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Energy bands of SrTi03 have been computed ab initio using a nonrelativistic self-consis-
tent-field (SCF) procedure based upon the linear-combination-of-atomic-orbitals or tight-
binding formalism. A slightly extended multicentered-atomic-orbital basis was used and
integrals over them were evaluated in keeping with the Hartree-Fock-Roothaan procedures.
Three- and four-centered integrals were treated by previously justified numerical approxima-
tions. Results are in good agreement with experimental evidence for the ordering and widths
of the valence and conduction bands. A 12.1-eV band gap was obtained, however, from the
ground-state SCF results. Consideration of various energy terms and comparison with an in-
dependent SCF calculation on the isolated Ti068 cluster confirm Simdnek snd Kroubek's earlier
criticism of Kahn and Leyendeker's semiempirical model and suggest significant hole-particle
correlation in the electronically excited states of the crystal. Though by a less rigorous ana-
lysis, the Sr orbital interactions are judged not to perturb the features of these results.

I. INTRODUCTION

Over the past several years, numerous physical
properties of SrTiO, and similar transition-metal
oxides have been measured with recent interpre-
tations of the electronic properties of SrTiQ3 based
on the semiempirical band structure of Kahn and
Leyendecker. ' Their calculated results were in
good agreement with the experimental data then
available although some discrepancies have since
appeared. '

Kahn and Leyendecker used an adjustable ionic
model to represent the lattice-crystal-field po-
tential. A completely ionic model predicts an en-
ergy gap of 1'? eV separating the oxide 2p valence
orbitals from the vacant titanium 3d orbitals.
Their innovation was to attribute the observed

absorption edge at 3. 2 eV to a departure from
complete ionicity in the titanium-oxygen bond.
Simanek and Sroubek' correctly criticized their
implementation, however, since it neglects changes
in the oxide and titanium ionization potentials con-
comitant with a transfer of charge from the oxygen
to titanium atoms. These effects were estimated
and found approximately to cancel the effect of the
change in Madelung potential at the titanium and
oxygen sites. Alternatively, then, to explain the
apparent reduction in band gap, Simanek and
Sroubek propose a Heitler-London model for the
excited state of the crystal in which the hole and
electron are associated with neighboring oxygen
and titanium ions, respectively. The transition
energy is reduced by large hole-electron interac-
tion and polarization effects on the surrounding
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lattice ions. As Fowler later remarked this
amounts to postulating an excitonic excited state.

More recently Mattheiss' used a nonrelativistic
augmented-plane-wave (APW) method to compute
the band structure of Re03, which is structurally
and electronically related to SrTi03 although it
contains one additional electron per unit cell in
the conduction band. Mattheiss included correc-
tions to the usual muffin-tin potential and obtained
solutions at symmetry points in the Brillouin zone.
An arbitrary lowering of the Re 5d orbitals rela-
tive to the oxygen 2p's was then invoked to reduce
the band gap sufficiently to obtain agreement with

his interpretation of the optical reflectance spec-
trum.

We have carried out a linear-combination-of-
atomic-orbitals (I.CAO) or tight-binding calcula-
tion of the band structure of SrTiQ3 in which very
few significant approximations were made. Be-
cause of the obvious numerical difficulties en-
countered in any completely ab initio calculation,
previous applications of this method have involved
a wide variety of approximations in the Hartree-
Fock Hamiltonian. Qur calculation was motivated
by the realization that many important terms in the
expressions for the matrix elements of that oper-
ator can be identified with those arising in a Har-
tree-Fock-Roothaan LCAQ treatment of clusters
like (NiF6 ) and (Ti06 8). Previously written
programs for those calculations could therefore
be incorporated in band-structure calculations on

crystals like SrTiO3, so that all nearest-neighbor
interactions are evaluated in a more accurate man-
ner. Since it has been shown that different results
are obtained with different methods of approximat-
ing the Hartree-Fock potential, ' it is important
to obtain solutions from calculations in which this
potential is treated as accurately as possible to
increase confidence that the results reflect the
Hartree-Fock approximation and not the particular
model potential. Also, in the band-structure cal-
culations presented here, we have achieved a self-
consistent solution. The rarity of results from
calculations which have been carried to conver-
gence (together with the known sensitivity of the
crystal Madelung potential at the titanium and ox-
ygen atom sites to the degree of ionicity ) make it
important to study the effect of achieving self-
consistency.

It has been claimed by Fowler that a Hartree-
Fock band calculation should give an energy gap
which is larger than the experimental one because
the Hartree-Fock approximation neglects the ef-
fects of electronic correlation. Previous calcula-
tions on rare-gas solids and alkali halides are in
agreement with Fowler' s prediction. ' In

SrTiO3, we obtain a direct band gap of 12 eV, al-
most four times the experimental optical-absorp-

tion edge which occurs at 3. 2 eV. ' A considera-
tion of configuration interaction among band-to-
aand excited configurations and a comparison with
the excited-state energies of charge-transfer
transitions in the isolated Ti06 cluster suggest
that correlation effects, including a large hole-
electron interaction and polarization of the sur-
rounding electronic charge distribution, will re-
duce the Hartree-Fock band gap by the right
amount.

In Sec. II, we briefly sketch the LCAQ-SCF
(self-consistent-field) method as applied here. In

Sec. III, we present the computed ground-state
band structure and compare our results with the
existing experimental data and with previous crys-
tal and cluster calculations. In Sec. IV, effects
arising from the higher-energy 4s and 4p atomic
orbitals of titanium and the 5s and 5p orbitals of
the strontium atoms are investigated. A possible
explanation of the optical-absorption edge occur-
ring at 3. 2 eV is discussed in Sec. V.

II. METHOD

The LCAO or tight-binding method has previous-
ly been used mainly for qualitative purposes. It
has been shown, however, that even with a mini-
mal atomic-orbital basis it is capable of giving
energy bands in very good agreement with those
obtained by a modified-plane-wave expansion. @ ~~

The success of the method even in the case of
lithium and sodium crystals where the eonduction-
band electrons behave more like free particles
than ones associated with individual atomic orbit-
als suggests that it would certainly be applicable
to the study of the valence and conduction bands of
largely ionic crystals.

Briefly, strontium titanate has the cubic perov-
skite structure. The crystal unit cell is shown in
Fig. 1 and the appropriate Brillouin zone is shown
in Fig. 2 where the standard notation of Bouckaert,
Smoluchowski and Wigner 0 is used to designate
the various symmetry points and lines.

