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Electrostatic Potentials for Semi-Infinite and Lamellar Cubic Lattices Containing
Several Different Kinds of Ions Per Unit Cell

Edgar A. Kraut, Thomas Wolfram, and William Hall
North American Rockwell Science Center, Thousand Oaks, California 91360

(Received 4 April 1972)

The electrostatic potential for a square planar lattice of positive, unit, point charges neu-
tralized by a uniform-negative-background charge is developed and numerically tabulated. By
stacking up such planes, potentials are constructed for infinite, semi-infinite, and lamellar-
neutralized, simple-cubic lattices of positive point charges; numerical results are presented.
The relation between potentials obtained by smearing out the neutralizing charge over all space
and by confining the neutralizing charge to lattice planes is explicitly exhibited. Using SrTi03,
a perovskite, as a specific example, it is shown how the tabulated potentials given here may
be used to obtain the electrostatic potential on the surface of and within a complex cubic
crystal containing several kinds of ions per unit cell. The methods for obtaining the potentials
above the crystal surface or in the presence of vacancies and impurities are briefly indicated.

I. INTRODUCTION

Many of the physical properties of ionic crys-
tals depend upon the electrostatic or Madelung po-
tentials. The importance of such potentials in
estimating cohesive energies and compressibili-
ties is well known. ' Seitz suggested a simple
method for calculating the energy bands of ionic
crystals based on the Madelung potentials some
time ago. More recently this approach was uti-
lized by Kahn and Leyendecker in the calculation
of the energy bands of SrTi03. A similar scheme
has been used by Levine and Mark4 to calculate the
intrinsic electronic surface states of zinc-blende
crystals such as CdS. In extending the Seitz model
to the calculation of surface states on ionic crys-
tals, it is necessary to know how the electrostatic
Madelung potentials are modified by the crystal
surface or surfaces. The required potentials for
complicated cubic crystals such as the perov-
skites, containing three kinds of ions per unit cell,
are presented here.

II. STATEMENT OF THE PROBLEM

As Hund has shown, ' it is convenient to introduce
the electrostatic potential C „(x,y, z) due to an in-
finite simple-cubic lattice with spacing a of posi-
tive, unit, point charges neutralized by a spatially
smeared-out, uniform background of negative
charge. The bulk electrostatic potential for a
complex, cubic, ionic crystal containing several
kinds of ions per unit cell, can then be represented
as a linear combination of Hund's potentials dis-
placed from one another by a fraction of a lattice
spacing and with each term being weighted accord-
ing to the charge on the ionic sublattice it repre-
sents. 5'6 The sum of the weighting charges must
of course be zero to maintain over-all charge
neutrality. Extended tables of Hund's potentials

have been published' permitting numerical evalua-
tion of the bulk Madelung constants of complex
crystals, virtually by inspection.

In order to obtain the same kind of representa-
tion for the electrostatic potential of a complex
semi-infinite crystal lattice or slab containing
several different kinds of ions per unit cell, we
introduce the electrostatic potential &1&(x, y, z).
Here g(x, y, z) is the electrostatic potential due to
an infinite, plane, square lattice with spacing a
of positive, unit, point charges located in the
plane z = 0 and neutralized by a uniform background
of negative charge confined to the plane g = 0.
With the aid of this potential, we shall construct
the required electrostatic potentials for semi-
infinite lattices and slabs.

III. ELECTROSTATIC POTENTIAL OF A NEUTRALIZED
PLANE LATTICE

Consider the potential due to a neutralized plane
lattice of positive point charges e and side a at a
distance z above the plane. The potential satisfies
Poisson's equation

V &I&= -4&/p(r ), (3. l)

where the neutralized charge density is given by

p(r') = &(z') za
e(zan/a& &ngx'+neap'&

52
n2+~2 &0

1 2

(3. 2)
The absence of the constant term from the Fourier-
series expansion (3.2) implied by the restriction
n1+n& & 0 guarantees that the average charge density
in the (x, y) plane is zero and corresponds to the re-
quirement of charge neutrality.

