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In a recent experiment Kapphan and Luty measured the reorientation rate of OH defects in
RbBr in the temperature range 1-15'K. In this paper we present a theoretical calculation of
the reorientation rate in which we treat the defect-lattice coupling and the lattice frequency
spectrum as accurately as possible. The coupling is assumed to contain a strain-dipole com-
ponent and an electric-dipole component; the magnitudes of the two components and the "bare"
tunneling matrix element provide three parameters which are adjusted to produce the best
agreement with experiment. The lattice spectrum is calculated using shell-model parameters
chosen to agree with recent neutron-diffraction data on phonons in RbBr. The relaxation rate
is calculated to all orders in the number of phonons. The temperature dependence of the re-
normalized tunneling matrix element is included. Calculated reorientation rates are in excel-
lent agreement with experiment, but there is no unique choice of the parameters that produces
a best fit. The results indicate that at low temperatures the rate is controlled by strain-dipole
single-phonon processes and that at high temperatures electric-dipole multiphonon processes
are dominant. Plausibility arguments are used to choose a "most probable" set of parameters
that is consistent with the reorientation data, and this choice is in satisfactory agreement with
values of the parameters obtained from the measured external electric-dipole moment and
stress-splitting factor.

I. INTRODUCTION

It has been recognized for several years that a
study of reorientation rates of paraelectric and
paraelastic' ' defects in alkali halides could pro-
vide information on the nature of the defect-lattice
interaction. The role of one-phonon processes in
the relaxation of defects such as OH in KCl is
fairly well understood, but all attempts (including
the present one) to include multiphonon process-
es ' have had to deal with several difficulties.
First, the contribution of multiphonon processes
is very sensitive to the exact form of the phonon

spectrum, so that calculations using a simplified
(i.e. , Debye) spectrum cannot accurately repro-
duce experimental results. Similarly, calculated
relaxation rates are sensitive to the assumed form
of the defect-lattice interaction. Since one wants
to use as few adjustable parameters as possible
to describe this interaction, a certain amount of
guesswork must be used in deciding on a proper
form for the interaction. Further, a consistent
calculation of multiphonon effects must include the
renormalization of the tunneling matrix ele-
ment »" '; previous calculations that did em-
ploy accurate phonon spectra did not take this ef-
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feet into account. Finally, we should mention that
the amount of experimental data has been meager;
to the authors' knowledge there is only one experi-
ment, that of Kapphan and Luty (KL) for OH in
RbBr, giving the temperature dependence of the
relaxation rate over a wide enough range to dis-
tinguish between different theoretical predictions.

The purpose of this paper is to attempt an ac-
curate calculation of the relaxation rate of RbBr:
OH, usingshell-model phonons for the spectra of
RbBr, a realistic model for the dipole-lattice cou-
pling, and a consistent theory including renorma]. -
ization effects. Such a theory has been developed
by Pire and Gosar' and, in somewhat different
form, by the present authors" (hereafter referred
to as I). The background of the present calculation
is as follows. In I, the theory developed there was
applied to RbBr: QH using Debye phonons without
a high-frequency cutoff. The defect was assumed
to couple to the lattice as a pure strain dipole;
i.e. , the fact that the coupling to the lattice of the
heteronuclear ion OH could contain an electric-di-
pole component was ignored. The calculated re-
laxation rate as a function of temperature (Fig. l
of I) was in reasonably good agreement with the
data of KI. for T ~ 10 ' K. However, for T ~ 10 ' K
the calculated rate increased much more rapidly
than experiment. In a subsequent note, an at-
tempt was made to improve the agreement in the
high-temperature region by taking the non-Debye
character of the spectrum into account in a very
crude way, simply by introducing a high-frequency
cutoff to the spectrum as an adjustable parameter.
The result was in good agreement with experiment
using Iv, /ka = 67 ' K as the choice of cutoff frequen-
cy. This result, while encouraging, had the un-
pleasant feature that the required cutoff frequency
was considerably lower than the observed specific-
heat Debye temperature of RbBr, =130'K. The
question then had to be asked whether the low val-
ue of co, indicated a basic inadequacy of the theory
or was due simply to the crude approximations that
had been made to simplify the calculation. For ex-
ample, the theory assumes that the dipole-lattice
coupling is linear, and that effects of nonlinear
coupling such as resonant modes, local modes, or
intrinsic multiphonon processes are unimportant.
Another assumption is that the parameters that go
into the defect-lattice Hamiltonian are closely re-
lated to properties of the dipole that can be inde-
pendently determined: the tunneling matrix ele-
ment, the electric-dipole moment, and the external
stress -splitting factor.