Wave Functions

The LCAQ or tight-binding, closed-shell,
ground-state wave function is constructed as an
antisymmetrized product of one-electron functions,
each of which occurs with both spin functions and
is taken to be of the form

where the partially normalized lth Bloch function
for a crystal of N cells is

kit(r) =+ ~;» (r R pi) ~

y, (r —R, —p, ) is an atomic orbital (AO) of titanium

(p, =0), strontium (p, = —,
' x+ —,'y+ —,'z), or one of the

oxygens ( p, = —,
' x or —,

'
y or ~ z), where x, y, and
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which retain their free-ion character. ' Hence
they are maintained orthogonal to valence shell
orbitals on the same center but their nonorthog-
onality to orbitals on all other centers is ne-
glected.

This approximation amounts to limiting the sum
over l in Eg. (1) to g, x constructed from valence
shell AO's or from individual inner-shell AO's,
respectively. The subsequent variational calcu-
lation is thus restricted to the valence shell or-
bitals only.

Of the various possible analytical bases, the
multicenter Slater-type basis has proved to be ac-
curate and reliable in cluster calculations. Table
I lists parameters for all AO's used. This basis
features double-g Ti 3d and oxide 2p functions.
The former gives a best fit to %atson's Hartree-
Fock solution for Ti'3. ~ The latter was chosen by
other criteria mentioned below and is the same

FIG. 1. Structure of SrTiO&, showing coordination of
oxygens about Ti and Sr.

TABLE I. Atomic-orbital basis parameters (Ti-0
distance=3. 685 a. u. ; for all Sr bases, &3

—-7.5754).
z are the basis vectors of the lattice and R, is the
lattice vector. The one-electron orbitals P are
designated by the wave vector k in the first Bril-
louin zone; v distinguishes orbitals belonging to
the same k.

It is convenient to define a frozen-core or "in-
ner"-shell approximation. Theoretically, an im-
proper treatment of the inner-shell electrons has
many serious implications. For instance, com-
plete orthogonality among all occupied orbitals
should be maintained. Once this is instituted there
is no practical advantage to giving the inner shells
any special treatment in a numerically exact cal-
culation. %e shall, however, designate the Ti 1s,
2s, 2p and O 1s orbitals as inner-shell orbitals

kz

STO basis

ls (Ti) 21.4409
2s (Ti) 7.6883
3s (Ti) 3.6777
6s (Ti) 3.0600

4s(Tl)
—0.069 143

0.258 801
—0.623 792

1.146 527

4p {Ti)

3d (Ti) 4.5500
3do(Ti) 2.0000

0.457 836
0.668 034

2s (0)

ls (0) 7.7000 —0.213 878
2s (0) 2.1250 l. 022 616

2p (0)

2p (Ti) 9.0324 0.173131
3p (Ti) 3.3679 —0.679814
6p {Ti) 3.0600 1.194613

3d(Ti)

A to mic-orbital coe fficients

3s (Ti) 2s (Ti)

0.140 170 —0.329 755
—0 ~ 515 756 1.052 966

1.113720

3p (Ti) 2p (Ti)

—0. 287 406 1.000 000
1.040 482

ls(0)

1.000 000

ls (Ti)

1.000 000

2p; (0) 4.4380
2po(0) l.6931

0.176 704
0.888 420

4s(Sr) 5s (Sr) 5s' (Sr)

ls (Sr) 37.1911
2s {Sr) 13.9509
3s (Sr) 7.5546
4s (Sr) 3.3327
4s (Sr) 3.3611
5s (Sr) 1.8212
6s (Sr) 3.0600

—0.057 253
0.214 538

—0.480 360
1.072 173 ~ ~ ~

—0.633 507
1.125 623

~ ~ ~

—1.383 831
~ ~

l.576 888

0.028 458 0.054 557
—0.107 146 —G. 206 192
—0.245490 + 0.480 928

4p {Sr) 5p(sr) 5pl (Sr)a

2p (Sr) 17.0152
3p (Sr) 7.3892
4p (Sr) 2.9933
4p (Sr) 2.9830
5p (Sr) 1.5000
6p (Sr) 3.0600

+ 0.125309
—0.357 373

1.042 681 e ~

—0.523 964
1.082 004

~ ~ ~

—l. 840 516
~ ~ ~

l.988 831

—0.054 522 —0.147 839
0.157 641 0.440 001

FIG. 2. First Brillouin zone, showing symmetry lines. Contracted Gs and 5p Sr AO s.
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function used in the Ti06 cluster calculation. '
It is somewhat less diffuse than the oxide 2p func-
tion obtained from a variational calculation on
MnO by Nagai; both are less diffuse than the 2p
function of Watson.

Because the spectra of SrTiOS, BaTiO3, and
even TiO~ are very similar' and because the com-
putational procedures used here are based upon
the previous cluster SCF work, our most accurate
results are based upon the frequently made as-
sumption that the Sr' ions may be treated as point
charges. The validity of this assumption, as well
as criteria for choosing the Sr (and Ti 4s and 4p)
functions is covered in Sec. IV.

Variational Equations

We use the nonrelativistic Hartree- Fock equa-
tion and operator in the forms

F(r)y„„-(r)= e(vk)y„;(r), (3)

F(r) = H(r)+ Vc(r) —V~(r), (4)

where we use Hartree atomic units and have de-
fined

a(r) = --,'v'-Z„z.
I
r -R (5)

Z„, is the nuclear charge and R„ the lattice position
of the nth atom. The Coulomb-potential operator
ls

vc(r) =» J I e.' (r') I'I r -r'I 'dr' (6)

and the exchange-potential operator, defined by its
effect on an arbitrary function X(r), is

Vx(r)X(r)= ~ 0".- (r) J 0*;; (r')X(r')
V'2

The sums appearing in the Coulomb and exchange
operators are over all occupied orbitals. Spin-
orbit and other relativistic terms are not consid-
ered because these effects are small for SrTi03
and could be adequately treated by perturbation
theory.