The well-known solution of Poisson's equation
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then gives

p(x', y', z') dx dy dz
[(x' —x)'+ (y' —y)'+ (z' —z)']'/'

(3. 3)

e
y(r) = 2a

where

f( ) (2a(/a&(n1n+n2&)&

2 2
& 0

1 2 (3 4)

f(n1, n2)=
~OO 4~

dx'dy' exp((2&(i/a) [n1(x' —x)+n2(y —y) ]]
[(x' —x)'+ (y' —y)'+ z ']'/' (3. 5)

f(n1, n2) =

and thus

4(xs y) z)

-(2ff/a) I el (n-+n )~+ 2 '"
1

(~12+ ~22)1/2
(3. 6)

The double integral in (3. 5) can be evaluated2 to
yield

where

a,(F')=, Z ll(s'+n, a))Q 5a (&0

x ~ Z exp[( 2&i(/a)(n x1' +n 2y')] .
n1 + ~(&o n2- ~co

n +n2&02
1 2

(4. 5)

n1=-& n2-"-&

n,.n &02 2
1

e (2N'f/a) (n1x+n2y) e-(2&/a) I sl (n1+n2)
2 2 1/2

(
2 2)1/2

Z 5(z'+n a)=
n(3

~ a(&0

oo

e(2a(/a&n a'

n =-~

With the aid of the identity

(4. 5)

is the desired plane-lattice potential.
(3.7) one obtains

IV. NEUTRALIZED-BULK, HALF-SPACE, AND SLAB
POTENTIALS OBTAINED BY SUPERPOSING NEUTRALIZED

PLANE-LATTICE POTENTIALS

pz(r ) p, (r )-=
a e (2a(/a&n2a'

n3=

n 80

(4. 7)

Consider the set of neutralized plane lattices
shown in Fig. 1 with the origin of coordinates on
the neutral plane z = 0. The bulk potential
4»(x, y, z) at a distance z from the neutral plane at
z =0 and due to all of the neutral planes is given by

C»(x, y, z) = Z )(t)(x, y, na —z) .
aOO

(4. 1)

The function C 2(x, y, z), like Hund's potential
@„(x,y, z), represents the potential due to a neu-
tralized, infinite, cubic lattice of positive point
charges. It differs from Hund's potential in that the
the neutralizing, uniform, negative background is
confined to the lattice planes instead of being
smeared out three dimensionally. We can explic-
itly exhibit the difference between C~ and C~ as
follows. Hund's potential satisfies

V 'C „=-4&(p„(r'), (4 2)

where

Define (1&,(x, y, z) by

& '42(x y z) = «[pz(r—') -p&(r') j, (4. 8)

and note that the solution of (4. 8) can be obtained
by inspection and is

y (X Z) g +& e(2ai/a&n2a
ma

3
n3&D

The series (4. 9) can be summed by recognizing it
as the Fourier-series expansion of a parabola
giving

(4. 9)

-2a-Z

Z =-2a

Z = -a

(r&e(x y z)=2&((e/a) [(&
—(z/a)+(z/a) ] for 0 z —a.

(4. 10)
As a consequence of (4. 2), (4. 4), and (4. 8) we
find

p„(r') =
2 Z Z Z exp[(2&(i/a)

n =-~ n =~
2

n +n +n & 02 2 2
1 2 3

x (n,x'+nzy'+n2z') j . (4. 3)
26 Z

I(
a-Z

-a-z

Z = 0

The corresponding potential 4~, due to the infinite
set of neutralized planes, satisfies

V'Cz = -4&(P~(r'), (4.4)

Z = 28

FIG. 1. Parallel, neutral planes with the origin of
coordinates on the neutral plane at z = 0.
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TABLE I. Plane potential g, half-space potential 4&,
and bulk potential 4z due to neutralized plane arrays of
positive, unit, point charges. Coordinates x, y, and g
are measured in units of the lattice spacing a.

000
ypp
11p
00 —'
1 p 1

1 1 1

001
apl
1 1

00$
—0—1
2 2

002
go 2

gb, y, z)

—3.900 26
—1.14236
—1.61554
—0.2135052147
—0.029456 787 94
—0.1388498088

0.007 870 915 027
—0.000 384 300 629 2
—0.007 074 306 709
+ 0.000 327 416 039 2
—4.589 392 926 x 10
—0.000 318 185 139 1

1.400352958x 10 5

—5.410926463 x10
—1.389 521 375 x 10-5

Cs»y &)

—3.892 377
—l. 142 745
—1.622 629

0.427 339
-0.058 918 2
—0. 278 018
—3.884 506
—1.143 129
—1.629 703

0.427 665
—0.058 9228
-0.278 337
—3.884492
—1.143 129
—1.629 717

000
ypp
1 1 p

002
1 p 1

1 1 1

4~(z, y, z)

-3.884495
—1.143 129
—1.629 719
—0.427 666
—0.058 9227
—0.278 337

C'z(x, y, z) = C„(x,y, z) —t)'~(x, y, z) . (4. 11)

This explicitly shows the relation between 4 ~ and

4~ and will be useful in numerical calculations to
be given below.

