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On the basis of the principle of deriving the Fermi-Dirac distribution function, a general ex-
pression of the carrier distribution function taking into account the effect of applied electric
field has been deduced. Theoretically, this general expression can be used to analyze any
carrier transport phenomena in both nondegenerate and degenerate semiconductors with either
parabolic or nonparabolic band structure. Using this general expression, the Boltzmann trans-
port equation has been solved analytically for low and high temperatures. Some computed re-
sults are presented, and discussion and comparison with other available results are given.

I. INTRODUCTION

In the study of high-field transport phenomena
the carrier distribution function f is one of the most
important factors, which has to be determined
first. f is governed by the applied fields, and the
scattering of the carriers with the carriers and
the phonons; and it is generally obtained by solving
the Boltzmann transport equation with certain
boundary conditions and some necessary assump-
tions. In the absence of external fields, f for non-
degenerate semiconductors is usually assumed to
be Maxwellian in thermal equilibrium. But in the
presence of external fields the net carrier trans-
port will disturb the equilibrium condition and
hence f will be altered. At low fields the effect
of all scatterings are usually treated by the re-
laxation-time approximation. ' There are many
shortcomings of the relaxation-time approxima-
tion and they have been discussed in detail by Law
and Kao. To avoid using the relaxation-time con-

cept, several investigators have used the varia-
tional method, ' iterative technique, ' Monte Carlo
method, 9 and self-consistent power series to
solve this problem. In this paper we present a
new method for determining f as a function of ap-
plied electric field for fields of any strength. This
method is based on the principle of deriving the
Fermi-Dirac distribution function. With the gen-
eral expression for fwe have solved analytically
the Boltzmann transport equation for low and high
temperatures. We also present some computed
results to show the field dependence of f, the ef-
fect of mixed scatterings, and the effect of tem-
perature; and to compare our results with those
calculated by other investigators.

II. GENERAL EXPRESSION OF DISTRIBUTION FUNCTION

With the flow of carriers in a semiconductor
under the influence of applied fields, the carrier
distribution function will depend on the applied
field and temperature; and in the steady state it
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will be formed under such a condition that the
number of ways for arranging all carriers in all
available energy states is a maximum. ' By taking
into account the effect of applied electric field the
carrier distribution function is derived as follows.

Suppose the energy states are divided into many
compartments with Ni electrons and G, states of
energy E, in the first compartment, N2 electrons
and G~ states of energy E~ in the second compart-
ment, N, electrons and G, states of energy E, in
the ith compartment, and so on. Then the number
of ways for arranging the total N electrons in the
total G states is given by

G. 1

, , N, t(G, N.) t
'

The total number of electrons in the system is

where m is the effective mass, h is Planck's con-
stant divided by 2m, k, is the magnitude of the wave
vector k„and 8 is the angle between k, and F, the
latter being taken in the z direction only.

Using the method of Lagrange multipliers, the
condition for the number of ways for arranging N
electrons in G states to be a maximum is

[In%+ o.'(N-g N, )+ P(E —Q N;E&)
d

$~1 f~i

+ y (J —e Q N, V~&)j = 0. (6)

With the aid of Stirling's formula, the solution of Eq.
(6) gives

~N 1

G; 1+ exp (o.'+ PE; + ye Vz &)

N=Q N;,

and the total energy of the system is

(2) Hence the carrier distribution function is

1

1+exp[ o.'+ PE+ (ye%/m) co s8 j
' (6)

E=P N(E) .
5~1

If there is a net carrier transport, an additional
condition must be added, and it is

J=eg N;V~;,
i~i

(3)

