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The parametric generation of plasma waves from coherent electromagnetic radiation in
semiconductors is considered. Three mechanisms which lead to a parametric instability are
discussed. In the first mechanism the incident-radiation frequency matches the plasmon fre-
quency. In the second case the plasma is allowed to drift, and radiation at twice the plasma
frequency induces an instability. In the third instance two beams at frequencies co& and ~&-2&
create a parametric instability. Application of the theory to InSb indicates that it should be
possible to excite all three types of instabilities with currently available technology.

I. INTRODUCTION

The parametric excitation of plasma density
waves in gaseous and solid-state plasmas has been
of considerable interest, both theoretically' and
experimentally. These parametric excitations
describe the nonlinear coupling of a radiation field
to the density oscillation modes of the plasma.
Many authors have considered the joint excitation
of electron plasma oscillations and ion acoustic
or phonon waves in multicomponent plasmas. In
such cases the radiation field couples to the system
regardless of the smallness of the photon wave num-
ber. As a matter of fact one can set k -0 and still
obtain the parametric instability. A direct conver-
sion of photons to plasmons has been described by
Jackson. There the finite wave number of the
photon plays a strategic role and the instability
vanishes when k - 0. The parametric instability
represents the absorption of a photon with fre-
quency & and the creation of two plasmons at
w~ = 2v, . Although the direct conversion of a pho-
ton into two plasmons is of interest, no experi-
mental observations have been reported, presum-
ably since this is a weak instability.

In this paper we consider a new nonlinear mech-
anism for the direct conversion of photons into
plasmons. A preliminary account of this work
has been presented elsewhere. It is mell known

that at weak field strengths this process is for-
bidden since a single transverse photon cannot ex-
cite a single longitudinal plasmon. Only in the
presence of a surface or inhomogeneity, for exam-
ple, would the breaking of translational symmetry
permit such a process to proceed. Our mechanism
involves the interaction of two photons to produce
two plasmons. This nonlinear interaction results
from the nonparabolic momentum-energy rela-
tion for a single electron. ' Since it is a nonlinear
process it becomes important when the field be-
comes sufficiently intense, as in the case of alaser
field.

We have also calculated the down-conversion of
a photon into two plasmons, similar to the case
discussed by Jackson. However, we consider a
drifting electron gas with a nonparabolic energy-
momentum relation. We obtain an instability even
for the long-wavelength case, i. e. , k-0. The in-
stability groms stronger with increasing drift ve-
locity and may become the dominant process for
converting a photon, having a frequency wz = 2+~
into two plasmons.

We also consider the possibility of having a
stimulated down-conversion process. The inci-
dent beam consists of two waves at frequencies
~& and ~, —2~, respectively. The latter wave
stimulates the down-conversion of the former wave
with the emission of two plasmons.
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In Sec. II, the general theory is derived. Sec-
tion III is reserved for the calculation of the in-
stabilities and application to InSb plasmas. Fi-
nally in Sec. IV, there is a discussion of the re-
sults.

ological manner by introducing the collision life-
time 7. It is related to the electron mobility p.

„

by r = (I*/e) p„,where m* is the effective mass
of the electron and e is its bare charge. In Eq.
(2), y represents the self-consistent electro-
static field set up by the swarm of electrons and

smeared lattice ions. It satisfies the Poisson
equation

H. THEORY

Consider a sample of semiconducting material
such as InSb. The lattice ions will be approximated
by a smeared uniform charge density to maintain
over-all charge neutrality. The swarm of con-
duction electrons near the bottom of the conduc-
tion band will be studied within the hydrodynamic
approximation. Here we do not solve the Boltz-
mann equation for the electronic distribution func-
tion and then obtain density fluctuations, current
fluctuations, etc. One rather uses the Boltzmann
equation to formally derive an infinite set of cou-
pled equations for the moments. The hydrodynam-
ic approximation yields a solution of the coupled
equations for some lower-order moments when
the system is appropriately truncated. This ra-
ther severe approximation correctly describes the
fluctuations in the system only at very long wave-
lengths (small wave numbers). Our solution is
therefore limited to the excitation of long-wave-
length density fluctuations induced by the radiation
field.