Referring to Fig. 1, the potential at a distance
z below the free surface z = 0 of a semi-infinite
lattice of neutral planes located at z = 0, a, 2a, . . .
is given by

Cz(x, y, z)=ZJ(x, y, na —z) for 0~z~a.
n=0

(4. 12)
For the case of a slab of N+ 1 neutral planes,
(4. 12) holds with the sum running from n= 0 to
n=N. On the neutral-plane surface z =0 of a semi-
infinite lattice

Oz (x, y, 0) = g(x, y, 0) + Z |)t(x, y, na),
n=i

while on a neutral plane z =0 in the infinite bulk
lattice

(4. 13)

Qz (x, y, 0) = g(x, y, 0) + 2 Z P(x, y, na),
n=i

(4. 14)

since g(x, y, z) = g(x, y, -z). We can therefore ex-
press the half-space potential on the surface as

4 z (x, y, 0) = 2 P(x, y, 0) + 2 C z (x, y, 0) . (4. 15)

4z (x, y, ~a) = 2$(x, y, 2 a) + Z t)1(x, y, na+ z a),
n=i

(4. 17)
so that

C z(x, y, —'a) = g(x, y, —,'a)+ —' 4 z(x, y, —'a) . (4. 18)

Similarly, consider the point z = —,
' a midway be-

tween the z = 0 neutral plane and the neutral plane
at z=a. We have

C z(x, y, 2a) = 2P (x, y, &a) + 2 Z g(x, y, na+ za)
n=i

(4. 16)

For z= ——,'a, Eqs. (4. 19) and (4. 1) give

C's(» y —
2 ~) = 2C, (x, y, ——,'a), (4. 20)

showing that the potential one-half a lattice spacing
above the surface of a half-space is just one-half
of the bulk value at that point. We can also derive
the following recursion relation from Fig. 1:

4 ~(x, y, Na+z) = g(x, y, Na+z)+ Cz [x, y, (N —1)a+zj,
{4.21)

where 0 & z ~ a. To summarize, 4 z(x, y, z) is the
electrostatic potential inside a neutralized, semi-
infinite, simple-cubic lattice of positive, unit,
point charges at a distance z ~ 0 from vacuum-
crystal interface.

V. NUMERICAL RESULTS

For z & 0, the series expansion (3.7) for g is
rapidly convergent. On the plane z = 0, (3. V) can
be summed by the Ewald technique. ' However, one
can avoid this step by using the representation

g(x, y, 0) = C „(x,y, 0) -2 Z g(x, y, na)—

(5. 1)
obtained from (4. 1), (4. 10), and (4. 11), together
with tabulated values' of Cz(x, y, 0). Table I pre-
sents numerical results; for the potential ~fj(x, y, z)
due to a neutralized plane of positive, unit, point
charges, for the half-space potential 4 z(x, y, z) due
to a semi-infinite array of such planes, and for
the bulk potential C z(x, y, z) due to a completely
infinite array of such planes. The x, y, and z
coordinates in Table I are measured in units of the
lattice spacing a, and the self-potential g(0, 0, 0)
of a neutralized plane array is seen to satisfy the
identity

g(0, 0, 0) = 2P(—,', 0, 0)+ P(—', —', 0) . (5. 2)

Table II contains further values of the plane poten-
tial out to five lattice spacings above the neutral
plane z=0. The series (4. 1) and (4. 12) for Cz
and 4 ~ converge very rapidly, and in practice only
a few planes need be summed to obtain 4 ~ or 4 ~
accurate to several decimal places.