In order to determine the linear variational co-
efficients C, (vk) and the energy bands we set up

the usual secular determinant arising from the
Hartree- Fock-Roothaan equations '

det
I

F (k) —e (vk)s(k)
I

= 0

for each value of k. The development of the Fock
matrix elements

I: F(k)]„=&0;.I F
I O '

where F is the crystal Fock operator of Eq. (4),
and the overlap matrix elements

I:s(k) ]„=«, -.
I ~, '-& (10)

have been presented by Mattheiss' and more com-
pletely by Honig, Dimmock, and Kleiner. In the
application here, only nearest-neighbor Ti-Q and

O-O interactions are included. Equations (9) and

(10) then reduce to

[ F (k)]„=E(l, l') T„(l, l; k)

[S(k)]„.=S(l, l )T„(l, l; k), (12)

with T„being a trigonometric factor defined below,

E« I') =(Xi(r -Pi)
I
F IXi (r -Pi ~ )& (»)

S(I I')=(x~(r —Pi) I xi (r —Pi )& (14)

The basic overlap, S(l, l'), and transfer, E(l, l'),
integrals are defined over the orbitals of the Ti03
asymmetric unit (0„02, 0, and the nearest Ti
in Fig. 1). During the course of computa, tion,
each g, and its associated variational coefficient

C, (vk) was considered to have been multiplied by

( —i)~& and i~~, respectively, where p, =0 or 1 for
X, of even or odd parity. Thereby all matrix ele-
ments of Eqs. (11) and (12) become real and, in

terms of the original, real basis the trigonometric
factors are given by

T (l /' k) =[S(l l')] '(i)~~(-i) i'Z-. 8'"''"~"~i"~~'

x&x$(r-pi)
I x$ (r-lt, -pl )) (»)

where the sum over q brings in X,. which are, at
farthest, nearest neighbors of X, . Table II in-
cludes the symmetrically independent matrix ele-
ments and corresponding trigonometric factors
thus defined.

Kahn and Leyendecker' variously evaluated the
transfer integrals in Eq. (13) and Table II accord-
ing to the semiempirical recipe of Wolfsberg and
Helmholz, ~7 using their deduced degree of ionicity
plus crystal potential considerations. Michel-
Calendini and Mesnard extended a similar semi-
empirical calculation to BaTiOS, modified to esti-
mate the dependence of Ti and 0 ionization poten-
tials upon the distribution of charge between Ti and
and O. We have evaluated these matrix elements
ab initio, as follows, using essentially the same
computational procedures as developed for isolated
clusters. ' We first consider the total electronic
charge-density distribution for the crystal

p, (r) = 2 Z y „*;(r) y„;(r")= Z p„,(r),
Vky OCC s, r'

where the sum includes only occupied (occ) band

orbitals and where the contribution from all trans-
lationally related functions y, and X,. is

p«(r)= &D(I I';q'-q)Xi(r -&, -p~)
QC

x X, ,(r —0,, —p, ,), (17)
with

D(l, l; q —q)
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TABLE II. Distinct elements for the crystal Hartree-
Fock-Roothaan equation.

OF Sr TiO FROM A. . .

D(l, l'; q —q )-(2 —5».)D(l, I; q —q) .

1523

Xg X~ T„g, l'k) s(l, l') ' E{l,l')~ [gal ]
f

3s 3S
2sf
2' f

3px -3'
-2sf

2P+ f

-2px3
3dZ2 3dZ2

-2s3
-2PZ3

3dxy-3dhy
2PX 1

2sf -2sf
2s2

-2px2
2P$2

2pg f 2P+f
2PX2

-2px2
2PXf 2pff

-2px2
2pZf -2pZ2

1

Sx
1

—sx

Cx
C»

1
cg
S»

1
Sx

1
chic~—S„C„

1

1
s„sy

1.0
0.034 58

-0.090 93
1.0
0.051 19

—0.010 49
0.024 10
1.0
0.128 82

-0.13917
1.0
0.088 15
1.0
0.008 89
0.01940

—0.01940
1.0
Q. 033 09

—Q. 022 84
1.0
0.033 09
0.010 25

—2.78832
-0.11711

0.286 80
—1.761 58
—0.13564

0.248 74
—0.059 67

0.05717
—0.176 28

Q. 15422
0.28713

—0.081 50
-0.97478
—0.030 60
—0.028 17

0.03105
—0.301 92
—0.03982

0.01920
—0.271 82
—0.030 50
—0.023 58

2. 093 29
—0.130 74

0.295 82
2. 053 60

—0. 223 67
0.380 63

—0.070 14
0.324 39
0.142 95

—0. 738 21
0.052 65
0.297 11
1.965 50
0.002 43

—0.073 14
—0.034 22

l. 675 78
0.105 22
0.077 40
1.945 33

—0.195 59
—0.026 12

~AO's with numerical subscripts are located on that
numbered oxygen; see Fig. 1. Other AO's are located
on titanium.

Zrigonometric factor, defined by Eq. (15).
=2 cos2kaa and So = sin2k~a, where a is the lattice
constant.

'Overlap integrals over AO's associated with the
asymmetric unit at R~ =0. See Eq. (14).

These integrals are directly related to the LCAO
parameters of Hefs. 7 and 26.

'Converged transfer matrix elements. See Eq. (13).
Energies in a. u.

~Density matrix elements from converged occupied
vectors. See Eq. (21) and associated discussion.

We divide P„.(r) into a part, P",,. (r), assigned
to a Ti06 cluster about lf, = 0 and a part, p', *,) (r),
assigned to the rest of the crystal:

pit (r)= ptI ~ (r)+pli'(r) . (20)

At this point in the computational scheme p', *,'(r) is
to be represented by a collection of point charges
and the lE element of a cluster density vector to
be defined, such that

p» (r) = [ D"]» x ~(r - pi) x i (r - p~ ) .
In Eq. (21) and what follows in this section, the

basis and range of l and l are extended to encom-
pass also the functions of 04, 0&, and 06, which
are translationally related to those of O„O&, and

O~, respectively (see Fig. 1).
Three cases arise in relating the elements of

D" to the various D(l, l; q —q) in Eq. (17). In
that equation but with respect to the cluster,
(K, —p, ) and (5,. —p, .) may designate sites which
occur (a) both within, (b) both without, and (c) one
within and the other without. In case (a) D(l, l;
q -q) is entered into [D"]„.. In case (c) the
contribution has been neglected unless one site is
a cluster 0 and the other is an extra-cluster,
nearest-neighbor Ti or O. In the former event,
the neglect is warranted by the smallness of the
overlap distribution it multiplies in Eq. (17). In
the latter event, half the amount of charge in that
overlap distribution,

l'' q' —q) &x((r —&, —p, ) ) x,.(r —K ~ —p, .)),

Cf (vk) C,.(vk)e'"'"~'
N „k..

%hen the LCAO coefficients are replaced by the
real coefficients as mentioned above, when each
term in the sum over k is replaced by the average
of all terms associated with the star of that k, and

wi
when values of q -q are consistent with the near-
est-neighbor condition, Eq. (18) becomes

D(ll'; q, -q )

is added to [D"]„or [D"]. . . depending upon
whether X, or y, . , respectively, is associated with
the cluster.