(4)

where J is the current density, e is the electronic
charge, and V~, is the velocity of the carriers of
the ith compartment in the direction of the applied
electric field F. In thermal equilibrium and in
the absence of the applied electric field the condi-
tions given in Eqs. (2) and (3) imply that the car-
riers in each compartment have the same energy
and that all the compartments can be simply con-
sidered to be the constant energy surfaces in the
momentum space. But in the presence of an ex-
ternal field these surfaces will be distorted, and

for isotropic materials they will be symmetric
around the direction of the field. In this case the
carriers in each compartment may still have the
same total energy, but their velocity components
in the direction of the field would be different. For
this reason we divide each compartment into many
subcompartments in a way that in a given subcom-
partment, which is formed by the intersection of a
cone with the constant energy surface within an
angl, e 8 from the direction of the field, the carriers
have not only the same energy, but also the same
velocity component in the direction of F. Equation
(3) is the necessary condition for a system to have
a constant total energy, while Eq. (4) is the neces-
sary condition for a system to have a steady cur-
rent flow. Based on this argument the velocity
component V~, in any subcompartment is thus given
by

V~; =(%,/m) cos8,

y2ea cos28 Ph~ ye cos8
=exp —n+ — k+

(9)
The first iwo terms in the exponential of Eq. (9) are
independent of k. Equation (9) is generally referred
to as the displaced Maxwellian distribution function"
with the displacement vector given by

ye cos8
Ph

(10)

where P= I/ke T; ke is the Boltzmann constant and

T is the temperature of the electrons.
By rewriting Eq. (9) in the form

-e -g E -(@eh'/m) cosg=e e

f (E)e-(yeMlm) cose
Q

=fo(E) [1—(yekk/m) cos8]

=fo(E)+ k~g(E),

with fo(E) = e ~~, kz —-kcos8, and g= foyer/m-
Equation (11) is the distribution function used by

This is a general expression for the carrier distri-
bution function taking into account the effect of ap-
plied electric field. Thus y must be field dependent
and vanish when F=O. Since k is related to E
through only the E —k relationship for a given en-
ergy-band structure, Eq. (8) should be valid for
both nondegenerate and degenerate semiconductors
with either parabolic or nonparabolic band structure.

It is of interest to see how Eq. (8) can be reduced
to the forms which have been used in the past. For
nondegenerate semiconductors with a parabolic
band structure, Eq. (6) can be approximated to

yeSkf=sxp (- s —pe — sssp)
m
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Conwell and Vassell' for their study of transport
phenomena, but they obtained this by expanding f
in a series of Legendre polynomials and cutting
off the series at n= l.

It is clear that both the displaced Maxwellian
function and Eq. (11) are only approximations of
Eq. (8), and they are definitely not accurate for
high fields. In the following we shall determine
the carrier distribution function based on the general
expression given in Eq. (8)by solving the Boltzmann
transport equation.

III. BOLTZMANN EQUATION AND SCATTERING
MECHANISMS

The Boltzmann equation for a many-valley semi-
conductor is given by

Bf, (k) Bf,(k) Bf (k )
&t et ~ ) et (12)

where z and j stand for the ith and the jth valley.
The first term on the right-hand side is the rate of
change of f, (k) due to the applied field, which is
given by

fi%) F, P f (k)
~

~
~

The second term is the rate of change of f, (k) due
to various scattering processes. To simplify the
matter, we make the following assumptions: (a)
The semiconductor is nondegenerate, so that the
effect of carrier-carrier scattering can be ignored
because the carrier concentration is so small that
the carriers are mostly scattered by the lattice
vibrations"; (b) the energy-band structure is para-
bolic; and (c) F is uniform across the sample. This
means that the applied electric field is not high
enough to cause space-charge effects such as the
formation of domains. So we confine ourselves to
scattering mechanisms due to phonons of different
types denoted by s. Thus the second term on the
right-hand side of Eq. (12) may be written in the
form'3

)
= C(J'(k, k )((N))(k ) —( +1)fk(,k))

x &[E)(k)—E)(k') —S(d,] —[N,f, (k) —(N, + 1)fq(k )]

x () [E (k') E.(k) h~ ]]dk' (14)

The four terms in the integrand represent the tran-
sition from state k in the ith valley to state k in
the jth valley, and vice versa by emission and
absorption of one phonon of type s with wave vector
+ (k- k') and angular frequency (d, . By assuming
that the phonons remain in thermal equilibrium at
the lattice temperature To, the number of phonons
of type s follows the Bose-Einstein statistics:

C",'=D'" k-k'". (i8)

For different types of scatterings the (s) and r are
changed as follows:

when r= —2, (s)- (o) for optical-mode scattering;

when r= 1., (s) - (a) for acoustic-mode scattering;

when r= O, (s) - (ij) for intervalley scattering.