VI. APPLICATIONS

As a specific example of some applications of
the potential functions derived above to complex

Equation (4. 18) shows that the half-space potential
at one-half a lattice spacing below the surface con-
sists of the contribution from the surface layer
plus one-half of the bulk potential. Similar argu-
ments using Fig. I show that the potential at a
distance ( —a ~ z ~ 0) above the boundary surface
of a semi-infinite lattice is given by

C z (x, y, z) = g(x, y, z) + Q p(x, y, na —z) . (4. 19)
n=i
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TABLE II. Plane potential g due to a neutralized
planar array of positive, unit, point charges cont;inued to
five lattice spacings above the plane.

oog
1 0 5

1 1 5
2 2%
003
203

002
2 2
1 0 g

1 1222
004
204

00~2

2
109
119
005
—,'o 5
1 1

&4,y, z)

+6.034436 757 xlo
—6.366723772 x10 ~0

—6.021701476x10-'
2. 605 713765 x 10 8

—7.488 621 61 x 10"~2

—2. 604215 862 x10
1.125 795 447 x 10-'

—8.772 528 237 x 10-&4

-1.125 618 553 x10-'
4. 864 723 425 x 10 ~ ~

—7.030017103x10 ~6

-4.864449 598 x 10-~i

2. 102163972 x10-~2

3.486 362 612 x10-
—2.101417955 x10

9.081 638 675 x10-"
1.108 789 684 x 10-"

—9.059 405 548 x10 ~4

crystals having several different kinds of ions per
unit cell, consider the perovskite lattice of stron-
tium titanate shown in Fig. 2.

Choosing the origin (0, 0, 0) at a, cube center and
measuring distances in units of the cube edge a,
the ions of a typical cube are located as follows:

Ti" at (O, O, O),

O' at (+ —,', 0, 0), (0, + —,', 0), (0, 0, + —,'),
Sr" at (~-,', +-,', ~-,'),

corresponding to a titanium ion at the cube center,
oxygen ions at the cube faces, and strontium ions
at the eight cube corners, respectively. The bulk
potential in an infinite SrTios crystal is, according
to the method of Hund' and Tosi,

e„T,o,(x, y, z) = g(Ti)e~(x, y, z) -g(O)es(x ——,', y, z)

-&(O)e, (x, y --'. , z) -g(O)e. (x, y, ~ -2)

g(Ti) —3g(O)+g(Sr) =0 (6. 2)

is maintained.
The electrostatic potentials at the various ionic

sites in SrTiOs may be obtained from (6. 1) and
Table I. For example, the potential at a titanium
site in the bulk crystal is obtained by setting x =
x=y=x=0 in (6. 1), using Table I, and noting that
the bulk potentials in (6. 1) are even in their argu-
ments. Numerical results are shown in Table IQ.
For convenience in preparing the tables, the lat-
tice spacing a, which in this example represents
the oxygen-oxygen distance in SrTi03, was set
equal to l. In terms of arbitrary a, the electro-
static potential at a titanium site in the bulk crys-
tal is, referring to Table III,

eT, (bulk) = —12. 377 456/g . (6. 3)

The numerator in (6. 3) is the Madelung constant at
the titanium site in an infinite SrTi03 crystal. To
convert (6. 3) to eV, note that charge is measured

+q(sr)e, (x--,', y--,', ~ --,'), (6. l)
where g(Ti), g(O), and g(Sr) are charges on the
titanium, oxygen, and strontium ions, respectively,
and over-all charge neutrality

SrTi 03 TABLE III. Electrostatic potentials as functions of
depth at the ionic sites in semi-infinite SrTi03 lattices.
Type-I lattice bounded by an (001) plane containing Ti
and 0, type-II lattice bounded by an (001) plane con-
taining Sr and O.

FIG. 2. SrTi03 lattice: oxygen ions at cube faces;
strontium ions at cube corners; titanium ions at center
of cubes; cube edge = O-O distance = a.

4Ti(bul. k) = —12.377 456

4 Ti(0) = —11.704 528

C'Ti (2) —12.409 238 04

4 (1) = —12.376 217 18

4 Pg (23) = —12.377 508 38

@Tf (2) = —12.377 452 15

4o(bulk) = 6.455 912

C,"(0)= 6.459 O36

~~(—) = 6.459 O36

C "(1)=6 4559O558O

e'"(-',) = 6.455 9O5 58O

o (2) = 6.455 905 147

4o(bulk) = 6.455 912

Co (0) =5.512676

4o (2) = 6.484 524 010

C sorz(1) = 6.454 633 567

4osz(23) 6 455 961 588

4 (2) = 6 455 905 791

C s~(bulk) = —5.387 208

Cg~ (0) = —4.978324

4 s~(2) = —5.415 896 083

4 1) = —5.386005 639

4s (2) = —5.387260022

4s~ (2)= —5.387204225
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in units of e=4. 8&&10 esu and