Similarly according to the Mulliken gross-atom-
ic -population analysis, all extra-cluster overlap
populations of case (b) are partitioned among the
subtended atoms, yielding a net charge to be as-
signed to each ion outside the cluster, qT, and qo,
when combined with the core charges on those
lons.

Now the transfer integrals E(l, l ) may be collect-
ed into the matrix E and stated in the following
matrix form:

2 C,(vk)C, .(vk) g(l, l ) T„(l, /; k), (18 )
vkt occ E= H+D" (g —

~ X) . (22)

where g(l, I ) is —,
' if (l, l ) refers to oxygen func-

tions on two different centers and is unity other-
wise. Equations (18) and (18') are now symmetric
in / and l'; the former may be restated as

The elements of the Coulomb and exchange (super)
matrixes g and X are defined as usual over all
cluster AO's;

pt(r)= ~ pll ~ (r),

with the replacement

(18') 8 (ll'
~

mm') =
' "

x&(r)x, (r)x.(r')x. (r')
dx' dr y

4
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;g I; 1 "~" Xt(r)XE (r')(x.(r)x. (r')+x. (r)x„(r')] d-d-.
r —r (24)

The H elements are given by

[H], , =(y. , I
H(r)+ V„„(r)+V„,(r) I y, .), (25)

with H(r) from Eg. (4); also

[V„„(r)]„.= Z„[28(vvIII') -x(vvIII')), (26)

where v runs over all frozen core orbitals of the
Ti06 cluster. V,„,(r) arises from the (point)
charges outside the cluster; it is found rather con-
stant within the region of the cluster. Hence it
is adequate to put (x, I

V,„, I y, ) = V„,(Ti) or V„,(O)
for y, on Ti or 0, respectively, and

& q, I v, „, I q, , ) = —,'s(I, I')
I. && r I

v, „~ I »&

+(x, Iv.* I & &] (27)

otherwise. Values of V„,(r) at the Ti and O sites
of the cluster are obtained by subtracting the po-
tential from a point-charge representation of the
cluster from the total Madelung potential. In
terms of the lattice constant, g, and in a. u.

—pv, &(Ti) = 2. 837 2975qT&+ 12. 287 7969q

+ Q. 801 9360q~, ,

—av, „~(O)=2. 095 9323qT, + 10.659 1948qo

+0 582 5215q~.

If the integrals in Eqs. (23) -(25) are available,
not over the cluster AO's themselves, but alterna-
tively over a symmetry-adapted linear transforma-
tion of them, D" may first be transformed to that
basis, the contraction D"(8——,'X) carried out, and
that result transformed back to the AO basis. This
procedure was followed here, not only to make use
of existing computer programs for the cluster but
also to effect considerable computational econo-
mies.

Further Numerical Considerations

Of the required integral, s appearing in Eqs.
(23)-(25) all one- and two-center integrals were
obtained exactly. Because of the large amount of
computer time required to evaluate all three- and
four-center integrals, the former were uniformly
approximated using the Mulliken approximation, 3

and the latter neglected. These approximations
have been extensively investigated in connection
with calculations on transition metal clusters.

Kith respect to electronic spectra, the neglect
of non-nearest-neighboring Ti-Ti, Ti-O, and O-O
interactions is not so serious an approximation as
might first be thought. All titanium AO's through

I

the 3d are quite localized about that center and do
not penetrate significantly beyond the adjacent oxy-
gens. Our oxide functions were designed to rea-
sonably represent behavior within the region of
that ion and its nearest neighbors but to be small at
greater distances. Thus none of these non-near-
est-neighbor interactions should exceed 0. 1 eV in
magnitude.

In their tight-binding calculations on VO, Nor-
wood and Fry investigated and included up to
fourth neighbors in metal 3d-3d and O-O overlap
interactions. ' Most of the former, which arise in
the rock-salt structure of VO, do not occur in the
perovskite structure. The magnitudes of the re-
maining ones (except for the 002 xz, xz potential
+ KE element, which seems inordinately large) are
consistent with our approximation. In addition, it
is to be recalled, we have designed our Ti and 0
basis functions to minimize further these longer-
range interactions. On the other hand, the Sr 5s
and 5p functions, which we include later, are con-
sidered in Sec. IV.

It should be emphasized that the truly optimum
basis for any crystal calculation has yet to be
found. Use of free-ion atomic orbitals is more
easily defended in representing the interior regions
of the ionic constituents of the solid than their
long-range behavior. In nonempirical calculations
such as this, one may choose a basis in part with
an eye toward minimizing the consequences of
some purely mathematical complexities. Ionic-
type compounds appear particularly suited to this
numerical simplification.

Furthermore, causing those interaction elements
deemed significant to be computationally related
to just those found within a single TiO6 cluster al-
lowed the use of some existing computer programs.
To generalize the methodology to encompass any
given additional degree of longer-range interaction
is relatively straightforward. In expanding the
Fock and overlap elements of the secular equation,
Egs. (9) and (10), additional terms occur in Egs.
(11) and (12) as shown by Mattheiss and Honig,
Dimmock, and Kleiner. Each added term again
is a product of a structure-determined trigonomet-
ric factor and an energy or overlap element con-
necting two basis functions at the greater separa-
tion. The energy elements E(l, l ) again might be
evaluated by the same basic computational pro-
cedure as described above, though conducted in
terms of a sufficiently different or larger cluster
unit which encompasses the additional interactions.
Except appropriately to alter the range of the basis
function indices ll mm and the constituents of
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V„,, the formalism following Eq. (15) would ap-
pear unchanged.

In Eq. (18'), the summand was first considered
to be continuous in k and summation replaced by
integration. The resulting three-dimensional in-
tegration was then done by a numerical-quadrature
scheme using seven-point Simpson's rule in each
dimension. Values of the C,(vk) at the 343 re-
quired points in k space can all be related to those
at the 20 points in the 48th irreducible section of
the Brillouin zone.

After the Fock matrix elements are evaluated
with an initial estimate of D", the secular equa-
tion (8) was solved at the selected set of k values
iteratively to a convergence limit of 0.001 in any
density matrix element. Increasing the number
of points leads to no significant change in the con-
verged band structure.

A density-of -states histogram wa.s constructed
from solutions at the equivalent of 32768 points.

III. RESULTS

We describe first the computationally most ac-
curate results obtained from the basis including
Ti Is through Sd and 0 Is through 2p AO's with
each Sr' taken as a + 2 point charge. Justifica-
tions for minimizing the significance of the Sr and
higher-energy Ti AO's are deferred to Sec. IV.