I et n represent the number of conduction elec-
trons per unit volume and v their velocity field.
We write the continuity equation

c~ V y = 4' (n —no),

where &1. is the Lattice dielectric constant and no is
the ion density.

Near the bottom of the conduction band the elec-
tronic energy is not parabolic in the momentum.
For degenerate semiconductors like InSb the ener-

gy of a single electron can be expressed quite ac-
curately as II = [( K,) +E,P /2m*]'", where E, is
the gap energy. The energy density of the "elec-
tron fluid" is simply given by $C=nH. By introduc-
ing a parameter c* this may be rewritten

X=n [(m*c* ) + (Pc*) ]'~,

where c*=(E~/2m*)'~ . We note that this formally
resembles a relativistic Hamiltonian with the con-
ventional speed of light replaced by c*. Conse-
quently, the velocity is given by

v=c*p/[(m+c*)'+ p']'" . (5)

For narrow gap semiconductors c* is roughly
two orders of magnitude smaller than the speed of

light in the medium. For this reason we were
able to neglect the spatial variation of the electro-
magnetic wave. Similarly, it allows us to ignore
the ac magnetic forces.

We next develop a perturbation expansion about
the steady-current case. Thus we let n=no+n',
p=po+p', y= y', v=vo+v'. Note that y0=0 for
the uniform plasma. In what follows only terms
linear in the primed variables will be retained.

In the zeroth-order approximation the momen-
tum equation becomes

~Ã—+V (nv)=0.
8$

For the sake of generality we imagine the elec-
trons to be drifting through the semiconductors
with a velocity independent of location. A beam
of electromagnetic radiation is now directed to-
wards the sample. We shall imagine the wave
vector of the radiation to be sufficiently small that
it may be set equal to zero. Stated another way,
the spatial dependence of the wave is to be ne-
glected. In order to encompass the various cases
to be considered in this paper we take the electric
field to be of the form R = K, cos~,t+ Rzcos(&o2t —7l),
where p represents an arbitrary phase. For the
sake of convenience we take E& to be polarized in
the same direction as K2, although it is a trivial
matter to drop this restriction. The magnitudes
E& and E~ are the prevailing fields within the crys-
tal. The momentum equation takes the form

~po
9$

+ v, Vp, = -eX, cos(&o,t) —e, cos(&u, t —q) .

This may be integrated immediately to give

pa= ao - (8@i/~i)»n(~if) —(e@~/~2)»n(~d —~) .

(&)

Here qo denotes the momentum field at t= 0. Equa-
tion (V) gives the steady-state solution in the
presence of the drift velocity and the radiation
field.

The first-order continuity equation becomes
(2)

9p
et 7
—+v Vp+ —(p —po)=eVy ——VP eR . —

n

Here p is the electronic momentum field and po is
the steady-state momentum field. The hydro-
static pressure has been denoted by P. Collisions
with impurities are incorporated in a phenomen-

Az
+noV v'+vo Vn'=0.

Similarly the Poisson equation is now
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E'g V p = 4%en
2 I

The relation between the velocity and momentum
perturbations becomes

c p'-c*2 ¹PPP
Hp Hp

(10)

where Hp is H with p replaced by pp as defined in

Eq. (4). In expanding the momentum equation we
develop the pressure as a series expansion in the
density. Thus, P(n) =P(no)+n'(dP/dno). For
dP/dno we will substitute the value which gives the
same plasmon dispersion formula as obtained
from the Vlasov equation for the long-wavelength
limit. The momentum equation becomes

Bg', , 1, 6&-+ vp Vp'=eVp' ——p' — — Vn',
T p

where &„is the Fermi energy. Here we are as-
suming a degenerate Fermi sea.