The present calculation confirms the assump-
tion that a linear theory with parameters in rea-
sonable agreement with other data does explain the
relaxation data. However, it shoes that the previous
assumption concerning the dominance of strain-di-

pole coupling was incorrect and that, on the con-
trary, the dominant process in the multiphonon
contribution to the relaxation rate is the electric-
dipole process. The nature of our results is such
that the magnitudes of the strain- and electric-
dipole coupling constants cannot be determined
uniquely. The experimental data can be fitted
using "weak-coupling" parameters, in which one-
and two-phonon processes dominate and matrix-
element renormalization is negligible. The data
can also be fitted with "intermediate-coupling"
parameters, in which processes involving one
through five or more phonons contribute signif-
icantly. In Sec. VI we give plausibility arguments
in favor of the latter choice.

In a recent paper, Dick and Strauch' (DS) cal-
culated the one- and two-phonon relaxation rate
for RbBr: QH. The present calculation, which has
many features in common with theirs, seems to
give better agreement with the experiment. In
Sec. VI we compare the two calculations.

II. THEORY

II I I I I I I IIX =K~ +~ +Rp +Xi (la)

(lb)

p p 1 1 1 1

0 0 1 1 1 1

] 0 0 1 1

1 1 0 0 1 1

1 1 1 1 0 0

1 1

(lc)

In this section the theory developed in I will be
rewritten in a form suitable for accurate calcula-
tion. In RbBr: QH the Q-H axis can point along any
of six equivalent [l00] directions. Assuming that
the dipole reorients by tunneling between adjacent
allowed directions, the Hamiltonian can be written
in matrix form as
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B(t) = exp{Z& W&/Av& [(m&+ 1)

x e '"&'+e e'"~' ]), (Va)

n~ = 1/ [exp(PS'&uz) —1], (Vb)

&i' = Z (a, +a'„) . (le)
~'=~ozexp[-Z,

~
W„/e(u, ~'(2a, +I)] . (Vc)

The matrices in X operate on basis states specify-
ing the dipole orientation, I+z), I

—z), I+x),
I -x), i+y), i-y). For the present, the index 0
will be used to specify both the wave vector k and
the phonon mode j; thus the notation g~ implies

describes the splitting of the states due
to an external electric field along the g direction,
SCAN, describes dipole tunneling, X~ specifies the
phonon spectrum for the unperturbed lattice, and

X~ gives the dipole-lattice interaction, assumed
to be diagonal in dipole orientation and linear in
lattice displacements. The quantity W~' gives the
linear coupling to phonons with index k when the
O-H axis points in the + g direction. To preserve
Hermiticity, we must have W'~= '&.

The relaxation rate for the six-level system is
related by a constant factor to the relaxation be-
tween two adjacent orientations, say, i+z) and

i+x), ignoring the existence of the four other states.
The Hamiltonian for this problem can be written in
terms of 2&&2 matrices as

1 ~4 01X = E — + ~ N(dp gggp

g((u) = 3(h/m)'os To)'(uG((u), G(0) -=1 . (10)

Equation (10) specifies G(~) for ~ & 0. The form
of Eq. (7) can be greatly simplified if we require
in addition that G(- I ~l) = G(l ~ l). Then Eq. (7)
becomes

R(t)=exp[ f d&ug(&u)e '"'/(1-e "")], (lla)

The factor of 3 in Eq. (6) converts the result for
the two-level system of Eq. (5) to the six-level
RbBr: OH system; it is obtained using the analysis
of Dick. The renormalization of the tunneling ma-
trix element ho is given by Eq. (Vc).

In Eq. (7), all of the effects of the k dependence
of the lattice spectrum and of the dipole-lattice
coupling enter through the ratio i W, /h&o„l . It is
therefore convenient to define a single function of

frequency:

g((u)-=Z,
~

W, /k&u,
~

'5((u —(u, ) . (6)

As was noted in I, for strain-dipole coupling, g(~)
~ co for small ~. Gosar and Pire define the coef-
ficient of proportionality as

Iimg(&u) =3(h/wats To) &u as &u-0 .
In order to maintain continuity with earlier work we
will therefore use a new function G(oo):

+ Z (a,+a, )
" .„.(2)

X XQ +Xg +Xg

&o= cs, —+os„+Z,S&u a, q, ,

+r =scca Wa(an+a-a)

Kg= 2&+22~(a~+a „)(W~" + W„'") .
Here,

W~= W~ —W

(3a)

(3b)

(3c)

(3d)

The term K„ in Eq. (3) is independent of defect
orientation and can be transformed into a constant
energy shift by a unitary transformation. We there
fore take as the final Hamiltonian

X0+I' ~ (5)

It was shown in I that the relaxation rate can be
written

I/T& = 2(&/5)' f dt cosct[R(t) -1],
where

(6)

Introducing spin=-,' matrices s„, s„and s„we have

dP= &oexp[ —f d&ug(&u) coth(Phu&/2)]. (lib)
0

The function G(&u) provides a way of stating in

compact form the approximations made in previous
work. In Ref. 7 and in I, G(u&) =1 for all &u. In

Ref. 17, a cutoff was introduced by taking G(&u) = 1

for i ~ I & ~, and G(&u) = 0 for I&a I &&a,. In Secs. III
and IV we will attempt an accurate calculation of
G(v) for RbBr: OH.