For mixed scattering, the parameter x would take
a value between —2 and l, and the quantity D&&'

would be different from that for a single type of
scattering.

The magnitude of the wave vector of the phonons

may be written as

~k.-k
~

= (h'+h"-2hh'u)'&',

in which

u = cos 8 cos 8'+ sint} sint}' cos((t) —(t) )

where k and 0 are the magnitudes of wave vectors
k and k whose directions are 8 and 8 from the
z axis, and (t) and (t) are the azimuthal angles about

the z axis for A and k . For mathematical simplic-
ity, we divide the energy range of phonons into three
regions as follows.

(i) High energy Phon-ons. For this case 5+,
»hsT, . Therefore, N, «1 and Eq. (14) reduces to

r
ef, (k)

CI)' (k, k ) [f)(k ) 5, f(k)5 ]dk-
(18)

with

&, = & [E,(k') —E,.(k) —e~, ]

and

t) = t)[E, (k) —E, (k') —tf(d, ] .

In this range of phonon energies, optical, polar-
optical, and intervalley scatterings may play a role
in the transport phenomena, and at very low tem-
peratures the acoustic scattering may also become
important. This case usually occurs at low tem-
peratures.

(ii) Lou energy t)hon-ons. For this case h(d,

«hsTo. Therefore, N, »1 and Eq. (14) reduces to

(
e. k

N, C"'(k k')(5 +5 )
Q

x [f,(k ) -f,(k)]dk', (18)

N, =[exp (h(k), /hsT, ) —1] ' .
The strength of the scattering is controlled by the
function C,'&' which depends on the type of phonon
and the magnitude }k—k }. Therefore, C,&) can be
written in the form
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Ns =ks T()/h())s,

()),=
i
k - k

i
(), ,

(2o)

(21)

and v, is the velocity of sound which may be con-
sidered to be constant for this case —the linear por-
tion of the dispersion curve for phonons. This
case usuallv occurs at high temperatures and the
dominant scattering is of the acoustic type.

(iii) Intermediate-energy pkonons. For this case
S~, =k&To; no approximation can be made to sim-
plify Eq. (14). This case is general and compli-
cated, and will not be dealt in this paper.

We shall begin with case (i) for low temperature.
Case (ii) for high temperature can be treated
straightforwardly in the same way later.

A. High-Energy Phonons

The function C,&' may be expanded in a series of
Legendre polynomials P„(u) as

C(s) D(s&(k 2+k 2 2kk )n/2

= Za„P„(u) .
n=O

(22)

The coefficients a„can be determined by the follow-
ing relation:

a„(k, k ) = $~2n+ 1)D';,"f (k +k —2kk u)" ~ P„(u)du .
(23)

Using the addition theorem of the spherical har-
monics, Eq. (18) becomes

~

~

(s) ~ n

2 1
Y„(8 Q)f (k) a Y'(8, Q )5.k sin8 d8 dk d(t)

ij n 0 l=-n 2++1

n

+Z 2 — Y„' (8, (t)) a„Y„'(8, (t& )f&(k )5, k sin8 d8 dk d()&) . (24)
n=o 5 =-n 2+ +

By denoting some integrals as follows:

W„(k, k ) = f, (k'+k"-2kk u)"~ P„(u)du,

y „'=f f, sin8 Y„'(8, (t& ) d8 dp,

S„(k)„=f, 6 W„(k, k')k"dk,

(26)

(26)

(27)

—2&)g D;," f,.(k)S (k0.),, —, „g2 T()(k);g
(4~)

1/2 )

cos8 T((k),, = 0, (32)

z'„(k'), ,
sin8 1'„'(8, (t& )d8 dQ

1+expl n&+ P;E, +y, (ek/m;) k, cos8 l

(28)

6. W (k, k')Z'(k') "k"dk' (29)

(
&)(s &

= —2&)D'„" f((l()SO(k)„—, „), T(')(k)„
fj (4~)

1/2
cos8 T,'(k)„.(SO)

J

T'„{k),, f
it can be shown that the integrals W„(k, k ) are
appreciable only when n = 0 and n = 1 (see Appendix).
Thus Eq. (24) takes the form

where K; is the reciprocal-lattice vector of the ith
subband.