The wave solutions to Eqs. (8)-(11)will now be
examined. Let (n', y', p', v') = (N, 4, P, V) e'~,
where $ = k r —fp k vodt. Here, k is the wave
number of the excitation (not to be confused with
the wave number of the incident photon). We ar-
rive at the following set of coupled ordinary dif-
ferential equations:

III. CALCULATION OF INSTABILITIES AND APPLICATION
TO InSb

In this section we solve Eq. (17) for three
cases. The first case (A) involves the direct cou-
pling of photons to plasmons. Here we have

po= —(eEq/&q)sin(u, t. The second case (B) con-
siders the parametric conversion of a photon into
two plasmons in a drifting plasma. Now pp= qp
—(eR,/(oq) sin&qt, where the drift velocity vD=

qo/m* is taken to be smaller than c*. The third
case (C) describes the mixing of two photon beams
to produce a stimulated down-conversion pro-
cess from which two photons emerge. Here pp
= —(eEq/v, ) sin(&u, t) —(eEo/&uo) sin(~ot —q). In all
cases it is assumed that the electric fields E, are
sufficiently small that a power series in them may
be made and all but the first few terms may be
discarded.

Under these assumptions all three processes
cause Eq. (17) to be cast intotheformof the Mathieu

equation,

dP
dz2, + (a —2q cos 2z) P = 0 .

The solutions to this equation are well known. The
parameters z, q, and a for the various instabil-
ities are

dN—+ tnt. v= 0

d5 5 . - . 6m~-—+ ——iek&+i kN= 0,dt 7 5np

4+ 4veN/e~ko = 0,

V= (c /ff0) [~—popo' &(c*/&o) ]

(12)

(14)

(15)

z, = (d,t,
1 1

zb = 47 —pyt,

1 1e, = —,(~, —~,) t+ —,(q —v);

q. = - r [~,(k)/»i]'[-'+ (Po k)'],

(18')

Restricting our attention to waves sucl. chat 5 = kP
(other waves not leading to pertinent results) we
find

2P 1 dP 2
~+c+2

dt '. dt '"'(') a,
c~k pp

where

&u&(k)= (4vnoe /m*ez)+ (6k /5m~) ez,

the familiar plasmon dispersion form. Equation
(16) may be simplified somewhat by letting
P=Pe " '. Then

d2+ NP2u 1 Po P 0

(17)

The above formula is recognized as being an equa-
tion for a parametric oscillator. The coefficient
of P is time dependent since both Pp and Hp de-
pend on t.

qo= —2rg /vvc[(dp( )/k(dl] (qo'El+ 2k 'qok ' Eg )

(1 8/I)

q.= 8(r, r,)"' [~i( k) /(~i —~o) ]';

a.= [~&(k)/~i]'+ 2 q. —(I/»i~)',

a = [2~,(k)/~]'(I —[1/2 ~,(k)]'k,

a, = [&u~(k)/~]' [1—,'(r, —r, )—] (I/2un-) '—.

We have let r, = (eE,/m*c~c) . In case (C), resid-
ual rapidly oscillating terms at frequencies 2~„
2&so, and &o, + ~o have been omitted from Eq. (18).
In the Appendix, the unstable solution to the
Mathieu equation is studied. It is shown that the
growth index is given approximately by p= 2

x [qo —(a- l)o]' o. Thus the net growth rate for the
momentum wave is given for the three cases by
I' = p~& —I/2r, I'&=,p~& —I/27, and I'
= 2(&o~ —&uo) p —I/2r. While in principle many
modes will be excited, the one with maximum
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growth rate is of primary interest. This will oc-
cur when & I'/&k = 0. Henceforth, we will assume
that E, ]!E2][k Ilqo.