III. DIPOLE-LATTICE COUPLING

In order to calculate W~, we are forced to make
reasonable physical assumptions about the nature
of the dipole-lattice interaction. %e first ob-
tain a form for the matrix element (+ zi R~ i+ z) of
Eq. (le); the other matrix element required,
(+xi' i +x), can then be obtained by symmetry.
In Fig. 1, the O-H axis is shown pointing in the
+z direction, and the six nearest-neighbor Rb'
ions are labeled. In general, (+ z I Rq i + z) can be
written as —g, F, u„where F, is the force exerted
by the defect on the lattice atom i and u; is the dis-
placement of atom j from its equilibrium position.
In choosing a model for the F„we require that
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FIG. 1. Description of the
coordinate axes and number-
ing system to describe the
OH defect and its nearest
neighbors. The defect is in
the state I +z).

g, F, = 0 in order to maintain equilibrium. We choose
a model in which there are two contributions to F,,
a "strain-dipole" part and an "electric-dipole"
part. The symmetries of the 0,. for the two con-
tributions are shown in Fig. 2. We further assume
that the strain-dipole contribution is due to short-
range forces which act only on the nearest neigh-
bors i = 1, 2, . . . , 6. We therefore take, for the
strain-dipole contribution to (+ z I R~ I + z )

(„~X",
I
..),= -F, [2(.;-u,)

—(u3 u4) —(u', -u~)], (12)

where F~ is an adjustable parameter with the di-
mensions of a force.

An expression equivalent to Eq. (12) can be written
for the effect of an electric dipole on the nearest
neighbors:

3 2

Z Z v"(~Ik, j)v'(~Ik, j')=5„, .
e=1 x=1

(iS)

The quantity W„-
&

introduced in Eq. (4) can now

be written as a sum of two terms,

cussed further in Sec. VI. Using Eqs. (12) and (14),
the quantities (+x IX, I+x)~ and (+xlX, I+x)e
can be written down immediately by making the
substitution x, y, z-y, z, x.

We have now defined the three parameters ho,
F~, and F~ that will be adjusted in order to fit the
experiment. The lattice displacements u~ can be
written in terms of phonon creation and annihilation
operators in the usual way 0:

u", = Z (K/2NM„&o, ,) v(K~k, j)
k, g

xe""' (ag, +a'„-, ) . (15)

Here, a is the spacing between nearest-neighbor
ions and N is the number of ion pairs in the crys-
tal. M1 and M2 are the masses of the Rb' and Br
ions, respectively; the index z takes the values

1 odd
K= if l„+l,+lg = (isa)

even

The six-dimensional polarization vectors v(v I k,j ),
whose components are real numbers, are ortho-
normalized as

—Ee [2(uf+u2) —(u3+u4+u5+uQ)] (13)
W'g

~
= 8'I, ~.q + S™„~.@ .

thereby introducing a new force parameter F~.
At this point a choice must be made concerning the
range of the electric-dipole interaction. There is
no a priori reason why a short-range "pseudodi-
polar" farce with the symmetry of Fig. 2(b) should
not exist; overlap integrals between wave functions
of the defect.and its nearest neighbors must cer-
tainly contain a component with this symmetry. '
We will, however, assume that the important con-
tribution is due to the dipolar electric field of the
defect acting on the ionic charge of the lattice
ions. We modify Eq. (13) to include ions beyond
the nearest neighbors:

I
&..~X,"~ .),=F„g;(-1)'.".' L-'

&[(2l, -l„—l,)u;+Sl„l, u", +Sl, l, u';] . (l4)
Here the sum over integers l„, l, and l, excludes
the point (0, 0, 0). The factor (—1)'» "» ' '» takes
into account the charge of the ion at point 1; the
distance from the origin is L = (l„+l~+ l2 )'~2. The
parameter FE is defined so that the contribution of
nearest neighbors to (+zI Kl I + z)e is given cor-
rectly by Eq. (13).

We assume that corrections to Eq. (14) due to
local field effects (i.e. , the field on an ion due to
the electronic polarizability of neighboring ions)
simply change the effective value of F~, but do not
change the functional form. This point will be dis-

Fs 2FE

ol
I

I

I

I ~4
H ~&

6 5

FS I

I

ol
I

I

I

3 I

I

E )&

o2

(oj (bj

FIG. 2. (a) Forces on the nearest neighbors produced
by a defect-lattice interaction with strain-dipole sym-
metry. (b) Forces produced by an interaction with elec-
tric&ipole symmetry. The illustration shows a pseudo-
electric-dipole force that acts on nearest neighbors
alone, but the calculation uses an interaction that falls
off as (distance) 3.

