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We present a theoretical study of the evolution of the coupled electron-phonon system in the
presence of a strong electric field. A nondegenerate semiconductor of constant carrier density
is considered and a numerical solution of the coupled transport equations is performed, the
electrons being represented by a Maxwell-Boltzmann distribution with a time-dependent electron
temperature T~(t). It is shown that both T,(t) and the phonon distribution N, (t) undergo large
deviations even for times of the order of 1 psec after the application of the electric field. The
electron temperature is shown to be generally a nonmonotonic function of time and results are
presented for a variety of carrier concentrations and electric field strengths. The calculated
phonon distribution generally differs considerably from a Bose-Einstein distribution, so that
a phonon temperature cannot be defined.

I. INTRODUCTION

The application of a strong electric field to a
semiconductor generally results in significant
deviations of both the electron and phonon distribu-
tions from their equilibrium values. The phonon
deviations are particularly large at low tempera-
tures, where the phonon lifetimes are long, '
being usually determined by boundary scattering.

In such cases one must deal with the coupled
electron-phonon system, thus abandoning the usual
Bloch assumption of an unperturbed phonon distri-
bution. The effect of phonon heating on the steady-
state electrical conductivity has been studied by
several authors, while it is only recently that
studies of the time -dependent case have been under ™
taken. ' Here one is explicitly interested in the
evolution of the electron and phonon distributions

when an electric field is applied to the system.
This is often of interest experimentally since the
electric field pulses employed are often short or
of comparable duration to the time necessary to
establish the steady state 7„. The latter is com-
monly of the order of the phonon transit time I./c,
I- and c being an approximate sample dimension
and sound velocity, respectively, multiplied by a
factor g which characterizes the acoustic mis-
match between the solid and the heat bath. For the
helium-semiconductor contact, g = 100, and the
time necessary to reach the steady state is of the
order of 10 to 100 p,sec.

One of the first analyses of the time-dependent
case is that of Paranjape and Paranjape. In their
paper an approximate analytic solution was pre
sented, which was based on a simplified treatment
of the phonon distribution, where several time-de-
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pendent terms were approximated as constant.
Subsequently, Baumann, Kocevar, and Kriechbaum
attempted a numerical solution of this problem,
but instead of calculating the simultaneous evolu-
tion of both electrons and phonons, they took the
electron temperature to be constant. This approx-
imation does not appear to be appropriate and was
reconsidered in a further paper by Baumann,
Kriechbaum, and Kahlert. 7

In this paper, we report a detailed theoretical
study of the coupled dynamics of carriers and pho-
nons in semiconductors. The time dependences
of both the electron and phonon distribution func-
tions are considered simultaneously, and a numer-
ical solution of the relevant coupled equations al-
lows us to deduce the evolution of both systems.
Results will be presented for a typical nondegen-
erate semiconductor, and an application is made to
n-type germanium.

The carrier concentration is assumed constant
in order to avoid an explicit treatment of the im-
pact-ionization process. This in itself is an ex-
tremely interesting problem, especially in the
light of the present work, where the nonequilibrium
nature of the phonon distribution is important.
In addition to the effect of the phonons on the free-
electron distribution, and therefore on the ioniza-
tion coefficient, there is obviously also a direct
effect on the recombination and "thermal excita-
tion" of the bound states. Even a numerical solu-
tion of the electron-phonon-impurity system is a
formidable task and would undoubtedly contribute
to an understanding of the unexplained phenomena
observed during impact ionization. '~ '

Since we are interested in the low-temperature
problem, we only consider electron scattering due
to impurities and intravalley acoustic phonons.
The neglect of optical-phonon scattering is justifi. ed
as long as the heating of the electron system is
not too significant. The inclusion of optical modes
in the problem would require a detailed knowledge
of just how these modes decay into acoustic pho-
nons.

