 -90)F) —A)»B)gA», Bs», Ps(172Xs —~4K )

+A, »B~»A», .B», 4s (188& —121& ) —A~»B~»B~, A»gB», 4s (226K —s X )+AJ»A»gB», B,~ ss (84K —s X )

—A&&B&»A», Bs 4~s (80& 40)P)+Ay»Bx»A»tBts ss (VGA —
4 X ) —As»A», 2P&) ss(24K —~4K )

+A~q»A», B»», ~ss (114K —83As)] + [—Ag»Bq»A»)B»(Ag( Bg( 4~s (4X —$ & )- Ag»B)»A»gAg)Bgg Ps (32K -24K )

+A&»A»A&, B&, 4s (30& —25K )]+A»B&»B»(B&, —B»)gg (88K —SGX )+A&»B,f(BU Bi») 4~s (40& —10' )

x [+A »Bq»A),-(B), B»q) 4s (88). 463 )+A~»A~(B», ~4s (60& —15k, ) A)»A), Bq, B», 4~s (80K 20K )

+Ay»Ay/B~f, 45 (20K —5X )] [+Ay»8$»A», B»„45 (130K —85K ) —Ay»B)»A„g Byg 4~5 (244k —148K )

+Aq~»B~, A», 4~s (56K —~4K )+Aq»B, »A», s~s(17. 2X —124K )] [+A)gA, »A, »B,» g~s(44%» —38Xs)

A), B~,A, »A-~~» 4+s (44As —23)s) +A,zB~,A„B„A.q» +4s (4%» +2K ) —A, ,A, »B,»As»-B~» +4s (16)s —22Xs)] . (3. 10)

To check the correctness of the algebra in (3. 10), we find when S=-,' and the B's are assumed a constant
value, independent of the subscript, all the terms involving the A's will vanish. For the purely dipolar
case, by setting A= —', B, (3. 10) redu-ces to

D» = N k s~sss Z [(3660K —1035& )Bq»B», +(696K —27K )Bg»B))B», +(2016Xs —657K»)Bqs»BqgB»»,

—(GOOK -360K )B)»B», - (522K -459K ) Bq»B~, B»,] . (3.11)

C. Evaluation of the Four-Particle Terms

The contribution of the four-particle terms to
the sixth moment comes from (2. 19) and (2. 20).
The calculations are actually less formidable than
they may seem. In evaluating (2. 19), we observe
the following properties: (i) only the last six
terms in the three-indices cyclic terms, in the
order of their appearance in the cyclic-permutation
bracket terms as defined in (2. 13), 18 to 23, will
give nonvanishing contributions. (ii) as 18 and 19,
20 and 21, 22 and 23are of the same scalar function

forms, there would be, basically, six types of
scalar functions; (iii) each term like Tr[ jkl] [klm]
would give rise to two nonvanishing products;
(iv) all the trace values are equal in magnitude,
namely +$zX (2S+1), where X—= S(S+1); (v) sym-
metries between the first and third indices inside
the three-indices cyclic term, e.g. , [jkl] = [fkj].

Then, by picking out all the nonvanishing prod-
ucts, factorizing out the common trace value, re-
arranging terms, and then flipping indices, we ob-
tained the following result:
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(2. 19)=2(2S+1) — Z f»(20 of [jim]) (20 of [jkm])+»(23 of [jkm]) (23 of [jkl])+»(19 of [jkm]) (19 of [j kl]) .
81 l &j Am&A

+ (23 of [kim])(18 of [jkl]) —(18 of [jkl]) (21 of [ lmk]) —(22 of [jkl]) (20 of [lmk])} . (3. 12)

To evaluate (2. 20), we notice the following
properties.

(a) There are only five terms in each of the four
four-index permutation brackets. All the traces of
the cross product of terms in each of the permuta-
tion brackets vanish. If we label the terms in

[jklm] by names of &t&1, 81, yl, nl, and Hl, re-
spectively, in the successive order they appear in
tiie bracket, use the numeral 2 to denote terms
from [klmj], 3 from [lmjk], and 4 from [mjkl]. We
observe that all the trace values of these terms
are eilual to,', a (2S+1)". After bringing out all
the trace values, we have again to deal with scalar
functions. %ithout further confusion, we call
these functions according to the previous notations.