The first term is the contribution from strain-dipole
coupling and the second the contribution from elec-
tric-dipole coupling. From Eqs. (Sc), (4), (12),
and (15) we have

W» q ~
———Si Fg (K/2NM~ to„-,)

x [v'(1Ik, j)sinak, —v" (1Ik,j)sinak„] . (is)
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Similarly, from Eqs. (3c), (4), (14), and (15)
+Z +X+'i j s= &i j;s &i j z ~

where
I

gi'„~.s ——Fs Z (- 1)"L (h/2NM„ iA~„,) ~

x e""'[(3l,' —L')v'(~I k j)+3l„l,v"(~IN, j)
+31,1,v'(~Ik, j)] . (20)

+[v"(1Ik,j) sinah„—v'(1Ik, j) sinah, ]s

+ I.v'(1Ik, j) sinah, —v'(1Ik, j) sinak, ] f . (26)

Here, gs(&) has been written in a form in which the
summand is explicitly invariant under the opera-
tions of 0„. Similarly,

g, (~)= l & (@~&,,)-'6(~-~;,J)
p7,j

The expression for 5'-„j.~ is obtained by cyclic
permutation of the indices x, y, z. It is convenient
to rewrite Eq. (20), so that the sum is over inte-
gers l„, l„ l, & 0. The result is

Wi",'~.s —— Fs(h—/2NM~(ui, g)
~ A.,(k,j), (21)

where

Ag(k, j) = Z L [- (Mg/Ms) ]"
l~, l, l'Z & 0

x ((3 l I L) v'(-g
I
k, j)

C(heal

I) C(h„l„)C(h„l, )

—12l, sin(ah, l,)[l„v"(K
I
k, j) sin(ah„ l„)C(k„l~)

+l„v"(xIk,j) sin(ah, l,) C(h„l„)]}, (22a)

C(hl) =
2cosakl, l =1, 2, . .. .

In summary, the W„ in Eq. (3c) are given by

(22b)

+Zj;s + ~'-, j;z —~'~„;z (23)

In this section we evaluate numerically the fre-
quency dependence of G(~) using the best available
information on the frequencies (d~ j and polarization
vectors v(iilh, j) for the lattice spectrum of RbBr.
First we modify Eq. (8) so that the quantity being
summed has the full symmetry of the octahedral
group 0„. From Eq. (23)

g((u) = Z (h(ui-, ,) '6((u —(u„-,)
k, j

xI g~, g;s+ WVg;I -WPs;s Is (24)

All of the cross terms in the expansion of the
square in Eq. (24) vanish when summed over
equivalent k; therefore we can write

g(~d) =gs(~)+gs(~) .
Here,

gs(~)= Z (h~„-,) '6(~-~„-,)I W-„...I'
R,j

= (6Es/M, h)N Z &ug &
'6(&u —id„- &)j,p7

x([v'(1Ik, j) sinah, —v"(1Ik, j) sinah„]

(25)

with the first two terms of Eq. (23) given by Eqs.
(18) and (21), respectively. This completes the
derivation of the interaction Hamiltonian Xi.

IV. DISTRIBUTION FUNCTIONS

or

gs(&) = (Fs/3M&h)N ~ E (u~ &6(&u —id„- )
j sL'

x [A„(k,j) +A„(k, j) +A (k, j} ) . (28)

The low-frequency behavior of gs(~) and gs(&u)
is controlled by the acoustic branches of the phonon
spectrum. Examination of Eqs. (26) and (28) shows
that gs(id) ~ cu and gs(&) ~ ~ for &- 0. We will see
that the ~s dependence of gs(~) has the important
consequence that the electric-dipole process does
not contribute to the one-phonon relaxation rate.
In order to calculate To and G(~) in terms of the
two parameters I's and I" ~, we introduce two new
functions Js(&u) and Js(&u) through the equations

gs ((u) = (6F's/M, h) (uJs ((u), (29a)

gs(&u) = (Fs/3M, h) &uJs(id) (28b)

[cf. Eq. (10)]. The functions Js(&u) and Js(&u) have
dimensions sec"; lim„o Js(~) = const = Js(0), where-
as lim„, Js((d) ix: (u'.