B. I.ow-Energy Phonons

Following the same procedure, we can obtain the
general Boltzmann equation for low-energy phonans
as follows:

—F ' -+,8' — '- cosO 1-
& k; k

f'

—2))Z D q" f,(k) S'()(k)„—,i, T ()'(k)„(4)))

1/2
cos8 T, (k),, =0, (33)

The evaluation of the integrals defined in Eqs.
(25)-(29) is given in the Appendix.

By substituting Eq. (8) into Eq. (13), we obtain

where

(34)

e F y;e@ @2k -K&
S„(k),, = f. ( 6+ )6W„'(k, k')k"dk', (36)

xt 1 -f((l ) lf;(1 ),
and by substituting Eqs. (30) and (31) into Eq. (11)
we obtain the general Boltzmann equation

W „(k, k ) = f [k2+k 2kk'u] n-(&)'2P
(u) du

T„"(k);&——f (5,+ 5 ) W„' (k, k') Z„'(k');) k' dk' .

(36)

(37)
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(ii) ~2y, ehk,'/m,
~

«1, (39)

IV. ANALYTICAL SOLUTION

For the case of high-energy phonons (or at low
temperatures), it is clear that Eq. (32) with the in-
tegrals given in the Appendix has no simple solu-
tion. To obtain an analytical solution, we make
the following assumptions:

(i) f (k) «1; (38)

this condition is well satisfied, since for nonde-
generate semiconductors exp[n+ PE+ (yehk/m) cosa]

where k/ is defined by Eq. (A16) in the Appendix.
This condition is equivalent to

I y/I «I/2e V;.
Therefore,

(4O)

where V/=hk//m/= /»/F, and )(»/ is the electron
mobility in the jth subband. This condition can be
applied for I y& I =0 corresponding to F= 0 up to high
values of I y&l for any desired values of F.

From Eqs. (38) and (39) we obtain the following
relation:

»)
~/~ m, 2ehy/ k/ 1+exp[n/+ p/ (E+h(d, ) —(eh/m/) y/k/]

eely/ k/
p

m/ 1+exp[n/+ p/(E+ h&u, ) + (eh/m/) y/k/],

I» )+ exp( » —1 f&(E+&»d,)}=2»'& f&(E+&»d, ) .
ehy& k& m/

(41)

Using Eq. (41), the integrals Too(k),./ and T,(k), / reduce to (see also the Appendix)

(2m /h')k' ( " I (2p ''r)--
0(k)»/~f/( + (o,)»)', I( Z ~.(, ) 1,(2 I) ( )j g '0=0 2

1/2 a)
x 2,' (E —n,.)"'+K,. k,

'
i (42)

()( ) ( )
(3»))' '(2m, /h')k

8 Z
I'((2p+I -2r)

1 (- -', r) I'(2p + 2) (-', +p)

I/2 ~ &/4 2»& ~ (2m»/2 2»&+~

x 2 (E —n ) +K +k' (E —~.)"'+K k' (43)
)), h

Thus Eq. (32) takes the form

where

L»(E)f»(E) =Z, H»/ (E)f/(E+ h(u ), (44)

L,(E)= —F ' + )8» h cos8 —2w Z D»'/) So(k)»/,
pl) SS f

(48)

H &(E)»D», &
( &/ )~&~,(f, V(Rp ——'v) 2m&

'
(@ & )»& && &,& }'

k/ -K/ (~~
I"(-—,

' r) I"(2p+1) (—,'+p)