Since in the absence of optical modes the elec-
trons are scattered quasielastically, the aniso-
tropic part of the electron distribution function
is small for weak electric fields. The phonon dis-
tribution will then also be approximately isotropic,
and we are therefore essentially studying the en-
ergy exchange between the electron-phonon sys-
tem. For simplicity, the electron distribution is
represented by a Maxwell-Boltzmann distribution
with a time-dependent electron temperature, the
latter being determined by an energy-balance equa-
tion. The phonons are considered to interact only
with the electrons; boundary scattering is neglected,
as are phonon-phonon processes. The neglect of
the latter limits the applicability of the present

analysis to low temperatures, " while the neglect
of boundary scattering is only valid for times short
compared to 7'„=gI /c.

In Sec. II we set up the coupled equations for
the electron and phonon distributions under the as-
sumptions of a simple band model for the crystal
and an elastically isotropic crystal. In Sec. ID
the numerical method used to solve these equa-
tions is given, and the results are presented and
discussed in Sec. IV.

II. COUPLED EQUATIONS FOR CARRIER AND PHONON
DISTRIBUTIONS

The carrier distribution f(k) is taken to be Max-
wellian at a temperature T„such that

f(l) = [&/N, (T,)]e-'~'"~e, (2. I)
where g is the carrier concentration and N, (T,) the
effective density of states of the carriers:

N, (T,) =2(2~~k, T, /I')"',
where m is the effective mass of the carriers, e~
their energy

E, =k k /2m,

and ko is Boltzmann's constant.
The effect of the electrons on the evolution of

the phonon distribution N, is given by

BN» BNq N. , N (T )
8t Bt

with"

(2. 2)

(q T ) 2 hpu(ko Te) Nq(Te)

2m~ T 2 (2. 3)

In Eqs. (2. 2) and (2. 3), N, (T, ) is the Planck distri-
bution at temperature T„

1

exp(h&u, /ko T,) —I

where co, is the frequency of the lattice vibration
of wave vector q. In Eq. (2.3), p is the mass den-
sity of the crystal, u is the longitudinal sound
velocity in the medium, and E& is the acoustic-
deformation-potential constant. Equation (2. 2)
simply expresses the tendency of the phonon dis-
tribution to evolve towards a Bose distribution at
temperature T„and 7~ represents the mean time
for the phonons to reach equilibrium with the elec-
trons. Any additional energy-loss term for pho-
nona could be easily added to Eq. (2. 2) without
providing any further computational difficulty.

Since the electron-momentum relaxation time
7 is extremely short compared to the relatively
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(
de , 1 teN, I

= p, (t) eZ' ——Q lt(u,
~dt n ; ' ( ~t ),

(2. 5)

In Eq. (2.4), the relaxation time 7 is given by

(2. 6)

where vl and v, are the electron-momentum relaxa-
tion times due to impurities and phonons, respec-
tively. We do not make use of the Brooks-Herring
formulation of rl based on the Born approximation,
which would give an incorrect value of the mobility
at very low temperatures. ' Nevertheless, we make
the usual assumptions on the energy dependence of
7I and on the temperature dependence of p, z, where

7 =Ca"'I

pl = QT

(2.V)

(2. 6)

The electron relaxation time due to acoustic pho-
nons ~, is determined by the usual expression

4m@ pu tt,
(N, +-,') q dq . (2. 9)

From Eqs. (2.4), (2. 6), (2. V), and (2. 9), we see
that p. is a function of N, and T, .