The functions Js(~d) and Js(&d) are given entirely
in terms of the ~g ~ and v(ii' [k, j) for the RbBr lat-
tice. In order to calculate these quantities, we
need accurate data on the complete frequency spec-
trum of RbBr. These data have been obtained using
neutron diffraction by Rolandson and Raunio '
(RR); these authors also give the input parameters
to fit their data to several versions of the shell
model. ~ Our calcula, tions use the parameters
for model III of the (nonbreathing) shell model,
which includes radial and tangential force constants
for all Rb'-Br and Br -Br nearest-neighbor ions.
Test calculations of the frequency spectrum along
special directions in the Brillouin zone indicate
very good fit to the neutron-diffraction data, so there
should be negligible error from this source. The
data of RR were obtained at a tempera. ture of 80'K,
whereas we are interested in the phonon spectra for
T& 15 'K. We do not think that this presents any
difficulties, however, since measurements of the
elastic constants of RbBr as a function of tempera-
ture indicate little change below 80'K. Bron
has suggested that polarization vectors calculated
with the shell model can be in error even if the
frequencies are correct, so we cannot rule out a
possible source of error here. Further, as in DS
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Zq(0)= 1.66x10 6'sec' (3o)

Recalling that Ja (0) = 0, Eqs. (10) and (29) can be
combined to give

we make the assumption that the u& refer to dis-
placements of the ionic cores rather than the shells,
so that we calculate the core vectors v(v lk, j).
This assumption could introduce additional error
into the distribution functions.

Since the summands of Eqs. (26) and (28) have
been symmetrized, the summation over k can be
confined to the Kellerman section of the Brillouin
zone. The summations are performed using a
slightly modified version of the root sample meth-
od, breaking up the frequency interval into 100
sections and choosing 3&& 10' points at random
within the Kellerman section. In order to obtain
a curve with uniform scatter over the entire fre-
quency range, we weight the random selection pro-
cess to favor points in the zone with small 1k' and
multiply each term of the summation by the
Jacobian of the weighting function.

In evaluating A„(k, j), A, (k, j), and A, (k, j) of Eq.
(22), the summation over I must be restricted to
some finite range„we find that the results are un-
changed by including terms for l„, l„ l, ) 3, so the
summation over l is restricted to 0& l„, l„ l, & 3.
The results for Z~(&u) and Za(~) are shown in Figs.
3 and 4, respectively. A peculiar feature of these
curves is their lack of strong structure. As a
check on the calculation, g(&u) was evaluated setting
all Wf = 1; it was then found that g(&u) reproduced the
phonon density-of-states curve given by RR. We
therefore attribute the smoothness of J~(&) and
Ja(&u) to the k dependence of Wg.

Of particular importance is the value

and

T,'= ,'M—,O'd, (0) '(auaF, )
'

G((u) = [d, ((u) +

yea�

((u)]/J ~(0),

(31)

where

y=Ea/18E~ . (32b)

It is impractical to perform the integration over
time in Eq. (6) directly via numerical integration,
since B(i) is a, very rapidly varying function of f.
Instead, we use a method of repeated convolutions.
This is accomplished by first defining the quantity

B,((u) =g((u)/(I -e "") . (33)

Equation (6) ca,n be evaluated by expanding the ex-
ponential in the definition of A(f), Eq. (11a), yield-
ing

T = ,'m(~/e)' Z IB-„(&)+B„(-~)]/n t,
n=i

where

B„(u))= 1 d(u, d(u„B,((u, ) . ~ B,((u„)

(34)

x 5(&u&+ ~ ~ +w„—m) . (35)

Convolution integrals of the type given by Eq. (35)
can be evaluated by using the recursion relation

B„„((u)= f d(u'B„(&u —(u') B,((u') . (36)

Equation (34) is a convenient form for pra. ctical

Equations (31) and (32) determine To and the func-
tional form of G(&u) uniquely in terms of the two pa-
rameters Ea and E~. In Sec. V, To and G(~) will
be used in Eqs. (6) and (11) to determine the tem-
perature dependence of the relaxation rate.

V. CALCULATION OF RELAXATION RATES

~ ~ ~ ~
~ ~ ~

CV

4D'o

~ ~

~ ~

~ 4 ~ ~ ~
~ ~ ~ ~ 4 4 ~ ~ ~ ~ ~ ~

4

~ ~
~ ~

~ ~

~ ~ 4

FIG. 3. Distribution function Jq
vs angular frequency for RbBr,
calculated using shell-model phonons
obtained from the neutron-diffrac-
tion data of Rolandson and Raunio
(Ref. 2i).
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I

0.5
I I

1.0 1.5

w ( 10 radians/sec j
l5

~ 44

2.0



CALCULATION OF REORIENTATION RATES OF. . . 1557
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FIG. 4. Distribution func-
tion JE vs angular frequency
for RbBr.
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I

~ ~ ~ ~ ~
~ S a

0 ~

2.0 2.5

(3Sa)

where

I, B= f d&u«B, B(~) . (3sb)

The values of I& and I& for RbBr are I~ = 2. 07&&10

sec and I& = 23. 5&&10 "sec'.
The coefficient of the linear term in the relaxa-

tion rate can then be written

calculation, since the B„(&Q) can be evaluated ef-
ficiently and the summation over n converges rea-
sonably rapidly for realistic choices of the input
parameters.