1/2 2 r/2 2»& 12m 1-/2-2»+1l
x ~z» (E —&»)~/~+K + k/2kz (E —&»)'/ +K» k/ (48)
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E —&)=h (k -K)) /2m, , (47)
f~(x) =Aexp((1/ ) 1n[Zgg(x)L)(x)]], (55)

L)(E)f, (E) = H„(E)f)(E + h(u, ) + H„(E)f,(E + h(u.),
(48)

L (E)f (E) = H (E)f (E+h~, ) + H (E)f (E + 8'(g ) .
Therefore we have

f,(E+h&u, ) ~gg(z) ~pa(z)

f,(E+ hu), ) &gg(z) ~p2(z)

L,(z)f, (z)
9

La(z)fp(z)

(48)
wfler e

(5o)

Thus the carrier distribution function for the first
subband is

f,(Z+ h~, ) = Z„(z) L,,(Z)f, (z) + Z„(z)I.,(E)f,(z) .
(51)

This difference equation is simply a mathematical
expression of the physical process that the change
of the electron energy E by +k&, through the ab-
sorption or emission of a phonon of energy 5&,
causes a corresponding change of the values of the
carrier distribution function. This is of course a
natural consequence. In the above mathematical
treatment we use the energy rather than the wave
vector in the argument of.f because it is convenient
to express the change of the electron energy by a
discrete interval ah&@,. Furthermore, f in Eq. (8)
with the energy in the argument enables an easy
solution of Eq. (14) and an easy calculation of the
quantities Too(k);& and To(k),

&
given by Eqs. (42) and

(43), which lead to the conversion of the Boltzmann
equation into the difference equations.

If we confine ourselves to the electron energy
&, & E «z, then f~(E) =0. This implies that the
distribution function diminishes at E= ~3. For this
case Eq. (51) becomes

where && is the minimum energy at the edge of the
ith subband.

In this paper we shall treat the case with only
two conduction subbands. The treatment for cases
with more conduction subbands presents no formal
problem, except that the amount of calculations will
be enormously increased. By denoting the lower
subband with the subscript 1 and the higher subband
with the subscript 2, Eq. (44) becomes

where is the difference operator. Thus by com-
bining Eqs. (8) and (55) we obtain

l~+ (1/ ) [egg(x)L, (x)]= —n, —p, R&o~

+1/@+a) ln[~ll(&)L1(~)l

1 ygeS'k 1 y&ehka= —pp- cos8+ Py6g + cose .
2 mg

(5V)

If we choose the coordinates of the E —k relation-
ship such that b,&

= 0 and K& = 0, we obtain finally

exp —p,E —~» cos8 = J» E L, E
el'k E/h co

mi
(58)

Since f,(E) = exp[- o.~
—p,z —(yqehk/m, )cos8], the

carrier distribution function can be written as

y;(E) =. "~ [~»(z)L,(z)]"""", (59)

where g is a factor taking a value between 1 and 2
depending on whether P&E is larger or smaller than

(y, ehk/m, )cos8. At low temperatures n is expected
to be approximately equal to 1.

By applying the same argument in determining
L~(E), we obtain the following relation for small
values of 8:

H22 2eE in[e'~f, (E)]
HggHp2 —H(2Hag pp8(2mgz'/h ) cos8

" nE/he
2Zv,'D;.

'
S( )Ej =O. (6O)

For large values of 8, Eq. (8) reduces to the
Fermi-Dirac distribution function.

For the case of low-energy phonons (or at high
temperatures) Eq. (48) becomes

L '(E)f (E)= H (E)f,(E + hv, ) + H (E)f (E + he@,)

+ H,', (E)f,(z h~.) + H,', (z)f,(z—a~.), —

y, eri 2m, h(o„"' (cosg ~ g — + gga ( k(d

(56)
which gives

fg(E+8(o ) = Jgg(E)Lg(E)fg(z) .