The evolution in time of the electron temperature
T, (t) and of the phonon distribution N, (t) can be de-
termined from Eqs. (2. 2)-(2. 9). It is readily ver-
ified that the electrons "follow" the phonons almost
adiabatically; i.e. , the phonon distribution may be
considered instantaneously fixed when calculating
the electron distribution. The ratio of the charac-
teristic response times is essentially given by the
ratio of the specific heats. This needs some mod-
ification in the present context, since only a small
part of the phonon distribution effectively interacts
with the electrons, namely, the long-wavelength
one. Even with this reduction of the effective pho-
non specific heat, the latter remains quite large
compared to the electronic specific heat. This al-
lows us to neglect the (de/dt) term in Eq. (2. 5),
which introduces a relative error of the order of
10, as we have verified a posteriori. Equation
(2. 5) therefore becomes

P(N„T,)e& = —Z 8'&u, ' —= P .1
n

slow variations considered here, the current den-
sity is given by j=nepE, where p. is the electron
mobility corresponding to the instantaneous elec-
tron temperature and photon distribution. The
power input per electron is then given by p,eE,
where E is the electric field and where the mobility
is given by the usual expression

(2.4)

Therefore, the energy balance for electrons gives

The calculation is carried out for the case of a
typical n-type semiconductor with a simple band
model.

III. NUMERICAL METHOD

According to our adiabatic approximation, im-
mediately after the electric field is applied to the
equilibrium system of electrons and phonons at
helium temperature T„ the electron temperature
becomes T, while the phonon distribution is still
the thermal equilibrium one N, (TO) at To= 4. 2' K.
Therefore, we first perform a numerical evaluation
of To by substituting N, (TO) for N, in Eqs. (2. 2)

and (2.9), and then determining T, such that Eq.
(2. 10) is satisfied. Then a small time interval
~t is considered. During this time, N, undergoes
a small variation 5N, given by Eqs. (2. 2) and

(2. 3). The energy balance is no longer satisfied
so that a variation of T„OT, must be introduced
to restore the energy balance. Having thus de-
termined the value of 5N, and 5T„we then continue
to the next time interval, etc. We have verified
that the calculated electron temperatures and pho-
non distributions satisfy Eq. (2. 10) to within about
a few percent throughout the entire calculation.

The choice of ~t is not an arbitrary one. Let us
consider the variation of I/r~, with q at given T,
and n. This is shown in Fig. 1 for two values of
T (T, =53'K and T, =32'K, n=5&10' cm ). It
is seen that the electron-phonon energy relaxation
rate v~ has a maximum value [(v~, ) ] „, which
depends on T, . The exponential decrease of

(r~ ) at high energies is simply due to the ex-
ponential tail of the electron distribution function,
which determines the number of electrons capable
of interacting with the high-frequency phonons.
The time interval &t is chosen such that

(3.1)

Two programs were set up; the first one was
used to calculate T, ; the second one was used to
study the evolution of T, (t) and N, (t) with time.
Both calculations were performed on an IBM 360-
75.

IV. RESULTS AND DISCUSSION

Different carrier concentrations from 10'3 to
5& 10' cm ' and different field intensities from 5

to 20 V cm ' were considered. %e assume an
acoustic-deformation-potential constant E, = 10 eV,
which is typical for an n-type semiconductor. The
electron effective mass m is taken as 0. 25mo (mo
is the free-electron mass). Under these assump-
tions, the results obtained are shown in Table I
and Figs. 2, 3, 5-9.

Table I shows the variations of T, , the initial
electron temperature, with the carrier concentra-
tion n and with the electric field intensity E. It is
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FIG. 2. Electron temperature T, (t) vs time t for dif-
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seen that T,' is an increasing function of E and a de-
creasing function of the carrier concentration n.
This latter result is expected, since the electron
mobility p, (Ã„T,) depends on the ionized impurity
concentration (i.e. , the carrier concentration)
through the electron-impurity mobility: It is thus
a decreasing function of n and, therefore, the rate
at which energy is supplied to the carriers by the
electric field also decreases with n at fixed T,
and E. The phonon-limited mobility and the rate
of energy dissipation per electron are, on the other
hand, independent of n.