(b) The functions Pl, 81, and yl are symmetric
with respect to the indices j and l; functions n1
and Pl are symmetric among indices k, l, and m.
Consequently, the squares of the functions have
the same kinds of the symmetries as the functions

I

X, =(3.12)+(8.13) . (s. 14)

After carrying out the multiplication and regroup-
ing terms, and dividing out by k —3X(2S+1)», the
contribution of the above eiluation (3.14) to the
sixth moment is seen to be S~ where

themselves.
(c) Furthermore, if we interchange j and k, $1

and g1 will interchange; if we have j-l, k-m,
l-k, m- j, then Q1-yl. This means $1, 81,
and y1 will have the same functional form; where-
as nl and pl will have different functional forms.

Then by flipping indices bringing out the common
trace value, we obtained

(-'pl'+ ~ i»1»+1-pl')
(s. 1s)

Therefore, the total number of all the four-particle
interaction terms of the sixth moment is given by
Xz q where

Sr = N k»~vy Z (15B;»B»iB» —6A, »B~»B» B».i B),Bq„—6A)»B(»B)~B», +48A~»B~»2Pqi Bq~
mal &'A &j

36AjqBjqB~Bj BI,g —AjqBji, Bp +30AjnBq~Br~+24AjaB&~Bqg —26AjqBq~Bj)Bqg+3AjqBj)Bj~Ba)Bu

—30A; »B,„B» B, + 20A„»B)»A~, Bq, B,~B» 50Aq»B)»A—~, Bq, B~ B,~+6A, »B)»AJ, B~,B,„+11Aq»B,~A), B»„B»,2 2 2

+MAg»Bg&giA»iBgmBim 6Ax»Bx» -~i »m i~ »i 18Ag»B»-i n&yiBi~-6AyiB»i'»&y»Bin

—10AJ»&y»A;, B»~Bq„B», —6Aq»Aq, B,~B)„B»,+49'»Bq»Aq, BJ,B~„26AJ„B»,AJ—, Bq, Bq„+18A)»Aq, B»i B,~3 2 3 2 2

+2A»A iB) B»i+12'A'Qi AjiB» B» ' 4'»Ai~AiiB»iB~„4'»A»„A~iB~iB» 12AJ»Ai A~iB»iB»

+18A)»AJiA, „B,„B»~+12'»A,~A, , B»~B»,Bq„-—6A)»B, „A)~A),B», +4A)»A)i'„B~„B»i —10A~»A~, A», B»iB~„3 2 2 2

+ 6Aq»Aq, A», B»,B„~+26Aq»Aq, A,~B,„B„i —44Aq»Aq, Ai~B, ~B»~ B», + 16A~»B»~A~, B»,AJ~Bq„

jk kS jl' j:m Em I;m jk jil Al l'm j& jm jk &fft j& j& j~ & jk jA jl' Am l'm kg

+6Ajl jlAjkBlyftAjm 0l 4Ajl'BjlAjkBEmAkl'Bjm +18AjkBI4mAjl jlAl'1' Em 26Aj)Bj)A)mBgfftAj&B&l'

+16AJ ,B»„AJ»B~»A,~B,.~ —84Aq, B»,A)»Bq»A~~Bq~+16A(, Bq,A, ~B,~A)»B)» —32Aq, B»iA, ~Bi~A)»B)»

+14'»&;»A~, Bq,AJ„B„„+36A,»B»,A, ~B,m
—36Ay»Bq~B» A, ~B,~+36A~»B~zB»„A,~B,~ —36A)»B), B)~Ai~B,~

—46A, »A, , B»BIIB,„+18A,»B»„B»„A&,B.&, + 26A»A&, B,„BJ~B»,+2A&»B,~B», A» 8»„+8AJ»AJ iBJ~B»iB»$g
3 2 2

—6Aj~B~ Ajg B~, —14Aj~B~ Aj) B„,—36Aj~BI ~BjmAj) Bj,+38AjI Bj~Aj) Bjg + 1QAj~BI~Ajg Bj~ —16AjqB~ Aj) Bq)
2 2 2 2 2 2 2 3 2 2 2