By denoting

x = E/h(og q

Eq. (52) becomes

(52)

(53)

I,,'(E)f,(Z) = H»(z)f, (Z+ h~, ) + H»(z)f, (Z+ h~, )

+ H,', (z)f, (z h~, ) + H,', (z)f,(z ——h~, ),
(61)

where

L,'(E)= y' +p, h' —' os8 -2 ZD,","S,'(k)„

f,(~+1)=Z„(x)L,(x)f, (x) .
This is a difference equation, which has the follow-
ing solution:

(62)
and H,'p(E) can be obtained from Eq. (46) by re-
placing r with y —1, and j'gz with k&, which is given
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by

k = (2m /It' )' '(E —5a) —a )' '+Z (68)

In the energy range b,t & E & dp we can set fp(E) = 0
and fp(E —%u,) =0. Thus Eq. (62) reduces to

L'(«)f («)= («(«)- " " )f (««)
22

+ yf (E) 12( ) 21( ) f (E @ )e„(E)

10

E ft(E/h(d, ) is assumed to be in the form

f (E/@+ ) Qsla (««

(64)

(65)

C
0
LJ
C

10

it can be shown that the solution of Eq. (64) is given
by

22

«„(«)«l,(«)) '"I'I" ~

If„(E)

If„(E)
x 2~a (E)- " " -0 (66)

V. COMPUTED RESULTS AND DISCUSSION

By solving Eq. (60) for e"if,(E), we obtain

e"tfi(E) =f '(E)+ C, (67)

fi(E) 0 as E (68)

In this section we shall confine ourselves to the
case for high-energy phonons (i.e. , I'(d, & ksT),
since it is of direct interest to the study of elec-
tron transfer between conduction subbands in multi-
valley semiconductors.

To show the possible carrier distribution func-
tions under various conditions based on the analysis
given in Secs. II-IV, we choose n-type GaAs as
an example. In this semiconductor the bottom of
the first valley in the conduction band is located at
(000) in k space with the electron effective mass
mt = 0. 067m p, and that of the second valley at (100)
withm2=0. 35mo, where mo istherest mass of the
electron, the energy separahon between these two
valleys ~2- b,& being 0. 36 eV. By assuming the
band structure of the semiconductor to be parabolic
for simplicity, f '(E) has been computed under vari-
ous conditions, and the results are presented and
discussed as follows.

The values of D,', ' and D,'~&~' for z-GaAs are giv-
en" by

where C is a constant which depends on the applied
field and can be determined by employing the follow-
ing boundary condition:

o 10

a

10'
I

I

I

I

I

I

I

I

I

10+ I I

0 $10
i

1$20 2$
E/4 w«

I I I

30 35 10

FIG. 1, Distribution function of electrons in the (000)
valley in a-GaAs for C&& =2 && 10 i IR —tt' I

t and 0=0'.
(a) F=2 kV/cm, n=l; Q) F=l kV/cm, g=l; (c) F=l
kV/cm, s = l.02; (d) Maxwellian distribution at E = 0 and
T = 30 'K for comparison purposes.

&o~ e coo I'1 1 =10 ' mks units
27T t(«~ 6p

2D""= " =10 mks unitsfy 8m2p

where ~o is the angular frequency of optical pho-
nons; &„and &o are, respectively, the dielectric
constants at zero and infinite frequencies; D, ~ is
the deformation potential field for the jj phonons,
which is taken to be 5&10p eV cm i; p is the density
of the semiconductor; and co, &

is the phonon fre-
quency at K, —K&. We choose the value of the or-
der of 10 ' mks units for D, &

in order to examine
the effect of mixed optical and intervalley scatter-
ings. A decrease of D, z corresponds to an increase
in weight of the intervalley scattering, and in turn
corresponds to an increase of electron transfer
from the lower to the upper valley and consequently
leads to current instabilities.

Figure 1 shows the carrier distribution function
as a function of E/h(d, for the applied electric fields



1432 W. A. WASSE F AND K. C. KAO

of 1 and 2 kV/cm. The case for n=1 corresponds
to that for T = 0 K, and the case for pg = 1.02 corre-
sponds to that for T = 30 'K and the phonon energy
h+, =0.01 eV. The tail of curve (c) is clearly
parallel to the Maxwellian distribution curve (d) for
the same temperature and phonon energy. By com-
paring curve (a) with curves (b) and (d) it is clear
that the higher the applied electric field, the more
electrons have higher energies.