From Figs. 2 and 3 it is seen that T, (t) exhibits
two types of time dependence; it may first decrease

and then increase with time, the minimum occurring
at a time t, which is a function of the carrier con-
centration n and of th. e electric field E (type A), or
it may increase monotonically with time (type B).
The curves in Fig. 2 are of type A, and we see that
t increases with the electric field. The dependence
on n is shown in Fig. 3, where the evolution of T,
is presented for three different carrier concentra-
tions. The upper curve corresponds to the lowest
doping (10 3 cm '), and the corresponding t„occurs
at a time longerthan thescale of the figure. As the
doping is increased to 5~ 10' cm-' in the second
curve, the minimum moves in towards the origin.
Finally, for n = 10"cm-', there is no longer a min-
imum, type-8 behavior, and T, increa, ses mono-
tonically with time.

The existence of type-A behavior depends on the
decrease in mobility due to an increase in the pho-
non population. When the variation of the mobility
with phonon number is sufficiently weak, one ob-
serves type-B behavior. This is clearly seen in
Fig. 3, where in the lower curve the mobility de-
pends only weakly on N, , because of the strong im-
purity scattering. This conclusion is readily dem-
onstrated from Eqs. (2. 10) and (2. 2) in the case
where the mobility is independent of N, . Vfe shall
first show that dT, /dt is initially positve. This
follows from differentiating Eq. (2. 10) at t= 0:

BP, dT, BP dT, 1 g ho~|

~ Te dt 8 Te dt n q Tp-e

Since BN, /Bt is everywhere positive at t=0,
d T, /dt is positive if BP/B T, & eE B p, /B T,. To show
this, we consider the variation of T, induced by an
increment in the electric field 5E for the case where
the phonons ave assumed to remain in equilibrium:
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The sign of 5T, in this case is determined by the
same condition as above. For a normal system,
we expect 6T, to be positive for an increase in the
electric field, which is readily demonstrated ex-
plicitly for the impurity-scattering case. There-
fore, dT, /dt is initially positive.

We proceed to show that dT, /dt remains non-
negative for a phonon-independent mobility by means
of a proof by contradiction. If dT, /dt is negative
at some time t&0, T, obviously has a maximum at
some time t,. In this case, Eq. (4. 1) at time t&

yields

( g II&d~ BN~ (4. 3)

This is clearly only possible if BN, /Bt assumes
negative values. By Eq. (2. 2), on the other hand,
we see that this requires N, &N, (T,). Since BN, /Bt
is initially positive, there must be a time t2 ~ tj
such that for some q, (BN, /Bt) =0, while (BN, /Bt)
&0 for all other q (Fig 4). Si.nce at the points
of contact in Fig. 4, N, =N, (T, ) and (BN, /Bt)=0,
BN, /Bt would therefore not become negative in the
following interval n.t if N, (T,) was stationary. In
fact, the only way that these curves can cross in
this infinitesimal time interval is for N, (T,) to
decrease; i. e. , T, must decrease. But this is im-
possible, since by hypothesis dT, /dt is positive for
t& t~. We may therefore conclude that the non-
monotonic time dependence of T, is due to the ef-
fect of the phonons on the mobility.

In Fig. 5 is shown a typical evolution of the pho-
non distribution; as expected, A, increases mono-
tonically with time and the heating of the phonon pop-
ulation is most significant for the long-wavelength
phonons. It is readily seen that the number of pho-
nons increases considerably even for times of the
order of 1 p, sec.

FIG. 5. Phonon distribution N, vs phonon wave .

number q at different times. The curve at t=0 @sec is
the therma1-equilibrium phonon distribution Nq{Tp) at
Tp=4. 2'K.
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FIG. 6. Phonon distribution Nq vs wave number q
for three electric field intensities at time t =1.2 psec.

In Fig. 6 is shown the field dependence of the
phonon distribution, calculated l. 2 p, sec after the
application of the electric field. We note that these
curves cross one another, so that large electric
fields (high electron temperatures) are most effec-
tive in heating the high-energy phonons at the ex-
pense of the low-energy phonons. This can be un-
derstood from Fig. 1, where we note a crossover
in the 1/7'~, curves at different electron tempera-
tures.