+16A&»Bi A&sB i+8A&+y~iBi +20AyiAy»Bxm 40A&»AyiB}mB»m+12Ag»AjiBi B» +24A&+i B& B»i+24A&3+iI

—48A&»Ai~B», B»~+8A„~A&,A&»B, t»
—8A„„A&»B,„A»8&„+82A»~A&+&, B&„B4»0iA+mAy»ÃiB»,

2—40A»~A~»Bq»Aq, B», —48A»~A~»Bi„A~, B», + 24A»„A~»B)»A), B~, —24A»„A), B),A(»BI„- 24A» AJ, B~)A)»B»,
2 2 2 2

+ 24A»~Aq, &j,A~»B, „+16A»„A~, B,IAJ»B~» —4A~„Bi~A~, A» —4'~»A»~B»~Ai. , B», —4A~»A» jP~„A~, B»,
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4AfkAk+(mAff Bff+4AfaAam BamAf (Bf(+ 2AfaAam 8(mAff Bkf+ 16Akf AfaBfmAff Bfm 8Aaf Afa BfmAff Bam
2 2 1 2 2 2

-SAk) B)m A)kA)) +4 Agm Bk) A)) A~k + 22A~mA~) B~)A~k 8~k+ 12A)mA~) BkmA~k Bk)+ 6A~mA~) BkmA~k B)m
2 2 2 2 2 2 2

24 AgmA)k BjkA)) B)m OAgmA)) Bg) Agk Bk) 8A)kA)mA)) Akl Bgm+4A)m B)mAk) +jmAg)Agk
2 2 2

+ 8 Agk &gk A)r ~kmAk) A)m —&2Ak) &k) Agk A)m Ag) Bkm+ 8 A)) B))A)k A)mAk) &km+ 4A)) BkmAgk A)mAk) Bym

8 A]k 8~k A)m B)mA) ) Ak ) + 4 A)m B)m Ak) Bk ) A~) 52 A]k B)mAkmA )m A~) Bg) + 22 AkmA )m A~) 8))A]k B~k

+18AfkA)mAffAamBki+8Afa )m f) am fm k, +4AfaBfkAimB)mAffAam) ~

To check the correctness of the algebra, all terms involving the A's mill vanish when the 8's are assumed
a constant value independent of the subscripts. For the purely dipolar case, Eq. (3.15) is reduced to Sa,
where

S& = & jg — Q (4628fa Bfm Bf t+ 3038fa Ba& 8&m+ 3608fa Ba& Bfm Bam 368fa B,„Bf„Bkm
) mgfk

968fa Bfm f I Bkm+ Bf f 1m Bfa Bkm ' fk f f km fm a I fa Bfm Bf f Bam Bfm Bkl)

At last, the sixth moment as given by (2. 12) is finally reduced to

(n pa ) = (S.6) + (S. 10)+ (S. 15) .

The normabzed sixth moment for the purely dipolar case is then given by

(3. 1V)

(nv ) = (3 V)+(3 11)+(3,16) =JV ff aask5(VV46y 50VQy +1224') Q Bfa +N ff 7aao Z [(3660K
)4g Ak

—1035K ) Bfa Bk, +(696y -2Vy ) Bfa Bff Baf + (2016K 65VX ) BfkBaiBf~ (600K 360~ ) Bfa Baf

—(522K —459K ) B»Bf,Bk, ]+X If
218V

Z (4628fk Bfm Bfi+ 3038fa Baf 8&m+ 3608fa Ba& Bfm 8am
) 4mPgAk

Bfk 81m Bf I 8am+ V28fl 8lm Bfa 8am+ V48fa Bf! am Bfm Bkl 248fk Bfm Bff 8am BfmBkf)

(S. 18)

IV. CONCLUSION

It is found that in the ease when exchange interac-
tion is present the sixth moment consists of five
types of two-particle terms, 47 of three-particle
terms, and 115 four-particle terms. Two types
of four-Particle terms, A» 8&) B&mBkmA»A)m and

A„mB,„A»A&m, do not appear in the final result,
as they happen to have zero coefficient. As the
trace value of the four-particle terms is much
greater than the two- and three-particle terms, it
is only natural that most of the contribution to the
sixth moment should coxne from the four-particle
terms. By looking at the sixth moment for the
purely dipolar case, we observe that there are one
two-particle term, five three-particle terms, and
nine four-particle terms, even though the type of
term B»B»B) 'B& B» has zero coefficient in the
final result.