The k corresponding to the maximum instability
occurs for frequencies slightly detuned from reso-
nance. Thus, we have

(case C),

((5 * &6,)[2e+-.y+(», ) ])'" (case A)

k = & {(5m*~'/6&~) [2&+ y&(3vD/2c*)'+ (2~ ~) ']j" (case B)

~ ((5m*(uz/6&~) [2&+ j~(yg —y&)+ (»p&) ']j '

where
&u~(1+ e)

(o, = 2~ (1+ &)

~,+2(u (1+ &)

(case A)

(case B)

(case C)
(2o)

In all cases a negative lower bound to the detuning
is observed since k must be real. This is due to
the depression of the plasma frequency by the
strong field and due to the finite lifetime effect.
The growth rates and threshold fields for the in-

stabilities may now be calculated. Here we use
the k for maximum growth rate to determine p, to
lowest order in y. We then define the growth rate
in terms of the threshold field. Gur results are
summarized in the following:

3 yth= 8/3(up~,

p, = 3v D y,"'/4c*, y„=(4c*/3~,~v v)',

p = 8 (yi ya), yth= 4/»~
(case B),

I'= (yglysh I)/2~-
I'= [(yg/yth)"'- I]/2&

I'= [(» y~)'"/yt. —I]/2~ (case C).

The mechanism in case (A) involves the direct
conversion of photons into plasmons [see Fig. 1(a)]
which is forbidden at weak fields due to translation-
al symmetry. Gur mechanism is, in principle,
operative throughout the bulk of the sample for van-

ishingly small collision frequency. For finite col-
lision times, however, the penetration depth is
limited to a distance on the order of a wavelength.
While this distance is small it is still much larger
than a typical plasmon wavelength. This limited
penetration can be used to study electronic prop-
erties of the semiconductor in the vicinity of the
surface.

The streaming parametric instability (case B)
bears some resemblance to the direct coupling in-
stability (case A). In the latter case the two pho-
tons interact to produce two plasmons. In the for-
mer case one of the photons is replaced by the ex-
ternal field which causes drifting. This is indicated
schematically in Fig. 1(b). Energy conservation
now requires &&=2&~ unlike in case A. Thus, both
processes are in reality nonlinear in origin, al-
though the nonlinearity is masked in case 8 in the
form of a drifting effect coupled to phonon absorp-
tion. Since ~& & ~~ the radiation penetrates
through the whole bulk of the sample.

In Fig. 1(c), we have schematically represented
the stimulated down-conversion process. The two

high-frequency beams couple nonlinearly to drive
the plasma at frequency +~ —&2= 2~ resulting in

two-plasmon emission. This similarity to the di-
rect process is seen in the similar expressions
for I', and I",.

In Secs. I and II, we developed expressions for
the threshold fields and growth rates of plasrnd,

instabilities generated by an electromagnetic
wave. We now calculate the relevant quantities
for InSb. This crystal is particularly suited for
the study of the effect because of the large degree
of nonparabolicity associated with the conduction

band. The relevant parameters at T= 77 K are
E,= 0. 234 eV, m*=~~' m„c*=l. 11 x108 cm/sec,
and &L, =16. In Fig. 2, we present ' a~7. as a
function of both ~ and n. For simplicity's sake
we assume the frequency of the incident light and

the plasma frequency to be far from the phonon

band.
The field in the medium E is related to the in-

cident intensity I by E = (2/ I 1+ We~ 1 )(Bmi/c)" 3,

where co= ez, [1—~~/&u(&a+i/~)]. There is a re-
striction on the validity of our theory which is not

apparent from the hydrodynamical approximation,
but can be derived readily from a kinetic-theory
formulation. When the Fermi momentum p~ ex-
ceeds ns*c* most of the electrons can be thought
of as moving with velocity e*. The external field
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k, 4)p
k ~U)p

fpl2

G3, (rad/sec)

fQIS (QI4

k, &Op
k, b)p

FIG. 1. (A) Pictorial
representation of the
direct coupling instabil-
ity. Two photons
(dashed lines) are con-
verted into two plasmons
(wavy lines). (8) Stream-
ing parametric insta-
bility. The field which
induces the streaming
is denoted by X. One
photon at twice the
plasma frequency is
converted into two plas-
ma waves. (C) Stim-
ulated down-conversion
instability. Two pho-
tons whose frequency
difference is twice the
plasmon frequency in-
teract to produce two
plasmons.