Figure 2 shows that if the value C,~=2x10 '8

&& Ik —k'l is replaced with C,.&=1&10 ' )k —k'I 3,

the distribution decreases with increasing applied
field throughout the whole energy range. This
trend is just opposite to that shown in Fig. 1, in-
dicating that there is a critical value of D,.&, below
which the distribution function reverses its trend
of response to the applied field.

Figure 3 shows the effect of the parameter r.
By changing y from —2 to —1.98 so that the scat-
tering is a mixed scattering, and comparing the re-
sults with those in Fig. 2, it can be seen that the
distribution increases with decreasing value of g,
particularly in the low-energy region. This indi-
cates the importance of the mixture of several dif-

10
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C
0
V
C

o10

104

10
0

i I l l I I

5 10 1$ 20 25 30 35 40

E/ew,

10

FIG. 3. Distribution function of electrons in the (000)
valley inn-GaAs for C&&=1& 10 ~ IR-k'l and 8=0'.
(a) Il = 2 kV/cm, n = 1; (b) E= 1 kV/cm, n = l.

C
0
V
C
D

10

C
0
~10

10 I I i I I I

0 5 10 15 20 25 30 35 40
E law,

FIG. 2. Distribution function of electrons in the (000)
valley in n-GaAs for C&&

——1X 10 ~ [k —T»' ) and 8=0'.
(R) E=. 2 kV/cm, I=1; (b) E=1 kV/cm, @=1.

ferent types of scatterings.
Figure 4 shows the effect of the angle 8. It is

clear that the distribution function is not sensitive
to a small variation of 8. But for large 8, the dis-
tribution function will greatly decrease, and for
8 = v/2, the distribution function becomes Max-

w ellian.
Figure 5 gives the comparison between our re-

sult and that of Vassell and Conwell'4 for F= 2. 4
kV/cm. In order to use the mixed scattering ap-
proximately similar to that used by Vassell and

Conwell, we use C,~=2@10-"(k-k'), 8=0', and
yg= l.05, which corresponds to T = 293 K. Our re-
sult deviates from the Maxwellian in the high-ener-
gy region much more than that of Vassell and Con-
well. Based on Fig. 5 at the field of 2. 4 kV/cm,
an appreciable portion of electrons have energies
extending to the bottom of the upper subband.
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APPENDIX: EVALUATION OF INTEGRALS DEFINED IN, EQS. (25)-(29)

(a) The integral W„(k, k ) can be put in the form

q1 - r/2

W„(k, k )=(k +k )
~

1 —
p ia u P„(u)du.

«1

1433

(Al)

Since [2kk /(k~+ k ~)]u is always less than unity, we can write

( 2kk ",( 2kk ,'r—(,'r —1-) 2kk ,'r(—,'r —1—)(—,'r —2) ( 2kk

I'(- —,'r) I'(2p+ 1) k~+ k~ ~.0 I'(- ,'r) —I'(2p+2) k + k

Legendre function P„(u) is an even or odd function according to whether n is even or odd integer, respec-
tively. Therefore, the integration in Eq. (Al) will be twice the integration from 0 to 1 if we take the first
summation on the right-hand side of Eq. (A2) with P„,„„and the second summation on the right-hand side
of Eq. (A2) with P„,«such that the integrand in Eq. (Al) is always an even function; otherwise the integra-
tion w il l vanish.