APPENDIX: EVALUATION OF SOME TRACES

A. Trace Value of Odd-Power Spin Operators Product

%e first want to evaluate Tr S~& S„&S,z. %e define
the ladder operators S&, and S& where

S),= S~„+iS~„,

S) =S~„-iS)„.
From (Al) and (A2), we have

Sf„=k(sf, +Sf ),

(Al)

(A2)

Sf„=(Sf, —Sf )/2i . (A4

It is well known from elementary algebra + that

Z m' = a (2S+ 1) [S'(S+1)' - —,'S(s+ 1)], (A5)

$
Zm"=0

S

:and

Z m'=-,'S(S+1)(2S+1),
«$

(A6)

where m is either an integer or half an intger, and
n stands for an odd integer. Then from elementary
quantum mechanics, we have

m~

Tr Sf Sf,S,f = ( [S(s+ 1) —m(m+ 1)]
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x [8(S+1) —(m+ 1) (m+ 2)] m ) . (AV)

By means of (A5) and (A6), (AV) is reduced to

Trs) 8(,SI)———S(8+1)(28+ 1) [gq 8(S+1)—~] .
(A6)

In the same fashion, we have

TrS),S~ Sg~-——TrS~ S~, Sg~

= (2s+1)s(s+1) [~s(s+1) ——', ] . (A9)

Also, by the same reasoning, we have,

S
2TrS, ,S, 8'„=Z [S(S+1)-m(m —1)]m

= (28+ 1)8(S+ 1) [~S(S+ 1)+ ~g ] . (A10)

Likewise, we have,

Tr S~ S~, Sg~= Tr S),S~ Sg~

= (2s+1)s(s+1) [g-, s(s+1)+h] . (All)

[8), , S~ ] = 28'~ .

We have, from (Al) and (A2)

Making use of the cyclic property of a trace and the
following commutation relation we find

[S~~, 8~, ] =8

1
Tr S3 S S Tr g f g+ g S Tr SR S8 S SR S3 S 2S S Sa 2S S S2 A13

where properties of the ladder operators in taking
the trace value such as Tr 8& --0 have been utilized.
Then by (A9) and (All), we obtain

TrS'„, S„,S„=—, . [S(S+1)--',](2S+1) .

Following similar procedure, we have

Tr S„~S„~Sg)
——Tr S„~S„~S~~

——Tr 8„)S„~8 ~

8. Trace Value of Even-Power Spin Operators Product

The derivation of Tr S,&
is straightforward from

the fact that

m6= 7S(S+ l)(2S+ 1)[S2(S+1) —S(S+1)+3] .
(A16)

Next we want to evaluate TrS„&S,&. We first
notice that

. [8(8+1)——,'] (28+ 1) . (A15)
Tr8), 8) 8,)=Z [(8+ 1)S —m(m —1)]m

as

Alternatively, we can get (A15) from (A14) by re-
calling that the trace value is invariant under
orthogonal transformation, in our case, rotation of
axes.

= —,'S(S+1) (28+1) . (A1V)

Then by definition of the ladder operators and all
previous properties, after some tedious calcula-
tion, we obtain,

Then froin the definition of the ladder operation, we have:
m~

Tr 8&, 8&
— ([8(8+ 1) —m(m —1)] [8(S+1) —(m —1) (m —2)] [8(8+ 1) —(m —2) (m —3)]]

m=-S

= (28+ 1)8(S+ 1) [S (8+ 1) g —S(S+ 1)35 + Q5 ]

(A16)

(A19)

where (A5), (A6), and (A16) have been used in the
simplification. Then by (A9), (A10), (AlV), and

(A19), (A16) can be simplified to

TrS'„,8,', = —,
' (28+1)8(8+1)