25

20

4)p 6 ]5

(0

I I

iOI4 tp»
I

ipl8

wave period, we have

n (cm-~)

FIG. 2. Plot of ~& (product of plasma frequency and

damping time) as a function of plasma frequency and
carrier concentration n.

I/I, „=1+ (~ r/m)(1 T) . (24)

causes a substantial modulation of the electronic
momentum but little modulation of the velocity.
We are thus in a saturation region. Only the non-
relativistic electrons in the degenerate Fermi sea
are capable of producing currents to respond to
the applied field —but they are in the minority. We
now consider each instability separately.

A. Direct Coupling Instability

Curves are presented for j. T=0 and F T=0. 10.

8. Streaming Parametric Instability

We now consider the case where the carriers
are injected with a high drift velocity v&. Ideally
one would prefer the injection current to be weak
enough to avoid the pinch instability. The inci-

io'

An expression for the threshold intensity for the
instability is readily derived. Thus,

I„=(c/12~~7) (m*c~&oge)'~1+ We&&
'. (22)

N
crn2' )

lo

The threshold intensity is plotted as a function of
the incident frequency, which is taken to be the
plasma frequency, in Fig. 3. The intensity is
limited from above by surface ionization at an in-
tensity of -3x10 W/cm~. An approximate upper
limit on the incident wave's frequency is imposed
by the condition P& &m*c*. Thus,

I

~~ & [(4e'/3'*&~) (m*c*/I)' ]"'. (23)

This limit is indicated by a dotted line in Fig. 3.
Also illustrated are the intensities for a particular
growth rate. Thus, if- we let T denote the plasma

Io

I

~OI2

( rad/sec)

I

iOI3

FIG. 3. Threshold intensity plotted against the plasma
frequency for the direct coupling instability (I T =0). Also
shown is the intensity curve for a growth rate equal to
one tenth of the plasma period's inverse I'T = 0.1. Ver-
tical dashed line is explained in the text.
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jo8

lych

W
cm' )

io'

around l. 4x10' cm /V sec. Assume the injection
pulse to last M= 1 psec. The specific heat of InSb
isc= . cm= 1.2 J/' 'K. The temperature rise is thus
given by hT = 4t(neer/c p). For the above param-
e ers s ct 't orresponds to a one-degree rise in tem-
perature per pu s .pulse. The repetition rate mus e
sufficiently low to allow the crystal to dissipate

The cross-its thermal energy between pulses. e
sectional area of the sample corresponding to the
above conditions is A = I/(nev D) = 0. 6 &10 cm .

jo6 io'

C. Simulated Down-Conversion Instability

We turn our attention to the calculation of the
threshold intensity for the stimulated down-con-
version instability. We find

~, (cm/sec)

FIG. 4. Threshold intensity for the streaming para-
metric xns a, x xt bility as a function of the drift velocity for

veral lasma frequencies. Horizontal dashe ine in-
dicates the surface ionization intensity. e
line is explained in the text.

1 v~, ~~1+&~ J,th g4~

where we have let I =I,I~. For intensities above
the threshold intensity the growth rate per period
is given by

I' T= (v/ur v) (I/I,„1). - (28)

dent beam is directed normal to the streaming
plasma with electric polarization vector paralle
to the drift velocity.

The threshold intensity is now given by

I,~= (c/18m) 1+ veo~ (m*c*/ere~) (25)

We notice that the frequency dependence enters
mildly in Eg. (25) only through r and eo. In Fig.
(8), we plot the threshold intensity as a function
f d ift velocity for several plasma frequencies.