Figures 3(c)-3(f) show graphs of e(vk) vs k,
along the symmetry lines indicated in Fig. 2, for
the upper occupied bands and the titanium Sd con-
duction band. Figure 4 contains the density-of-
states histogram for energies above the Ti Ss va-
lence band. Values of the independent elements
of the overlap and converged Pock and density ma-
trices are contained in Table II; qT, =+2. 677 and

qo= I 559 at convergence, not too different from
Kahn and Leyendecker's assumption.

Valence Bands

The valence 3s and Sp bands are narrow and lie
well below the oxygen 2s and 2p bands. The 2s
band has an appreciable width, mainly from Sd-2s
interactions, and an ionization potential of 26 eV.

Most of the optical properties arise in transi-
tions from the 2p valence bands, which differ in
some detail from Kahn and Leyendecker's re-
sults. For example, our results interchange the
two I'» levels at k=0 and the ~ bands correlating
with them. This may be attributed both to the
significantly different O-O off-diagonal overlap and
transfer integrals and to the "repulsive" effect of
the Ti Sp AO's. Further, from investigations of
the optical-absorption edge under stress and elec-
tric field, Casella suggests that the valence band
(I'„—h, —X,) lies energetically above the other 2p
valence bands. 3 From symmetry he attributes the
first direct interband transition probably from

b,, to ~~. This result is in agreement with our
ordering of the valence and conduction bands.

The ordering of these valence bands in Fig. 3
and the separation of these levels at k=0 are in
agreement with Mattheiss's results for Re03 IQ

fact the 0-0 interaction matrix elements, to which
the 2p orbital splittings are very sensitive, should
be very similar in these two compounds. In detail
and in over-all width, however, the 2p valence
band is also strongly influenced by Sd-2p interac-
tions. Our over-all 2p band width is 5. 9 eV com-
pared to an earlier 3. 6-eV measurement by soft-
x-ray emission.

Since the Ti Ss and Sp AO's are usually regarded
as inner-shell functions, a separate band-struc-
ture calculation was done, in which those functions
were transferred to the frozen-core set. This
change eliminates the constraint that the oxygen 2s
and 2p bands be orthogonal to the Ti Ss and Sp and
also leads to slightly different self-consistent
charges on Ti and 0. Comparing this to the pre-
vious result reveals a general lowering and broad-
ening of the 0 2p bands. Furthermore, individual
band energies are shifted by as much as 7 eV,
leading to a considerably different detailed struc-
ture in the diagram. For example, without ex-
plicit Ti 3s, Sp interactions, the highest part of
the valence band shifts from I'» to the line Tj. .
Our results thus indicate that the "inner-shell"
Ti Ss and Sp AO's have considerable influence upon
the valence orbital structure and must be included.

The reason for this influence is readily seen
upon observing that the 3s and 3p AO's have a ra-
dial extension comparable to the 3d AO's and thus
have comparable interactions with orbitals of
neighboring ions. The Ti Is, 2s, and 2p and 0 Is
AO's, however, are far more compactly localized
about their respective nuclei. Two-center overlap
distribution involving these AO's are very much
smaller. Thus retaining them in the frozen core
is a much more acceptable approximation.

Conduction Bands

Numerous investigations of the 3d conduction
band structure of SrTi03 appear to agree with the
features of the Kahn and Leyendecker model. '
Their main conclusion is that the lowest conduction
band is formed from the 3d t~ AO's. It is flat
along the cubic axes (so that the longitudinal effec-
tive mass m, is infinite), since one component of
the 3d t3~ set does not mix with any oxygen orbitals
for values of k along D. The conduction band rises
in all other directions in k space forming six de-
generate ellipsoids with axes along the (100) di-
rections in the Bravais lattice. The transverse
effective mass rn, corresponding to the separation
X3 Mg is approximately equal to the free -electron
mass.
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Our results also agree with these features,
though the LCAO Hartree-Fock calculation gives a
larger over-all Sd-conduction-band width. The 3d-
2p covalency and overlap matrix elements which
are mainly responsible for the conduction-band
width are larger than those estimated by Kahn and

Leyendecker. This is in agreement with a pre-

liminary result mentioned by Mattheiss for an
AP+ calculation on SrTiO3. In particular, the
X3-M, separation is 2. 2 eV, corresponding to
m, = o. 4mo.

Measurements of magnetoresistance are general-
ly consistent with the conduction-electron energy
surface. ' However, they give an effective-mass
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Hartree-Fock potential of the previous calculation.
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band minimum at the zone edge. In Mattheiss's
ReO3 AP% calculation however, h~. curves 0. 1 eV
upward, giving a minimum at I'. 7 An accurate as-
sessment of the Ti-Ti transfer elements is neces-
sary to resolve this question here.

From our results the lowest-lying tz~ band is
seen to lie only slightly below the lowest e, band.
Sroubek recently reconsidered the basic assumption
that the tz band was the lowest conduction band.
Based on estimated corrections to Kahn and Leyen-
decker's point-charge model, he proposed that the
ordering of I'» and I'~, . might be inverted making
the e, band lower in energy. The difference be-
tween the diagonal matrix elements E(3dxy, 3dxy)
and E(3'', 3'') given in Table II supports Srou-
bek's result. However, the (3d-2s) covalency
terms, which he was not able to evaluate, act to
restore the order and qualitatively confirm the
Phillip's and Cohen and Heine "cancellation
theorem" invoked by Kahn and Leyendecker to
justify using the point-ion approximation.
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endecker estimated m, =(20 to 50)mo from the in-
clusion of Ti-Ti overlap effects which caused 42.
to curve slightly downward giving a conduction-

FIG. 4. Density-of-states histogram for SrTi03 and
orbital-energy diagram for the Ti06 cluster (Ref. 10).
The latter energies have been shifted downward by 46.3
eV, approximately, to compensate for an extra-cluster
Madelung potential. See text for discussion. Note
change in energy scale above +16 eV. Numbers within
the figure indicate extrema of bands or values of cluster
e's. Only ranges are indicated for Ti 4s, 4p and Sr
bands, obtained by the subsequent addition of those
functions to the original basis.

If SrTi03 does exhibit band- to-band transitions
beginning at -3. 2 eV, '4 the 12. 1-eV gap obtained
raises three major questions: (i) Is the computa-
tional methodology adequate? (ii) Doesthe Hartree-
Fock model provide a useful basis to describe
electronically excited states of crystals P (iii) Is
an alternative interpretation of the spectrum re-
quired'? We give some answers to (i) here and in
Sec. IV and discuss (ii) and(iii) in Sec. V.