Therefore, if q is a positive integer, we get

r(2p - —,
'

) 2kk' " (- 1)' r(q -p) r( -,' p)

, , r(- —,'r) r(2p+ 1) k'+ k' r(- p) r(q+ —,
' + p)

(AS)

ia + I'(2p+ 1 —,' r) —2kk )+' (- 1)'I'(q —p)I'( —'+ p)
~.~ I'(- ,'r) I'(—2p+2) k~+ k ~ I'(q+ —,'+ p) I'(- p)

(A4)

As a special cas e we examine the behavior of
the integrals W„ for pol ar-opti cal scattering' '
for which x = —2:

3 &g rl2 F(2p+ 1 2 r)~ I"( — ) I'(2P 2) ( — P)

1 k + k
W„(k, k ) = g Q (2m+ 1)Q„g

m=0
& 2kk'

"haik'+ k" ) (A 7)

P „(u)P„(u) du

k + k
kk " 2kk' (A 6)

xi
t 2kk
(k~+ k'~ (As)

where Q„are Legendre functions of the second kind.
From the characteristics of Q„((k3+ k'3)/2kk') for
(k + k )/2kk'& 1 it can be shown'7 that we need con-
sider only Wp and W1, since the value of W„de-
creases rapidly for n greater than 1. In gene r al
cases in which x is arbitrary, the integral s W2,
and Wa„, given in Eqs. (AS) and (A4) have the same
features as the aforementioned case, and therefore
we consider only Wp and W1 ~ The se are given by

a,a „,~ " I (2p —-'r)
Wo(k&k )= (k +k ) Z F( ~r) F(2p 1) ( ~, p)

p 1/2,
gp= 27k

-1
xi = o

0
y 1 = 0,

1

(AS)

(AQ)

(A10)

(Al 1)

(c) Since the integrals y„' are multiplied by S„(k)q~

in Eq. (24) and from the results given by Eqs.
(AS)-(All), we conclude that it is necessary o»y
to calculate S,(k)„. The result is given by

This shows that the summation over n for the scat-
tering term in Eq. (24) will contain only the first
two terms: n = 0 (l= 0) and n= 1 (I = —1,0, 1). There-
fore, in the following integrals we shall consider
these two values of n only.

(b) The integrals y „' can be readily obtained if
only the values 0 and 1 for n are considered. The
results are

(2m, /a')'~&
~0(k)o 2'(E @~ g )1/2 g2 ~l

( & s) + s ~.0 I"(- ', r) 1 (2p+ 1-)(-,' + p)
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2m «~
( )„, 2m

(E —i»&u -4 )' +K

&& „,*~ (E ~)'/2+A, (+K» 2 (E —ho» —& )'/ +K+ SC/ . (A12)

(d) The integral Z' 'k'
)»/ for n= 0 and l = 0 'is

/ 2eh»'
kp in 8

j
The integrals Z (k' wil)»/ il i ho i gtot

+

eely/

k'/m/)

wil ' ' o he integration ove thr e angle

(A13)

»»

he remainder

Z, (k')»q = (3»»
'/

der integration

.ky'k ~
"

j
ek 2( ])»

my
-t(ey +OyE')

my

(~ p E ) ln 82hh»'/2'/m + P(p I -eely k' m

(e) The integral T'„(k);& for n = 0 and l = 0 is

1+ exP(az ~ P&E +elfy~»'/m~)'

ln 82sh /h//h» p~ »

2 A — y~ + exp[»2/ + p/(E+ k»»»h)+ 85// k//m/ jj
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I'(2P ——x) 2m;
I'(- -'x) I'(2P+1) (-+P)

2 r/2-2P
(E —d)) +E( + k'i

where

2m )
2 @2' E —&; + &~ k;, A15j

k) ——(2 mq/k )' is(E+@(g,—6))'(s+K~ (A16)

The integrals T,'(k)„will vanish since Z (k')„= 0. Therefore, the last integral in this group is given by

1 (2m~/k ) k~ (P I'(2p+ 1 —
& r) ' 2m,

I'(-' ) I'(2P+2) ( +&)

r /2-2P-1
+k'

2 / 2P+1 m 2 k'

mg

' e-'"&'~'""""' (I+f[n + p (E+ k~ )]]sinh
2(- 13 tehy k'

tao tt& m
te Sy~ k~ tehy~k&cosh

mg mg

( s q„„'( I + exp[ay+ Py(E + k& ) —&kygkg/mg]i+Pg(E+~ )]I I
i ~

1 p[ P(E @ ) k k'/ ]
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