Beyond the threshold intensity the growth rate per
period is given by

r T = (v/~, &) ((I/I,„)"'1]. -
Also shown xn ig.h Fig 4 is a dashed curve labeled

= 1. The derivation of the equations for the in-y~n=

stability'was made under the assump 'tion that the
t 1 field was weak enough so that the in-ex erna ze

nitude lessd ed ac velocity fluctuation had a magna u e e
han c*. Thus, y,„=1demarks, in a roug w y,

the region of validity of the theory. To the right
of it the theory is approximately valid while to the
left no real statement can be made, at present.

It ' ' ortant to estimate the rise in tempera-
ture of the crystal caused by the plasma injec ion
pulse to assure that the experiment can be per-
formed. First of all we would like to work at cur-
rents below the onset of the pinch instability. The
Bennett criterion' requires the current to be less
than 2x10 T/vz& A, where T is expressed in elec-
tron volts. For T=77'K and v~=10 cm/sec we
have I &1.25 A. Assume we operate at I=1.0 A.
For (@~=1.09x10' rad/sec we have a carrier con-
centration on n = cm= 10' cm There the mobility is

In Fi . 5, the results are presented. The thresh-
old intensity is plotted as a function of &, where

', for several values of the plasmaw= ~~+&+ urz or
d ~ =~ —~. Thefrequency. Thus, &= &+ &~ and ~2= ~ —~~. e

iO8

'( cm)
W

(o5

jo l3

cu (rad/sec)

FIG. 5. Threshold intensity for the stimulated down-
t bilit as a function of the mean beamconversion ins a x y a

D h d curvefrequency for several plasma eqfr uencies. as e
is explained in the text.
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upper limit on (d is imposed essentially by the
two-photon absorption edge of InSb. The dashed
curve indicates the limit imposed by the condi-
tion that ~, and co~ both exceed the plasma fre-
quency.

IV. DISCUSSION

In this paper we have considered three nonlinear
processes which cause charge-density instabilities
to be driven by radiation fields: (a) two photons
converting into two plasmons; (b) a photon con-
verting into two plasmons in a drifting plasma;
(c) stimulated down-conversion of a photon re-
sulting in two-plasmon emission. The nonlinear
mechanisms responsible for these processes stem
from the nonparabolic energy-momentum relation
of an electron in the crystal field. For narrow
gap semiconductors and especially for InSb this
nonlinearity is one of the largest known in nature.
The nonlinearity arises from the velocity-depen-
dent electronic mass in the following manner.
While under the influence of the electric field the
electronic momentum oscillates harmonically with
time. The current, being proportional to the ve-
locity, is given in terms of all powers of the mo-
mentum. We note that this would not be true for
a parabolic band. We therefore conclude that the
nonlinear coupling must be of the order of
(eE,/m*c*&q), where eE~/m*c*&, is the velocity
induced by the electric field Ej and e is the
"lightlike" velocity in our model (note: v & e*).
Clearly, as c*-~, the nonlinear coupling van-
ishes.

Consider now process A, where two photons are
converted into two plasmons. The instability
would occur when the plasmons are created faster
than they decay. Thus, the threshold field is giv-
en by the condition

(8Ey/m +c +(og)th 1/4)pT

as was obtained in Eq. (24). Similarly, for case
8, where one photon was converted into two plas-
mons in a drifted plasma the threshold field is
given by

(vD/c *)(eEi/m ~c ~~i) 1/~p' ~

APPENDIX: TWO-MODE INSTABILITY OF MATHIEU
EQUATION

In this Appendix we briefly review the two-mode
instability solution to the Mathieu equation:

daP

dz 2 + (a —2q cos 28 )P = 0 . (Al)

We look for a solution of the form

P =A (g+&)e Be" ~) (A2)

It is assumed that a is close to 1 and q is very
small. If we only include terms varying as e'"',
upon inserting Eg. (A2) into (Al) we obtain the
coupled equations

and

[a+ (p, + i)']A = qB

[a+ (p —i) ]B=qA .