Two preliminary band-structure calculations
were carried out using different oxygen bases,
each having a single Slater-type orbital (STO) for
each oxygen 2p AO, with orbital exponents $3~= 1.8
and 2. I. These band-structure results indicate
that the seidths of the valence and conduction bands
are sensitive to that part of the basis but that the
computed band gap is not. In addition, a calcula-
tion was made with the same basis but with empir-
ical corrections so that those parts of the diagonal
matrix elements which correspond to free-ion
oxide ionization potentials agree with the values
quoted by Kahn and Leyendecker.

Obtaining self-consistency in the charge distri-
bution, however, does have a large effect on the
band gap. As calculated from our AO basis, a
classical, completely ionic structure (qT, =+4,
qo= —2) yields a 4. I-eV separation between an oxy-
gen 2pw AO and the vacant 3de AO's (the 3d tz are
2. 4 eV higher). The energy bands obtained from
this initial field yield a 4. 26-eV separation between
I'» and I'~~. but also qT, =+ 2. 26 and qo= —1.41.
Going into the next iteration of the SCF procedure
with the latter Ti and O charge distributions, pro-
duces only a small lowering of the oxygen levels,
but a large increase in I'» —I'z, . separation ( to
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TABLE III. Additional overlap and transfer integrals
for the inclusion of titanium 4s and 4p AO's. [See Table
II for definitions. S(4s, 3s) =&(4px, 3px) =&(4s, 3s)
=E(4px, 3px) =0.]

Xr Xr'

4s -4s
-2sg

2pxi
4px-4px

-2si
-2px1
-2pxs

1.0
0.170 71

—0.225 92
1.0
0.25407

—0.29347
0.10629

s'(r, i')

0.18568
-0.19771

0.128 54
0.535 10

—0.260 00
0.100 32

—0.057 26

14.8 eV) in large part for the reasons given by
Simanek and Sroubek in their criticism of Kahn and
Leyendecker' s approach. From this iteration
qT, =+ 2. 88 and qp= —1.63. During iteration to
convergence qyg gp and the band gap oscillate
slightly about the final values of + 2. 68, —1.56,
and 12. 1 eV, respectively.

While numerical approximations have been made,
and some contributions to the exchange potential
operator have been ignored, we are convinced after
some investigation that no such factors could have
caused the computed band gap to be four times too
large. In the present calculation, any significant
transfer of charge from oxygen to titanium must
lead to a large 2p-3d band gap. We thus turn to
possible influences of Ti 4s and 4P and of Sr AO's
upon these results.

IV. EFFECTS OF ADDITIONAL Sr AND Ti AO's

Addition of Ti 4s, 4P AQ's and explicit inclusion of
Sr AO's introduces complications with respect to
the capability of our present computer programs.
Eree-ion Ti 4s, 4p and Sr 5s, 5p AO's are very
diffuse; non-nearest-neighbor overlap and transfer

' matrix elements involving them are large even at
considerable separations and simply cannot be
ignored. Furthermore, most integrals entering
such transfer elements are very difficult to evalu-
ate accurately within the present formalism. An

alternative choice of basis, however, permits some
semiquantitative conclusions to be drawn.

Alternative Basis

Given that free-ion valence and extra-valence
shell AO's are yet to be found optimum for any mo-
lecular or crystal basis, we have simply designed
variational functions for the crystal basis which
suit the present computational requirements.

Like our oxide 2P function, the Ti 4s and 4p func-
tions used were designed to represent behavior
within the region of nearest neighbors, but to be
negligibly small outside. After considerable in-
vestigation, the 68 and 6p STO s indicated in Table

TABLE IV. Sr atomic-orbital energies (eV).

Orbital energy

Sr AO

4g
4p
5s
5p
5s'
5pl

—61.03
-40.84

7.70
6.19

+ 5.09
+ 13.29

Expt"

—61.4
—43.6
—ll. 03

8.09
—11.03

8.09

SCF orbital energies; 4g and 4p pertain to Sr' and
the others for Sr'~ in the appropriate configuration.

"Assembled from ionization potential and spectral data
given by C. E. Moore, Atomic Ene&I, y Levels, Natl.
Bur. Std. (U. S.), Circ. 467 (U. S. GPO, Washington,
D. C. , 1949).

Estimated by subtracting from the 4p ionization
potential the difference in the Sr 4p and 4p x-ray atomic
energy levels. [J. A. Bearden and A. F. Burr, Rev.
Mod. Phys. 39, 125 (1967).J

I were chosen to represent the outer loops of the
4s and 4p AO's and orthogonalized to the previously
determined 1s through Sp STO's. Outer maxima
of the resulting 4s and 4p AO's come at -2 A from
the Ti nucleus; the basic nearest-neighbor Ti-Ti
interaction integrals involving these functions are
the order of 0. 1 eV or smaller and, with reason-
able safety, are neglected.

By exactly the same methods as described in
Sec. II, the corresponding overlap and transfer
elements given in Table III were evaluated using the
density matrix given in Table II.

Two sets of functions are considered for Sr AQ's.
For one, atomic Sr-STO exponents were used for
inner shells and the exponents for the outermost
shells were optimized with respect to total energy.
For the other ("contracted"), the 5s and 5p Ao
functions encorporate the same Gs and Gp STQ's
used for Ti, but here orthogonalized to the Sr core
orbitals. See Table I for details.

Diagonal transfer integrals involving Sr AO's
were evaluated by the method outlined by Kahn and
Leyendecker, ' using our previously computed Ti
and O charges for the Madelung-potential term.
For band calculations using free-ion Sr AO's, ex-
perimental orbital energy (ionization potential) data
were taken; using the contracted 5s', 5p' functions,
the theoretical values were entered instead. See
Table IV for numerical values.

Transfer integrals connecting Sr AO's to adjacent
Ti, O, and Sr AO's were estimated by a modifica-
tion of the WoUsberg-Helmholz recipe

& (xs„x&)= ~(xs„x))+ 2f~(xs„x()(&(xs„xg.)
—~(xs, xs, )+&(x~, x~) —~(x& x~)I (28)

where
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Fitting the more accurately computed Ti-O transfer
elements of Table II to Eq. (28) yields values of the
adjustable parameter f mostly ranging from 0. 3 to
0. 5. Several band calculations using Sr functions
were done for factors ranging between those limits.
At the outset, it must be stated that Eq. (28) is
completely undefended, from considerations of the
Madelung-potential effects alone, when applied to
the free ion-5s and 5p functions. With them, at
least second-nearest-neighbor Sr AO's must be in-
cluded to prevent linear dependence when solving
Eq. (8) for some values of R.