1364 N. PERRlN AND H. BUDD

c
0
C
0

I +

I

Xe

E =10Vcrn

n = 5x10" cm (Te -53'K)
t= 2psec
n =10"'cm (Te'=60.5 K)

t= 2.25 psec

x Nq (To =4.2'K)

50

E =10Yern

n= 5xl0"~ cm
(Te = 32'K)

Te(t=0.6psec)

30 ~ &0 t=3psee
~X~X~X

6 20-
o. g v

) Mx &= 0.6use&
10-x cm ~x

n= 5x10"4cm ' ~x
p

(T~'= 53'K)
0
f
4
a- 50 — ~ «x~ «Te(H).6psec',

/ W„&=0.6psec
40 X

Te (t =0.15
+ ~+ p sec)

0 ~+
0

20-+ ~+ I=0.15@sec
+~

10- +~+~

I Xt w Q ~~e~ L I I

1 2 3 4 5 6 7

Phonon eave number q(10 m )

FIG. 7. Phonon distribution N, vs phonon wave
number q for two electron concentrations at about the
same time.

I I I I I

1 2 3 4 5 6 7

Phonon eave number q (10 m ")

FIG. 9. Phonon temperature T& vs wave number q at
different times and different electron concentrations.
The dashed lines represent the electron temperature.

E =10Vcm

)(~X
x „n=10"cmX~X

l
V

R»,—
+
-+

10 +
o +~

0 -Q 'I5 3 + +
n= 5x10 cm(IMO~ ~~

n =10"'cm-'
I I I

0 1 2 3

Time t (p sec)

FIG. 8. Electron mobility p vs time t for different
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The electron concentration dependence of N, is
shown in Fig. 7. As expected from the linear vari-
ation of 1/r~, with n, the increase in the phonon

population depends strongly on the electron concen-
tration. If in fact there were no impurity scatter-
ing, one could calculate a universal curve for the
phonon distribution (at a given field), the time scale
being simply linear in g- . This is readily seen
from Zq. (2. 2).

The time dependence of the mobility is shown in

Fig. 8, where it is seen to decrease with time ex-
cept in the lowest curve. The variation of the mo-
bility is complicated since its dependence on T,
is nonmonotonic, being an increasing function of

T, when impurity scattering dominates, and a de-
creasing function of T, for dominant phonon scat-
tering. In addition there is obviously the N, de-

pendence of p. , whichle3dstoa decreasein p, for an

increase in N, . These factors are all interdepen-
dent and, while a large carrier concentration tends
to make the mobility only weakly N, dependent, at
least for small T„ it also tends to make 8N, /et
large. In general, a variety of behavior is possible
for different carrier concentrations and electric
fields.

Let us now see to what extent a phonon tempera-
ture T~(q, t) may be usefully introduced by the defi-
nition

N, (t) =
exprnco, /nod(q, t)] —1

'

It is quite interesting to see how this temperature
T~(q) depends on q at a given time. Where the
electron-phonon interaction is strong, i. e. , when

1/v~, is large, a phonon temperature T~(q) close
to the electron temperature may be expected, since
in the limit where r~, -0, N, -N, (T,), as can be
seen in Eg. (2. 2). The calculated T~(q) is shown
in Fig. 9 for different times and carrier concentra-
tions. It is seen that T~ depends strongly on q and
has a maximum which corresponds to the maximum
value of the 1/v~, curve (Fig. 1). T~(q) generally
differs considerably from T„except in the neigh-
borhood of the maximum, where itbecomes nearly
constant over a wide range of values of q, and close
to T, for long enough times. Therefore, a phonon
temperature T~ could possibly be introduced in this
case at least for intermediate-wavelength phonons.

We have so far considered the case of a typical
nondegenerate n-type semiconductor. Let us now
look at the particular case of n-type Ge for which
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TABLE I. Calculated values of the initial electron temperature T, as a function of carrier concentration g and
electric field intensity E(Ei =10 eV).