The experiment of KL was performed by using an
electric field to align the defects, and then switch-
ing the field off and observing the relaxation.
Therefore, Eq. (34) should be evaluated in the
c= 0 limit, the factor B„(&)+B„(-c)being replaced
by 2B„(0). [Note that this does not significantly
reduce the amount of calculation required; the
evaluation of B„(0) requires knowledge of B„,(&u)

for all &u. ]
The term in the summation of Eq. (34) contain-

ing B„(0) gives the contribution of all n-phonon
processes to the total relaxation rate. In particu-
lar, the one-phonon rate for t.- 0 is

(I/T, )
"' = (9&'/mkk T ) T=aT . —(37)

For small enough temperature, the one-phonon rate
dominates the relaxation; in this region & (T) ap-
proaches a limiting va.lue & (0) given by

n, '(0) = n,
Q, e Q, (38a)

WQ= J d~g(~) . (38b)

The parameter 5'p is a convenient measure of the
strength of the dipole-lattice coupling. From Eqs.
(38b), (25), and (29), we have

WQ = (I/M g 8) (6EBIB, + ,'EB I ), —

s1 9+08 /B~~B TQ ~ (40)

In the experiment of KL, the coefficient a& is mea-
sured accurately to be VVO sec ' K '; this enables
us to fix one of the adjustable parameters, &p, using
the one-phonon rate along with the other two param-
eters. The temperature dependence of & for higher
T is then

n, '(T) = n'(0) exp[-2 f d~B&(QQ)] . (41)

We now attempt to fit the experimental curve using
Eqs. (34) and (41), adjusting JiB and Ez, and using
Eq. (40) to determine &Q. In the remainder of this
section, we discuss the derived" parameters Tp

and y rather than the fundamental parameters E&
and E&. In Sec. VI we relate these results to E~
and E&, and compare the values so obtained with
other observable properties of the defects.

We first note that E& must have a finite value,
since pure electric-dipole coupling gives a T be-
havior for low T rather than the observed T be-
havior; i.e. , the lowest-order process involving
JB(~) for e- 0 is a two-phonon process. Thus the
simplest possible choice of Tp, y is a one-parameter
fitting of Tp withy= 0. The results for pure strain-di-
dipole coupling for several values of Tp are shown in

Fig. 5. It seems clear that there is no choice of
T, that gives satisfactory agreement over the entire
temperature range. Therefore we must conclude
that the good agreement obtained in Ref. 1V using a
flat JB (&u) cutof f at &u, = 67 ' K 0 B/N = 0.87 && 10"sec '
is spurious. In fact, Fig. 3 indicates that any at-
tempt to approximate JB (&u) with a step function would
require a much larger co,.

If electric-dipole coupling is included, it is found
that a range of choices of the parameters Tp, y gives
very good agreement, well within the quoted experi-
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FIG. 5. Comparison of experimental (Ref. 16) and
calculated reorientation rates versus temperature for
HbBr: OH, using strain-dipole coupling only (&=0).

FIG. 6. Reorientation rate vs temperature for
RbBr: OH in the weak-coupling limit. The contribution
vf individual processes is shown separately. The curve
is obtained by selecting an arbitrary large value of To
and then adjusting y to obtain the best fit for large T.
I'he effect of varying & is to shift the two-phonon con-
tribution vertically.

mental error. We start by picking a small value of
Ez (large To), determine ho by fitting the one-phonon

rate, and then choose y to get the best fit at high
T. This corresponds to weak coupling, 8'o«1.
The relaxation is dominated by one-phonon strain-
dipole and two-phonon electric -dipole processes.
Under these conditions &(T) is essentially inde-
pendent of temperature. A typical result is shown
in Fig. 6; for To = 850 '

K, the best fit is obtained
for y= 29.4. The contributions of the individual
terms in the summation of Eq. (34) are shown sep-
arately. For this choice of To, &(15'K)=0.974(0).
For large To the one-phonon rate ~ &o2/To, while
the two phonon rate ~ &o y /To; consecluently, the
results of Fig. 6 can be duplicated for other choices
of T, by keeping y/T, constant.

For smaller values of To, the coupling becomes
stronger; then the temperature dependence of
4(T) and third- and higher-order processes begin
to affect the shape of the curve. We estimate that
the smallest value of To that produces satisfactory
agreement with the data is To= 27 'K. For values
of To smaller than this, i.e. , for stronger strain-
dipole coupling, the relaxation rate increases too
rapidly for high T. In Fig. 7 we show the results
for To= 27'K with two choices of y. Also plotted
in Fig. 7 is b (T)/4 (0) for y= 0.675.