Extended Band-Structure Results

Adding Ti 4s and 4p AO's makes little change in
Figs. 3(c)-3(f) or in conclusions drawn fromthem.
As shown in Figs. 3(a), 3(b), and 4, thesebandslie
well separated above the Sd band. Their inclusion
does not change the band gap by more than -0.2 eV.

Adding the Sr 4s and 4p AO's brings initial con-
cern, since the latter come at the same energy
range as the oxygen 2s bands. The spatial extent
of the 4p's, however, is so restricted that there is
little interaction between them and the 2s's. There
simply is added essentially 4p band near the top of
the existing 2s band, which increases its upward
extent by a small amount depending upon the value
chosen for f, as shown in Fig. 4. The Sr 4s and
4p's have a somewhat greater effect on the 2p va-
lence bands. The bottom of these bands is raised
by -0. 6 eV due to the (greater) upward shift of
locker components such as M3 and R&5. , which in-
teract with those Sr AO's.

While solutions with Sr 58 and 5p are much less
definitive, they do suggest some interesting aspects
of the interactions of diffuse AO's in a crystal.
With f= 0. 3, the free ion 5s, 5p bands a-re extreme-
ly wide. They start below the Sd conduction band

(at 10. I eV above the top of the valence band) but
do not seriously disrupt its main features. As f
approaches 0. 5, these bands are raised by 8 to 12
eV and their disruptive effect is still less. The
"contracted" 5s, 5p bands behave much like the
Ti 4s, 4p bands and come in the same energy range
as shown in Fig. 4.

This last observation is striking. The diagonal
Fock energy elements for the free-ion 5s and 5P
functions are 16 and 21 eV lower than those used
for the contracted functions (Table IV). Qn the
other hand, the centers of the bands arising from
the free-ion functions range between 1 eV higher
for 5s (f=0. 3) and 8 eV higher for 5p (f=O. 5),
compared to the centers of the corresponding "con-
tracted" bands. This large upward shift of the
diffuse relative to the contacted AO bands arises
directly from the various Sr-Sr interactions, which

are large for the free-ion AO's at all points in 4
space.

From these various considerations we locate the
Sr 4s and 4p bands and conclude that neither they
nor the other functions considered in this section
have significant effects upon the valence band
structure or the band gap.

V. DISCUSSION

Returning now to the implications of the large
band gap reported in Sec. III, which has survived
the preceding considerations, we examine the
matter of calculating excitation energies from the
ground-state Hartree-Pock solution.

According to the theory of Fowler, the Hartree-
Fock band gap should be reduced by polarization
effects which accompany the excitation of an elec-
tron from a filled valence band to an empty conduc-
tion band. The problem of including the effects of
correlation has been discussed extensively in the
literature. Electronic polarization or self -energy
is largely inertialess and affects transport prop-
erties but little. In many treatments the main
change due to correlation is to shift rigidly the
conduction bands relative to the valence bands so
that the band gap is lowered by as much as 5 eV
or so. Since our purpose is to present a straight
Hartree-Fock calculation, we have not introduced
this sort of effect at this stage. Instead, we elab-
orate some properties of the independent Ti08
cluster and develop relationships of them to the
present Sr TIO3 crystal results.

Figure 4 shows the molecular-orbital (MO) en-
ergy-level diagram previously calculated for TiO6
with the same basis as gave the results of Sec. III.
[Note that the cluster energies have been shifted
downward by 46. 3 eV, in part to compensate for
the extra-cluster Madelung potential at the Ti site
(36. 8 eV). This shift cannot be exactly defined,
however, since the somewhat different values of
qT, and q, obtained from the cluster SCF calcula-
tion (+ 2. 64 and —1. '7V, respectively) are inconsis-
tent with a crystal charge distribution having

q8, =+2. (In the cluster qT, +6qo= —8 and in the
crystal qT, +3qo= —2, by stoichiometry. ) While qT,
for the two cases differs by only 0.04, qo is 0. 21
more negative in the cluster result. Thus, for
example, in the cluster the "Ss"AO's are more
destabilized by the nearest oxygens by -6(0. 21)/
R(Ti-0) = 9. 3 eV. The cluster "oxygen" Mo's are
less affected by this difference. ] In Fig. 4, the
"Ss"cluster MO is positioned to coincide exactly
with the bottom of the crystal Ss band.

Except for the size of the band gap, our conduc-
tion- and valence-band density-of-states histograms
are very similar to Mattheiss's adjusted Re03 re-.
sults.

With respect to energy, the cluster and crystal
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Ti 3p states are very close. The centroids of the
cluster O 2s and 2P states are somewhat lower and
the latter are -2 eV more widely spread. The
cluster Sde~ and 3d t2~ MO's fall in the lower portion
of the crystal conduction band. The cluster "band
gap" is 2. 3 eV greater than that of the crystal.

Particularly striking is the additional similarity
in density of states. Five of the six oxygen 2s
MO's occur near the top of that range just as the
crystal density-of-states histogram is very large
there. Likewise, the pattern of oxygen 2p MO's
appears also in the 2p valence band. The maxi-
mum in the conduction band is but —,

' eV higher than
the position of the Sdta, MO's and 78% of its states
lie below the energy of the 3de MO's. The
weighted averages of the crystal and cluster "3d"
states are 10.3 and 10.4 eV, respectively, which
is to be expected if the adjustment of the cluster
MO energies is valid and if the cluster Sd MO's
were actually to represent Wannier functions for
the crystal. In such event, Mattheiss has shown
further that second-order perturbation theory pre-
dicts that the difference in average energies of the
de~ and dt&~ bands should equal the difference
(10Dq in crystal field theory) in the energies of the
de, and dt2~ Wannier functions. That is,

10Dq = E(Sda —Sda ) —E(Sdxy —Sdxy)

+ —,'(a, +~, —s, ), (29)
where

~,= Z(r „)-B(Sda'-Sda'),

~.= Z(LL») - Z(Sda' -Sda'),

~,= E(LL„,) -B(Sdxy - Sdxy) .
From our band results, Eq. (29) yields 10Dq= 2.27
eV compared to the cluster value + 2. 05 eV.

The notable similarities in energy-level distribu-
tion suggest that the total band structure may well
contain significant characteristics of the cluster
unit. We consider next the calculations of actual
electronic excitation energies.