Carrier concentration
n (1/cm3)

1Pi3

5x10i3
10'4

5 x 1p'4
10i5

5 x]pi5
10"

5 x1p"

33
30
29
25.5
23
7.5
5.5

39
35.5
34.5
31
29
10.5

6

44. 5
4]
40
37
34.5
15
7.5

50
47
46
42. 5
40
20. 5
10

55
52
51
48
45. 5
26
13

60.5
57.5
56
53
51
32
18

5

65.5
62. 5
61.5
58.5
56
37
23
5.5

Electric field E (V/cm)
8 9 10

Initial electron temperature ('K)

12

70. 5
67. 5
66. 5
63.5
61
43
29

6

85
82
81
78
76
58
45

7

20

108
105
104
101.5
99
82
70
15

two acoustic-deformation-potential constants p

and:"& are, respectively, introduced in the rate of
energy loss of electrons to acoustic modes and in
the electron relaxation time. We take =p = 16. 5 eV
and =& ——12. 2 eV. ' Under these conditions the re-
sults are shown in Table II and Figs. 10 and 11 for
a carrier concentration yg= 5&& 10' cm-'. The
curves in Fig. 10 are of type A. We note the influ-
ence of the acoustic-deformation-potential constant
by comparing the curves a& and 5 in Fig. 10 and the
two upper curves in Fig. 11: An increase of the
acoustic-deformation-potential constant lowers the
electron temperature. A comparison of our re-
sults for Ge with the work of Baumann et aIt. is
difficult since these authors only give the electron
temperature and mobility at two times. Moreover,
they use a value of the acoustic-deformation-poten-
tial constant considerably smaller than the usual
one. In any case, their results do not appear to be
even in qualitative agreement with our own.

V. CONCLUSION

The results presented above show that even a
qualitative understanding of the response of a semi-
conductor to an intense electric field at low tem-
perature requires a solution of the coupled dynamics
of the electron- phonon system. Considerable varia-
tions of both the phonon and electron distribution
occur even for time intervals as short as 1 p, sec.

The phonon distribution is generally quite differ-
ent from a Bose-like distribution and reflects the
form of the electron-phonon relaxation time [Etl.
(2. 3)].

The time dependence of the electron temperature
is generally nonmonotonic, the detailed form being
a function of the impurity concentration and the ap-
plied electric field.

While we have assumed throughout that the elec-
tron concentration remains constant, it is interesting
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TABLE II. Initial values of the electron temperature
T, inn germanium at 4.2'K for n=5x10' cm

Electric
field

(V/cm) 5 6 7 8 9 10 11 12 15 20

Tg
0

(K) 12, 15 18 21 24 27 30 33 41.5 55

to consider the impact-ionization problem in the
light of our results. If initially the electron tem-
perature is sufficiently high to result in impact
ionization, its subsequent decrease in time can re-
sult in deionization. At the same time, however,
the phonon population is increasing and one has to
reach some electron temperature below the critical
temperature (corresponding to the initial break-
down field) for this to occur. As one loses elec-
trons from the conduction band, 7~,' decreases

and the phonons start to relax towards an equilib-
rium state at the temperature of the helium bath.
This could be qualitatively represented by simply
adding a relaxation term to Eq. (2. 2):

BNq N, (T ) Nq — Nq(TO)
+

~P- e ~h

where T0 is the helium temperature and 7„ is the

appropriate relaxation time discussed in the Intro-
duction. This decrease in R, then leads to an in-

crease in T, and a corresponding increase in g,
etc. It seems quite plausible that under appro-
priate conditions this could lead to the type of in-
stabilities associated with breakdown phenomena.
This is rather difficult to treat quantitatively,
since one requires a theory of impact ionization
in the presence of time-dependent electrons and

phonon distributions, the latter having a rather
complicated q dependence.
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