In comparing Fig. 5 with Figs. 6 and 7, we note
a significant difference between the relaxation of
paraelectric and paraelastic defects. In the para-
elastic case, where electric-dipole coupling is

IO'—

T =27'K
0

Io—5
y= 0.7

I

CD
CA

I—
= IO4— n(T) /a(o) —1.0

10

T ('K)

—O. l

6 8 10 12 14

FIG. 7. Reorientation rate vs temperature for
HbBr: OH with To =27'K, the lowest value of To for
which satisfactory agreement with experiment can be
obtained. The renormalization of the tunneling param-
eter &(T) is shown for p =0. 675.

forbidden by symmetry, the magnitude of the strain-
dipole coupling can be estimated by inspection of
the relaxation-rate curve. Thus, in Fig. 5, To is
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In order to interpret the results of Sec. V we
find a relation between Fs and the external stress-
splitting factor and between E~ and the electric-
dipole moment of the impurity. If an external
pressure P is applied along the z direction, the
Hamiltonian X' of Eq. (la) is perturbed so that
the two levels I+a) and I

—z) are raised above
the four levels I + x), I

—x), I +y), and I
—y)

by an energy ~= aP. ' 27 The stress-splitting
factor a is related to E& through

&=6&x. /(C»-C») . (42)

Here a is the lattice constant, and C» and C» are
elastic constants. Equation (42) is only approx-
imately correct, since it assumes that the local
elastic constants in the vicinity of the defect are
unchanged from the bulk values.

In attempting to relate the electric-dipole mo-
ment pE to the force E~, we are uncertain as to the
correct way to include local field effects. Experi-
ments in which the defects are aligned by applying
an external electric field give a value for the "un-
corrected" dipole moment p„. & This is presum-
ably related to the "true" dipole moment p& by

50 I I I
I

IIII I I I
I

I I I I

20—

IO—
7

5—

"Io
I. . . , I s s & I scuba

20 50 I00 200 500 IO

T, ( Kj

FIG. 8. Value of p that produces the best agreement
behveen the theoretical and experimental reorientation
rates, as a function of Tp.

given approximately by the temperature at which
1/T& departs from linearity. This method was used
by Pfister and KKnzig to estimate To for 02de-
fects in several alkali halides. In the paraelectric
case, the temperature at which the break occurs
is determined by the relative magnitudes of the
electric- and strain-dipole processes, so that it
is no longer possible to read off a value of To by
inspection.

The results of this section are summarized in
Fig. 8, where the value of y producing the best fit
is plotted as a function of To. Each point on this
curve fixes the values of F&, E&, and &0.

VI. CONCLUSIONS

p [3(&0+2)]ps, where eo is the low-frequency di-
electric constant of the host. Mahan' gives the
potential energy of a "ipole-point charge separated
by a distance R in a dielectric medium as

&+2 R
cps ' ~3 ~

The term (e+ 2)/3e gives the correction to the force
on a given ion due to the polarization of neighboring
ions. However, that part of the polarization due to
displacements of the ion cores has already been ex-
plicitly included in the Hamiltonian; thus we assume
that the relevant dielectric constant in Eq. (43) is
e„, the part due to the electronic polarizability of
the ions. If we further assume that Eq. (43) holds
even for nearest neighbors, then the result of the
above speculations is a relation for p„ in terms of

p„=e„(&0+2)(E +2) (Eza/e) .
For RbBr, we have e„(&0+2)(e„+2) '=3.70.

In Table I we list the calculated values of E~, E~,
60, ~(0), 8'0, n, and p„for several values of To
and y taken from Fig. 8. Experimental values for

and p„"are also listed; the value for a is es-
timated from experiments on other alkali halides.
Inspection of this table makes it obvious that one of
the goals of this investigation cannot be achieved:
There is no unique choice of &0, n, and p„ that alone
agrees with experiment. The fact that the data can
be satisfied using one- and two-phonon processes
alone rules out that possibility. Thus, we are
forced to rely on plausibility arguments to narrow
the range of possibilities.

The parameter that varies most rapidly in Table
I is &0, the "bare" tunneling matrix element. We
can argue that the values of &0 at either extreme of
the table are unlikely. The rotational energy levels
for an OH ion in free space are given by E& = BL
x(L+ l), where 8=0'/2I has the value B= 27'K.
The effect of the lattice must be to reduce the tun-
neling splitting below the free-rotor value, so that
&o= 10' K is a reasonable upper limit. Calculations
of the crystal-field potential hindering the free ro-
tation of the OH ion and of the displacement of the
O-H center of mass (c.m. ) from the lattice site
have been made for several alkali halides. "~ '4

These calculations seem to produce a Devonshire"
barrier height K of about 850'K and an off-center
displacement of the c.m. between 0. 2 and 0. 3 A
for all the alkali halides. The effect of the dis-
placed c.rn. is to increase the moment of inertia,
reducing the rotational constant B to about 13 'K.
Using the accurate calculations of the Devonshire
model by Sauer, ' the above values of E and B re-
sult in a tunneling splitting of 20=0. 5'K.

Further, it is known that the one-phonon relaxa-
tion rate for OH in different alkali halides varies



1560 H. B. SHORE AND L. M. SANDER

TABLE I. Derived properties of the OH defect in RbBr, using values of Tp and & from Fig. 8 as input parameters.