Charge-Transfer Transitions in tQe Ti06 8 Cluster

In the Ti06 ' cluster, the lowest electronic
transitions are of the charge transfer type and oc-
cur from oxygen 2pm MO's to the vacant titanium
t~, and e, orbitals. We illustrate the computation
of the excitation energy to an average of states
arising from the spatially allowed 4ti„- 2t~, (i.e.,
2pxo-Sdta~) transitions. ' ' '

The orbital energy difference, &(2t3 ) —e(4t&„),
equals 14. 7 eV. The excitation energy, however,
is lowered by the electron-hole interaction. Using
Koopmans's theorem, ' which assumes there is no
electronic reorganization in going from the ground
to the first excited state,

&E=~(2t„) -~(4L,„)-Z(2t„,4t, „) . (30)

n&i-(n&)i-Eipi -&E~i, (32)

where (n, e), is the appropriate averaged occupied-
to-vacant-band energy difference. We find that
values of the hole-particle interaction energy E»„
are close to values of the analogous Coulomb in-

The Coulomb interaction J is computed to be '7. 9
eV, slightly greater than the point-ion estimate
e /R(Ti 0)-=7. 3 eV. Very much smaller exchange
interactions, -0.06 eV, separate the sets of
singlet and triplet excited states. Hence, using
Koopmans's theorem, DE=6. 8 eV.

The same excited-state energy was also corn-
puted using the Hartree-Fock-Roothaan open-shell
SCF procedure developed for octahedral transi-
tion-metal clusters. ' This calculation gives
~=4. 2 eV above the ground state. That is, an
additional 2. 7 eV is gained when the excited state
is computed independently and is attributed to
electronic reorganization upon excitation.

Implications for SrTi03

Just as the cluster model for binary and ternary
ionic transition-metal salts yields good energy
values for the d-d transitions, it also appears to
yield a good estimate for the onset of charge
transfer excitations observed in this system.
That model is fully consistent with these crystal
results, however, onLy if the actual transitions
are not band to band but rather if the hole and par-
ticle are correlated in the excited state. This is
essentially the situation postulated by Simanek and
Sroubek. ' Such correlation may be introduced if
the electronically excited crystal states 4 „are
represented more accurately by a superposition
of all vertical band-to-band promotions (config-
uration interaction)

@i= Z Z ci(bB, k) ql(bB, k), (31)
b, B k

where 4 (bB, k) is a wave function constructed from
the manifold of ground-state SCF band orbital
functions in which one electron is promoted from
a ground-state-occupied band b to a conduction
band 8 both at k.

The expansion in Eg. (31) is just the fundamental
starting point in the construction of excitonic
states. In a subsequent paper, we shall show that
hole-particle excitation states can indeed be con-
structed from the present results in this manner
and that they exhibit orbital and energy features
very similar to the charge-transfer excited states
of the Ti06 cluster unit. In this respect, SrTiO,
has the characteristics of a molecular crystal
composed of (linked) Ti06 units.

Relative to the ground state of the crystal, the
energy of the state 4~ may be written in the form
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tegrals which occur in applying Eq. (30) to the
cluster but that values of ( hq), begin at about 16
eV, roughly 2 eV higher. Regarded as electronic
polarization energy, or reorganization energy for
the excited state of the crystal, AE» may rea-
sonably be expected to exceed the value of 2. 7 eV
determined in the isolated cluster calculation. The
classical electrostatic calculation of Rimanek and
Sroubek, in fact, would place it at - 6 eV. ' Using
fhis value and following the above reasoning, the
present band structure results are then found to
predict (excitonic) states beginning at about 2 eV
and extending up towards the 12. 1-eV direct band

gap
Such a prediction of excitonic lower-excited

states would appear to conflict with the photocon-
ductivity observed when the crystal is irradiated
at - 3 eV. Mechanisms have been postulated,
however, to account for such phenomena. These
and other processes are discussed in a subsequent
paper.

VI. SUMMARY

It appears both possible and worthwhile to com-
pute the energy bands of an insulating crystal like
SrTiO3 using the SCF tight-binding method. In-
stead of employing psuedopotentials or Fourier ex-
pansions of the crystal potential, we explicitly
evaluated all the integrals appearing in the tight-
binding formalism which are associated with a
cluster of nearest-neighbor atoms. Since it has
been shown that different model potentials can yield
appreciably different positions and characters of
energy bands, it is imperative that detailed calcu-

-lations like this be performed in order to under-
stand the limits of the Hartree-Fock approxima-

tion.
Encouragingly good agreement is obtained with

experiment both as regards the relative ordering
of the energy bands and the determination of trans-
port properties. As further data from x-ray-ab-
sorption and -emission and electron-emission
spectroscopy become available, it will be possible
to check the absolute positions of the one-electron
energy bands.

This LCAO-Hartree-Fock calculation yields a
separation between the lowest filled oxygen 2p
bands and the vacant titanium Sd bands of 12 eV.
While this is much larger than the observed op-
tical-absorption edge at 3. 2 eV, we expect that
many electron effects are very important in the
optically excited state of the crystal. A considera-
tion of configuration interaction between band-to-
band excited configurations and an estimate of po-
larization effects suggests that these correlation
terms will reduce the band gap by the right amount.

Finally, we have shown that achieving a self-
consistent charge distribution is very important in
determining the band gap of these ionic materials.
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Accurate values of "drifting" and "driftless" second sound at 0 K are obtained for alkali-
halide crystals and ten other cubic crystals. The percentage difference between the two types
of second sound is found to vary from 2. 8 to 16.2%. The ratio R = (vt)/Bvtn, where v is the

sound velocity and v» is the drifting second-sound velocity, is also studied and is shown to be
correlated with the degree of anisotropy of the substance.

I. INTRODUCTION

At low temperatures the study of heat pulses
yields valuable information concerning the phonon-

scattering process in dielectric crystals. The

possibility of the existence of apropagating tempera-
ture wave, called second sound, in a solid was
first suggested by Peshkov. ' Later Ward and

Wilks ' showed that it is theoretically possible for
a temperature pulse to propagate through a phonon

gas in a wavelike form, and they predicted the fol-
lowing relation between the second-sound velocity
v» and the mean sound velocity c:

2 & 2
Vyg —3C ~

Since that time considerable effort has gone into
establishing theories of a more fundamental nature
providing a more rigorous justification for the ex-
istence of second sound in insulators. Enz has
shown that two types of second sound are possible:
"drifting" and "driftless. "

In recent years a number of observations on heat-
pulse propagation in solids with characteristics
associated with the" second sound" have been made.
In 1966, Ackermann et a/. ' were the first to ob-
senre second sound in solid He. Subsequently,
more attempts were made by others with varying
degrees of success and recently heat-pulse data
and observations of second sound in very pure