4 T,(eV) = —12.377 456(e /a) = -45. 644 eV . (6. 4)

+g(Sr)[C, (x--,', y --,', —,') -y(x--,', y --,', —,') ]

-g(O)[4's(x y, 2) —4(x, y, 2)], (6. 6)

Next, consider the electrostatic potential on the
surface of and within a semi-infinite strontium
titanate lattice. We see from Fig. 2 that there
are, for example, two types of (001) neutral sur-
faces, type-I surfaces containing titanium and oxy-
gen ions and type-II neutral surfaces containing
strontium and oxygen ions. Correspondingly,
there are two types of potential functions for
SrTi02 half-spaces terminated by (001) planes.
Taking the plane z = 0 as the boundary surface,
these are (where z & 0)

Cs",T,o, (x, y, z+ —,') =g(Sr)Cs(x ——,', y ——,', z)

-g(O) 4 s (x, y, z) +g(Ti) 4 s (x, y, z + 2)

—2g(O)C s (x ——,', y, z+ —,') (6. 5)

for the potentia, l at a depth of (z+ —,) lattice spacings
below a type-I (Ti-0) (001) boundary surface and

SII 1
@SrT102(Xs y& Z+ 2)

= g(Ti)4 s (x, y, z) —2g(O)C s(x - -2', y, z)

+ g(Sr)4s(x —2, y —S,z+ 2)- g(O)4s(x, y, z+ —,')
(6. 6)

for the potential at a depth of (z+-,') lattice spac-
ings below a type-II (Sr-0) (001) boundary sur-
face. With the aid of these expressions, we can
derive expressions for the potentials on the type-I
and type-II boundary surfaces themselves. For
example, to determine the potential on a type-I
(Ti-0) surface, we note that such a surface is lo-
cated one-half a lattice spacing below a type-II
(Sr-0) surface. Thus, we need only remove this
topmost (Sr-0) layer to obtain the potential on the
surface of a half-space with a type-I (Ti-0) bound-

ary) 1~ e. )

4 sr Tio2(xt y& 0)

@s Tio (x y 2) g( )0(x 2 y 2 2)

+g(O)y(x, y, —,') . (6. 7)

Using (6. 6), this can be written as

4,", , (x, y, 0) =g(Ti)C, (x, y, 0) —2g(O)C, (x ——,', y, 0)

and from (4. 18) it follows that
SI@ S r Ti02(xt y t 0)

=g(T')4' ( y, o) —2g(O)c ( --', y, o)

+ —,'[g(Sr)C (x ——,', y ——,', —,') —g(O)C (, y, —,
'

) ] .
(6. 9)

A similar argument for Cs,"T«(x, y, 0) gives'"'
3

SII
@ s r T io2(xt ys 0)

= g(Sr)4 s (x —2, y —2, 0) —g(O)@s (» y~ 0)

+ -,'[g(Ti)4 (x, y, —,') —2g(O) 4 2 (x ——,', y, —,')] . (6. 10)

The physical interpretation of these expressions is
straightforward. For example, Eq. (6. 9) states
that the potential on the surface of a type-I SrTiO3
half-space consists of the contribution from a
pure-(Ti-0)-lattice half-space corrected by one-
half the bulk contribution from the Sr-0 sublattice,
one-half a lattice spacing away. Numerical re-
sults for the potentials as functions of depth in
type-I and type-II SrTiO3 half-spaces at the vari-
ous ionic sites are shown in Table III which was
obtained using (6. 5-6. 6), (6. 9—6. 10), and Table
I. Above the surface of the crystal the potential
falls off rapidly. At a titanium site one-half a
lattice spacing above the surface C T, (0, 0-2)
= —0.672924/a compared to the bulk value (6. 3).
It should be observed that vacancies and impuri-
ties can be easily incorporated by subtracting out
from the half-space potentials those Coulomb con-
tributions coming from the particular ions one
wishes to convert to vacancies. Impurity ions may
be added on in the same fashion.

One should note that the relations derived above
between potentials near the surface of a complex
cubic crystal and the potentials for neutralized
planar arrays will hold only if the ionic lattice on
the exposed crystal surface is charge neutral.
When such is not the case, the resulting electric
field from the lattice will cause a readjustment of
electrons near the surface, violating, thereby,
the assumption that the neutralizing background is
uniform.
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