Tp
(K)

27
35
45
60
90

140
300
850

0. 63
1.00
1.33
1.85
3.00
4. 75

10.1
29. 4

Wp

24 5
22. 3
17.5
13.5
9.6
6.2
2. 8
1, 0

260'
109
12. 8
2. 3
0. 49
0. 14
0. 056
0. 064

1.22'
1.58
2. 03
2. 71
4. 07
6.34

13.5
38.4

Fg
(10-' dyn)

0.60
0.47
0.36
0.27
0. 18
0. 12
0. 054
0. 019

(10 ' dyn)

2. 02'
l. 98
1.77
1, 57
1.33
1.08
0. 73
0, 44

7f

2. 8
2.2

1.6
1.1
0. 70
0.33
0, 12

1.30~

1.27
1.14
1.00
0. 86
0. 69
0.47
0.28

Experiment (6)ll 1 0'

From Eq. (39a).
From Eq. (40).
From Eq. (38a).
From Eq. (31).

eFrom Eq. (32b).
From Eq. (42).

~From Eq, (44).
"Estimated value. The known experimental values of

n' are 5. 8 As in KCl: OH, 7. 8 A3 in KBr:OH, and 5 A.~

in RbCl:OH (Ref, 31).
Reference 32.

over five or more orders of magnitude, with
RbBr: OH at the slow end of the range. It is tempt-
ing to ascribe this very wide range in Tj to
changes in the renormalization factor e o rather
than to very large changes in the bare tunneling ma-
trix element Lp. These considerations lead us to
consider the entries in Table I leading to values of
Ap between 0. I and 10'K as being most probable,
though the arguments against smaller values of b.p

cannot be regarded as overwhelming.
If we now compare the predicted values of n and

p„with the experimental values, we find satisfactory
agreement. The fact that the Tp = 60 'K entry in
Table I reproduces the experimental value of p„
exactly should not be taken too seriously, in view
of the dubious validity of the local field correction
in Eq. (44).

The experimental and theoretical values of n dif-
fer by a factor of roughly 5. While this is disturb-
ing, we do not regard it as a serious objection to
the validity of the model since the use of macro-
scopic elastic constants in Eg. (42) introduces an
unknown error, and the "experimental" value is
itself estimated from other materials.

The value of gp is a measure of the strength of
the dipole-lattice coupling. In I and in Ref. 17,
where we calculated relaxation rates using strain-
dipole coupling alone, we concluded that RbBr. OH
was an extreme strong-coupling system (Wn= 20).
It was also found that h(T) was strongly tempera-
ture dependent in the range 0& T& 15'K; i.e. ,
6(T)=A(0)exp(- T /2Tn), with Tn=6. 5'K. The
present calculation modifies these conclusions
somewhat. From Table I, the "most probable"
range of gp is around gp= 10, which may be char-
acterized as intermediate coupling. Further, the
temperature dependence of h(T) is much weaker
than in the earlier calculations. For the Tp= 60'K

entry in Table I, 6(15 'K) = 0. 656(0). At the high
end of the temperature range, processes from one
through five phonons contribute significantly.

In comparing the present work with that of DS, '
we first note that the theoretical refinements of
Sec. II are not necessary to produce agreement
with experiment; as we have seen, agreement can
be obtained using one- and two-phonon processes
alone. Thus, we speculate that the differences be-
tween DS and the present work arise from differ-
ences in the shell-model phonons or differences in
the coupling. DS use breathing-shell-model pho-
nons, & in which the input parameters are ob-
tained from macroscopic polarizabilities. The
neutron-diffraction data of RR became available
only recently, and we have found considerable dif-
ferences in the spectral functions J'a(&u) and J'n(ur)
calculated with the two sets of phonons. DS use
three parameters to describe the coupling: 8, ,
and p, in their notation. Their 8+ is analogous
to our F~ and p, is analogous to F~, with the im-
portant difference that DS calculate the electric-di-
pole coupling only to nearest neighbors. The asym-
metry of the short-range forces along the 0-H axis
is given by ~ -. We believe that both p, and
g —g result in pseudo-electric-dipole coupling, so
that both should affect the calculated relaxation rate
in the same way. Our conclusion is that there are
two independent parameters in DS, which have sim-
ilar meanings to our parameters, and that the DS
calculation contains the essential features of the
weak-coupling limit of the present calculation.
Thus, aside from the different versions of the shell
model, the only explanation we can offer for the dif-
ference in results is our use of an electric-dipole
interaction that extends beyond nearest neighbors.

In summary, we have found that the experiment
of KL can be understood quantitatively by assuming
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a linear coupling of the defect to unperturbed lattice
vibrations, and that this coupling must include
terms with the symmetries of both electric and
strain dipoles. While we have not been able to use
this calculation to predict a unique set of defect pa-
rameters, we can find a "probable" set of param-

eters that are in reasonable agreement with experi-
mental values.
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