(A3)

to be frequency independent. This assumption is
realistic since only a small range of plasmon fre-
quencies (- ~~) is being considered.

The results of the calculations, as presented in
Figs. (3)-(5), indicate efficient conversion mech-
anisms for radiant energy into plasmons. This
enables us to devise a method to excite large-am-
plitude coherent plasma waves. The amplitude of
these waves can be monitored, for example, from
the intensity of the anti-Stokes plasma line. For
the direct coupling instability one should use an

additional source of light at a frequency above the

plasma frequency. In the other cases this addi-
tional source is unnecessary. The incident beam
itself will undergo scattering from the plasma os-
cillations. In the streaming parametric instability
this anti-Stokes line would appear at 3&~ while in

the stimulated down. -conversion instability it would

appear at &3+ ~, for example.
The copious production of plasmons, as sug-

gested in this paper, could find important applica-
tions in physical problems. These would include

optical amplification, stimulated light scattering,
tunable lasers, and the study of nonlinear plasma
processes.

Here the nonlinearity arises from the combined
effect of the drifting and the ac driving force. In
case C the threshold depends on the primary field
as well as on the stimulating field. Thus, the
threshold condition is given by

Solving these we obtain an expression for the
growth index:

2 g 1 2 1/2 --[q'-(a 1)']"'
2(1+a)

(A5)

(eE,/m c*ur, ) (eE&m ~c*u,)-1/(oT.

In all cases we consider the electronic lifetime v

The growth index is real when a lies in the range
1 —q -a - 1+q (when q «1).
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Lattice Location by Channeling Angular Distributions: Bi Implanted in Si

S. T. Picraux
Sandia Laboratories, Albuquerque, Nese Mexico 87115

and

W. L. Brown and %'. M. Gibson,
&el/ Telephone Laboratories, Murray Hill, Ne~ Jersey 07971.

(Received 10 February 1972)

Measurements of 1-MeV He' channeling have been used to study the lattice location of ion-
implanted Bi in Si. Single-alignment (110) and (111) angular distributions for He scattering
from both the Si and Bi atoms at the same depth were measured as a function of implant con-
ditions at 296 and 80 K. Double-alignment angular distributions were also measured for uni-
axial and SO' biaxial channeling along (110) axes. For both single- and double-alignment
measurements, the widths of the Bi distributions show significant narrowing relative to those
for Si. Also, the Bi minimum yield is reduced from 15% for (110) single alignment to 5%
for (110) uniaxial double alignment. Angular-distribution calculations based on the average-
potential model were made for single-alignment axial channeling as a function of equilibrium
displacement of an atom from a substitutional lattice site. The best agreement with the data
is obtained for the case of =50% of the Bi displaced 0.45 A from Si lattice sites and the re-
maining Bi atoms located substitutionally on Si lattice sites.

I. INTRODUCTION

An important technique for directl. y determin-
ing the lattice I.ocation of impurities in single crys-
tals is the use of energetic-particle channeling.
For example, when the reductions in the back-
scattering yield for various crystal channeling
directions are the same for the impurity as for
the lattice atoms, then the impurity atoms are
determined to be on substitutional lattice sites.
For cases where part or all of the impurity atoms
occupy nonsubstitutional sites the interpretation
is l.ess straightforward. A minimum require-

ment for the unambiguous assignment of lattice
locations seems to be careful angular scans along
various channeling directions for both the im-
purity and the lattice atoms. In principle, the
fact that the beam flux density varies across the
channel region between the lattice rows or planes'
should allow the technique to be sensitive to any
well-defined location within the unit cell. How-

ever, an understanding of the ultimate experi-
mental limitations of the technique is still needed.

Most channeling studies have been performed in

a single-alignment rather than double-alignment
mode. For single-alignment channeling measure-