(A20)x [-', S (8+ 1) + f~ 8(8+ 1) - ~ ] .
Either following the same procedure or by the in-
variance of the trace value under rotation of axes,
we have

Tr84 82 = Trd 82&-—Tr84&8~& ——Tr 8,&8,&—- Trs,&8„&=TrS +8„& =7 (2S+1)8(8+1)[5 8 (8+1) +15 8(S+1)—6] ~

(A21)
C. Trace Value of Homogeneous Product of Spin Operators

Finally, we want to derive TrS~~S~~S2~. We first notice that

s
Trs S, ,S„.=Q f[S(S+1)—m(m+1)] [S(S+1)—(m+1)(m+2)]mg

»s

= (2s+1)s(s+1)[s'(s+1)' k+ s(s+1) @-—&] . (A22)
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TABLE I. Trace values of the one-particle spin
operators.

Tr S,&= Trs&= Trs»=0;
Tr Sg = Tr S~S'„g= Tr S„gS I = 0;

Tr S&S&=0, j&k (etc. );
Tx S„,S„,S,', = TrSS,S„,=TrS„,S3»=0 (etc. ).

Tr 82» = Tr 82i ——Tr 8»-——,'8(8+1){2S+1)".

Tr 8»8»8»= vi 8{8+1)(28+1)

TrSI4& = Tr 8& = Tr 8»4 =
~ [S(8+1)—3')8(8+1)(28+1)N.

Tr S2 S2 Tr S2 S2 Tr S2 S2

= —,
' [-,'s(s+1) + ~6] s(s+1)(2s+1)".

Tr S~sqgsg) = Tr S»S~S~~
2 2 2 2 2 2

= f[p S (8+1) —768(8+1)+ si 8(8+1)(28+1P.

(This is derived directly, not by the cyclic-permutation
property of the trace. )

Tr 8&$»8,&= Tr 8»8»8,&=TrS»8»4
=- (1/10i) [8(8+1)—q)8(8+1)(28+1)".

Similarly, it is found that

Tr$ S $ —TrS S $2 (A22)

Then expressed in terms of ladder operators, we
have

Tr $,&8»= Tr 8»82&= Tr8„&$,&= Tr 8~4&8,&=Tr8„P,&
= Tr 8»8,'~ = v [-,' 8'{8+1)'+@8(S+1)—$)S(8+1)(2S+1)".

Tr Se& = Tr Se&= Tr S~ = g [S (S+1) —S(S+1) + 3]S(S+1)(2S+ 1)

TrS„~ 8„(8,) =-~ps Tr(128'~ —8(,8( Sg)

—S~ Sq, Sgq —6', S~ Sg() . (A24)

From (All), (A28), and (A22), (A24) is found to be

TrS~&8~&83& =1 (28+1)8(8+1)[1 8 (8+1)

-11;8(8+1)+-.'] . (A26)

Likewise, we have

TrS„)8,~8,) = TrS„iS„~S„=+7(28+1)$(S+1)

x [$S'(8+1)' —$ S(8+1)*-,'] . (A26)

It is interesting to notice that in (A26) the permu-
tation is not cyclic and yet both trace values are
equal. To check the correctness of our algebra,
we observe that when 8=-,', (A16), (A21), and
(AM) are all reduced to the same value, because
in this special case, we have TrS~ = TrS„~ = TrS,

&

=-,'; a unique value. In all our previous deriva-
tion, we assume that our quantum system consists
of a single particle which can have (2S+1) quantum
numbers. Physically, this means we have a den-
sity matrix of (28+1)x(28+1) elements. In a sys-
tem containing N particles, we must use a statisti-
cal ensemble described by a (28+ I)"x (28+1)"den-
sity matrix. For a system of N identical particles,
the quantum wave function is a direct product con-
taining N eigenstates each. This means that in-
stead of (2S+1) eigenvalues for a single particle at
a time, we can have (28+1)"by evaluating our
eigenvalues of N particles simultaneously for a di-
rect product. This implies we must replace
(28+1) by (2S+1)" in all our previously derived
equations. Hence all the trace equations listed in
Table I.
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